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This study presents the fractional modified Atangana-Baleanu-Caputo 
derivative for the solution of a non-homogeneous nonlinear coupled system of 
hyperbolic partial differential equations. The system has also been solved in the 
Atangana-Baleanu-Caputo derivative to prove that it is effective for these kinds 
of problems. The system has been fractional in space-time, and it has been 
demonstrated through research that the suggested approach is second-order 
convergent in both space and time and conditionally stable. The numerical 
method non-standard finite difference has been provided toward the conclusion 
to compare the exact and numerical results to the problem. The stability of the 
current system was explained by applying Von Neumann analysis. The 
effectiveness and reliability of the theoretical estimations are demonstrated by 
the numerical solutions. 

 
 

 

1. Introduction  

 Fractional differential equations have drawn a lot of 
interest in applied mathematics and engineering over the 
past 20 years. In addition to being a hot topic in 
mathematics, fractional calculus has applications in a wide 
range of other fields, including engineering, chemistry, 
aerodynamics, control theory, physics, biology, continuum, 
and statistical mechanics. This fraction may be seen as a 
function in any variable, including time, space and other 
variables. Therefore, fractional derivatives authors benefit 
from displaying such unusual behaviors to explain various 
processes. Such operators reveal the distinguished 
characteristics of extended relationships, which the 
criterion integer order differential equation can’t prove. The 
solvability of boundary value problems (BVPs) for nonlinear 
fractional differential equations has been investigated in 
recent years, fixed point theorems are typically used in 
these kinds of issues to explore the existence and 
multiplicity of solutions [1]-[3]. The fractional order calculus 
is a logical progression from the constant order calculus.  
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  Although literature now offers several definitions for 
fraction derivatives, the most widely used are Riemann-
Liouville, Caputo, and Atangana-Baleanu derivatives, we 
refer the reader to basic books [4]-[7]. Fractional 
differentiation is always evolving to address practical 
issues, and compared to integer-order derivatives, 
fractional derivatives are more advantageous because they 
may characterize memory and the inherited characteristics 
of physical materials [8]. 

Differential equations can also be solved numerically 
using the nonstandard finite difference technique 
(NSFDM), numerous issues, including linear and non-linear 
partial differential equations, have been resolved with its 
help. This approach can be used for a region that contains 
a variety of materials, problems with arious boundary 
forms, and numerous kinds of boundary conditions [9]-[12].  

One of these issues that draws in a lot of scientists is 
the hyperbolic partial differential equations, which are very 
useful in physics and mathematics and have numerous 
applications. A review of numerical methods for non-linear 
partial differential equations was given by Polyanin [13] and 
Tadmor [14]. Nonlinear hyperbolic partial differential 
equations have been applied in different fields, such as in 
hypoelastic solids [15], astrophysics [16], electromagnetic 
theory [17], propagation of heat waves [18], [19], and other 
disciplines. Numerous authors in relevant domains like 
biology, physics, electrical networks, fluid flows, and 
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viscoelasticity attempt to model these occurrences as 
coupled systems [20]-[23]. Furthermore, because coupled 
systems of fractional differential equations are found in 
many scientific applications, the study of these systems 
has garnered a lot of attention (we refer to [24], [25], [26]). 
With the use of the NSFDM and Taylor’s expansion of 
function, a numerical method for discretizing the modified 
Atangana-Baleanu-Caputo derivative (MABC) derivative 
has been created in this study. Regarding the solution of 
the hyperbolic partial differential equation [27], consider the 
following space-time fraction for the non-linear coupled 
system. In recent years, mathematical systems could be 
depicted suitability and more accurately by employing the 
fractional order derivative. More recently, Atangana-
Baleanu-Caputo sense (ABC) defined a modified Caputo 
fractional derivative by introducing generalized Mittag-

Leffler function as the non-local and non-singular kernel 
[28], [29]. These new types of derivatives have been used 
in the modeling of real-life applications in different fields.  

The paper is organized In the following way: In Section 
(1), the introduction, the model is presented together with 
their fractional form. Section (2) contains the fraction 
calculus definitions. The method for non-linear coupled 
systems is described in Section (3), additionally, it explains 
the fractional derivative schemes for ABC and MABC 
derivatives. Section (4) presents truncation errors for the 
proposed model. Section (5) presents stability 
assessments and their conditions. Section (6) contains 
numerical graphics and results. Section (7) conclusion. 

 

 

                  (1) 

with initial and boundary conditions,    

 ,  
 

   
 

    

          (2) 

    

Where  are unknown functions. The time fraction of orders 1 < α ≤ 2 for the 

equation (1) is given, 

 

(3) 

Where  and are the modified Atangana-Baleanu-Caputo MABC fractional 

operator for time and space [28] for the same boundary and initial conditions. 

2. Fractional Calculus Definitions 

There are many definitions of fractional calculus of order α the most basic and relevant definitions are 
discussed in this section (see [5], [31]), such as Riemann-Liouville’s definition, Caputo’s fractional 
derivative, Atangana-Baleanu fractional derivative in Caputo sense and the modified ABC fractional 
operator, 

• The Riemann-Liouville fractional derivative of order α, 0 > α > 1 of a function f(t) is define as: 
 

                                                          (4) 

• The Caputo-Fabrizio derivative with fractional order when  be a function in 

 and α ∈ C,  see [32]-[34], will define as, 
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                             (5) 

    where,  is normalization function such that B(0) = B(1) = 1. 

• The Atangana-Baleanu-Caputo fractional derivative [35] is defined as, 
    

                             (6) 

where Eα is Mittag-Leffler function where,  it is a modified form of Caputo-Fabrizio 

that presents the ideal properties of non-singularity, and non-locality of the kernel. 

 

• The modified Atangana-Baleanu-Caputo MABC fractional operator in  in Caputo 

sense [28] was defined as, 

                                                                                                                                             (7) 

Where  . The derivative is defined for  and  where δ = α + n − 1. The 

MABC fractional operator leads to new solutions of several fractional differential equations and a 
description of the dynamics of fractional processes. 

 

3. The Method for Non-linear Coupled Systems 

Let’s consider that the solution domain of our problem is  and  such that 

 and  Let  where  and 

 is divided into intervals having equal lengths h in the x direction and k for the t direction. The 

values of the solution    are given by  Expand  using the Taylor’s expansion around   for 

to get the NSFDM approximations for the terms  and  as follows: 

                                                                        (8) 

Use the following equations to obtain the space-time discretization for the model (1) by the Atangana-
Baleanu-Caputo and the Modified Atangana-Baleanu-Caputo derivatives: 

 

                              (9) 

 

                         (10) 

3.1 ABC Derivative Discretization 

 

For getting the time fractional derivative scheme in ABC derivatives put n=2 in equation (6) and 

 for the function  we will get, 

 

where  and let  
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                                   for                                (11) 

 

For getting the space fractional derivative scheme in ABC derivatives put n=2 in equation 

(6) and  for the function  we will get, 

 

 

 

 

    for                                                                        (12) 

 

Where   and  are the truncation errors for the non-linear coupled system equations. To 

derive the discretization schemes for the system equations (9) to get the time-space fractional schemes as 
follows: 

 

                                                                                                                                                       (13) 

 

By taking the same steps for the equation  in the coupled system, to get the time-space fractional 

derivative schemes, 
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                                                                                                                                                        (14) 

3.2  MABC Derivative Discretization 

For getting the time fractional derivative scheme in MABC derivatives put n=2 in equation (2) and 

 for the function  we will get, 

  

  

 

where w(x) is function,                    

 

                                                                                        

                                                                                                                                                 (15) 

 

For getting the space fractional derivative scheme in MABC derivatives put  in equation (2) and 

 for the function  we will get, 

 

 .                                                

                                                                                                                                                          (16) 

Where  is function and  are the truncation errors for the nonlinear coupled system equations. To 

derive the discretization schemes for the system equations (10), for  and  

 

  

  

 

  .                                                                       (17) 
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By taking the same steps for the equation  in the coupled system, to get the time-space fractional 

derivative schemes, 

 

  

  

 

                                                                        (18) 

For simplicity, we will write the system equation in the form: 

 

 

                                                                                                                                            (19) 

Where  and  are square block matrices. Also, if the matrix  is invertible, then by writing this system 

in a matrix form as follows: 

 

, ,   

 

and 

 

 

Where  and  are the estimated truncation errors for the system. 
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4. Truncation Error 

We will estimate the truncation error for the proposed numerical methods in (3.2) from the definition of 
truncation error given by [37], 

  

  

where  and  for the time step  let G, C and F are constants where  

and  are constants as defined, 

 

  

  

 

we can get the global truncation errors as follows, 

                                                                        (20) 

 Since  the space derivative of the first and second orders are approximated 

as, 

                                   

Which yields an accuracy of order 

                                                                                    (21) 

5. Stability 

 

The stability of the schemes in (3.2) were examined using a technique of Von-Neumann method (see 
[38]) by considering  which can be written in the form, 

 

                                           (22) 

Let X,  and  are square block matrices. Also, the matrix X is invertible, then By writing this system 

in a matrix form as follows: 

 

                                            (23) 

 

,  ,   
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By applying the mathematical required steps for the above system, we will get the form, 

 

                                                 

                                                                                                                                                             (24) 

where  and P are constants where , 

 

  

 

 

 

Applying the Von-Neumann stability analysis by assuming that  
  into the equations system (24) where 

 as follows. Divide the deduced equation by and put every   . Using the Euler formulas  

 and  [38] and making some necessary arrangements we will have that, 

 

 

 

Therefore, given the conditions, schemes in (3.2) are stable if, 

 

 

 
                                                                                                                                                            (25) 
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6. Numerical Discussion 

In the following, NSFDM is introduced to study the fractional coupled hyperbolic system model (1), to illustrate the 
efficiency of MABC derivative, we investigate the following example [36]. All values of the parameters are given in 

tables (1)-(4) throughout this section we used  and  at values of  

and . Figures (1) show the numerical results for Ex (6) for the NSFDM to the functions u and v at  

 using MABC derivative. Figures (2) show the error analysis for NSFDM at the same functions at h=k=0.1. 

Figures (4) show the numerical results for Ex (6) for the NSFDM to the functions u and v at  using  

ABC derivative. Figures (5) show the error analysis between the numerical results and the exact solution for the 
same functions at . Figures (3), (6) show how the numerical solution for the function u and v are compatible 

with the exact solution. Consider the coupled system of hyperbolic partial differential equation: 

Example 1. Let us consider the exact solution for the functions  and  of the non-

linear coupled system of hyperbolic PDEs (1), with the initial and boundary conditions [36] as follows: 

 

 

 

 

When   

 

 

Table 1: Comparison between numerical, exact solutions and their difference in error by using NSFDM and MABC 
derivative for the function u at dx=dt=0.2. 

at dx=dt=0.2, Numerical (CPU = 12.620 s) Exact Error 

x=0 0 0 0 

0.2 3.1175 × 10−2 2.86942 × 10−2 2.4813 × 10−3 

0.4 1.2105 × 10−1 1.14776 × 10−1 6.2771 × 10−3 

0.6 2.6086 × 10−1 2.58248 × 10−1 2.6166 × 10−3 

0.8 4.5932 × 10−1 4.59107 × 10−1 2.1951 × 10−4 

1 7.1735 × 10−1 7.17356 × 10−1 0 

Table 2: Comparison between numerical, exact solutions and their difference in error by using NSFDM and MABC 
derivative for the function v at dx=dt=0.2. 

at dx=dt=0.2, Numerical (CPU = 18.277 s) Exact Error 

x=0 0 0 0 

0.2 3.2394 × 10−2 2.7868 × 10−2 4.5266 × 10−3 

0.4 1.2130 × 10−1 1.1147 × 10−1 9.8318 × 10−3 

0.6 2.5275 × 10−1 2.5081 × 10−1 1.9401 × 10−3 

0.8 4.3685 × 10−1 4.4589 × 10−1 9.0358 × 10−3 

1 6.9670 × 10−1 6.9670 × 10−1 0 
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Figure 1: The numerical analysis for EX.1 using MABC derivative for the functions u and v at h=0.1 and t=0.1. 

 

Figure 2: The error analysis for Ex.1 using MABC derivative for the functions u and v at h=0.1 and t=0.1. 

 

 

Figure 3: Numerical and exact analysis for EX.1 using MABC derivative for the functions u and v at h=0.1 and t=0.1. 

 

Table 3: Comparison between numerical solutions, the exact solution and their difference in error by using NSFDM 
and ABC derivative for the function u at dx=dt=0.2. 

for n=m=5, Numerical (CPU = 9.253 s) Exact Error 

x=0 0 0 0 

0.2 2.2610 × 10−2 1.5576 × 10−2 7.0337 × 10−3 

0.4 7.7378 × 10−2 6.2306 × 10−2 1.5072 × 10−2 

0.6 1.4147 × 10−1 1.4019 × 10−1 1.2893 × 10−3 

0.8 2.3799 × 10−1 2.4922 × 10−1 1.1232 × 10−2 

1 3.8941 × 10−1 3.8941 × 10−1 0 
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Table 4: Comparison between numerical solutions, the exact solution and their difference in error by using NSFDM 
and ABC derivative for the function v at dx=dt=0.2. 

for n=m=5, Numerical (CPU = 15.911 s) Exact Error 

x=0 0 0 0 

0.2 6.8871 × 10−2 3.6842 × 10−2 3.2029 × 10−2 

0.4 2.1239 × 10−1 1.4736 × 10−1 6.5029 × 10−2 

0.6 3.5324 × 10−1 3.3158 × 10−1 2.1666 × 10−2 

0.8 5.5856 × 10−1 5.8947 × 10−1 3.0917 × 10−2 

1 9.2106 × 10−1 9.2106 × 10−1 0 

 

 

 

Figure 4: The numerical analysis for EX.1 using ABC derivative for the functions u and v at h=0.1 and t=0.1. 

 

 

Figure 5: The error analysis for Ex.1 using ABC derivative for the functions u and v at h=0.1 and t=0.1. 

 

 

Figure 6: Numerical and exact analysis for EX.1 using ABC derivative for the functions u and v at h=0.1 and t=0.1
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Conclusions  
In this research, we formulated the numerical solutions 

for the ABC and MABC operators successfully for the 
suggested non-linear coupled system of hyperbolic partial 
differential equation. The MABC operator was utilized to 
fractionalize the coupled system. Theoretical analysis like 
the non-standard finite difference method was confirmed by 
numerical results, which were presented in diverse graphs 
and tables. The following are the key conclusions: 

• Numerical results showed that the NSFD fraction 
method gives accurate results compared with the 
exact solution to the proposed problem. 

• By using the John Von Neumann stability analysis 
approach, the constancy analysis of the referred-to 
variable order was put to the test. 

• The results in the tables and the numerical figures 
display that the schemes attained from applying 
the submitted numerical methods are compatible 
with the exact solution. 

• We can apply the MABC operator to an enormous 
number of problems defined and encountered in 
technology and science. 

• Truncation errors were calculated. 

• The results indicate by the comparison between 
the ABC and MABC derivatives that the proposed 
approach is highly accurate and very effective for 
these kinds of problems. 
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