Identification of Functional Therapeutic Compounds in Moringa oleifera **Fortified Bio-yoghurt**

Enaam S. Shokry¹, Susu M. Alasfoury², Eman M. Ibrahim³

ABSTRACT

Presently, the consumption of probiotic yogurt has been a significant increase. Mostly consumers prefer to take probiotic yoghurt because of its taste and high nutrients. However, in the manufacturing process of probiotic vogurt, many fortified materials can be used. This research objective was to determine the effects and the quality properties of the locally produced dietary supplement probiotic vogurt with therapeutic compounds, fortifying conventional with probiotics Lactobacillus acidophilus, and Bifidobacterium bifidum as an effective approach for producing and particularly enhancing functional profits and its responses on human health have been investigated in various tested treatments. Ten biostirred yoghurt samples were prepared with different ratios of Moringa oleifera powder to improve and proof the nutritional quality of yoghurt and different treatments types of Stirred bio-yoghurt formulated and fermented with the normal yoghurt starter culture at 40 °C for 3 hr. After fermentation, control and tested bio-yoghurt treatments used for GCMS/MS analysis for detection the bio-active metabolites in the fresh bio-product and after cold storage at 5 °C for 2 weeks to check their shelf life. Fortifying probiotic yogurt with higher levels of Moringa oleifera powder significantly enhances a symbiotic state, provide health benefits and considers a very important prebiotic factor to the probiotic adjunct strains. The addition of leaves and seeds of Moringa oleifera powder including berberine compound is significantly optimizing the final products, gastrointestinal disturbances and avoid cardiac problems. Nevertheless, future studies are needed to correlate probiotic strains and specific health aspects to these bio-active molecules effectors.

Keywords: Moringa oleifera, Prebiotic, Probiotic strains, Bio-active compounds, Dietary supplement stirred bio-yoghurt.

INTRODUCTION

Fermented milk products are safe for all different ages this is because the presence of lactic acid bacteria (LAB), such as Streptococcus thermophilus and Lactobacillus bulgaricus, are used (Mustika et al., 2019). The popular consuming dairy products in the community and widely developed by food experts is yoghurt. Thus, yogurt is a sustainable, sour, refreshing milk product, more easily digested in the human gastrointestinal tract and one of other health benefits are specific probiotic strains e.g. immunological effects and production of bio-active compounds (Darwish et al., 2022). A healthy lifestyle causes an increase concerning for enable people to easily get a sufficient amount of this probiotic dairy products via their daily diet. On the other hand The bio-availability of the adjunct cultures biosynthetic pathway enzymes support developing biovogurt production, increase of flavors and involving nutritionally healthy active compounds that can inhibit and reduce the growth of undesirable spoilage microorganisms in the bio-product therefore, suggests that moringa can act as a natural preservative (Maharani 2020). When regarding the chemical et al., characteristics of moringa leave/seeds powder studies by Karamy et al. (2024) conducted that Moringa leaves powder can be used as a fortification, add nutritional value, and also incorporating moringa into yogurt can extend the shelf life, enhance and improve products quality of food products. Several studies on the health value of Moringa oleifera Based commonly on its functional ingredients, antioxidant activity and potential health benefits in yogurt production due to its rich in fiber 12.5 g, calcium 2185 mg, iron 25.6 mg, phosphorus 225 mg, protein 29.4 g, carbohydrates 41.2 g, and fat 5.2 g per 100 g (Isnan and Nurhaedah, 2017). All parts of *Moringa oleifera* may help in solving many nutritional deficiencies and can be used as a variety medicine; that is because its minerals content, and vitamins B, like pyridoxine, folic acid, and nicotinic acid. Moreover, M. oleifera leaves have a low calorific value and can be used in the diet (Rockwool et al., Moringa seeds extract exhibit potential 2013). antimicrobial effects, can act as antifungal activity, antiinflammation of the liver and antibacterial action against pathogens Escherichia coli and Staphylococcus aureus (Thomas, 1992). Higher concentrations may negatively impact taste and overall consumers acceptance. Therefore, careful optimizing of moringa concentration is essential and critical to maintaining the product's appeal to consumers (Trigo et al., 2023). Therefore, the aim of this research was to investigate the effect of fortifying organic yogurt with different

Received March 10, 2025, Accepted April 13, 2025.

DOI: 10.21608/asejaiqjsae.2025.422342

¹Dairy Science and Technology Department, Faculty of Agriculture,

Alexandria University, Egypt. enaamshokery@yahoo.com, ²Taif University, P.O. BOX11099, Taif 21944 Saudi Arabia,

Agricultural Research Center, Food Technology Research Institute (FTRI), Egypt.

³Faculty of Agriculture, Kafr-El-Sheikh University, Egypt.

dosages of moringa and its health impact, and bio-active polar and nonpolar volatile compounds.

MATERIALS AND METHODS

1-Moringa leaves\seeds powder preparation:

Moringa oleifera (*M. oleifera*) was obtained from the Agriculture Research Center El Doki, Ministry of Agriculture, Egypt. The use of Moringa leaves powder is also obtained through several processes, by sorting, washing, drying, and milling. Previous studies by Shokery *et al.* (2017).

2- Yoghurt Culture (primary starter):

The starter was obtained from Chr. Hansen Laboratories, Copenhagen, Denmark.

3- Preparation of Probiotic Culture (Secondary starter):

To prepare the probiotic culture, a modified procedure outlined by Segers and Lebeer (2014) was followed. Lyophilized probiotic starter (ABT culture) contains *Lactobacillus acidophilus*, and *Bifidobacterium bifidum*, the stock culture of was stored at -70 °C. When used, it was propagated in sterilized skim milk and incubated for 48 h at 37 °C, followed by, inoculated 1.5% (7.48 log CFU/ml) to prepared milk or milk formulations, fermentation and coagulation carried out for bio-yoghurt formation. The pH was monitored during fermentation, and coagulation occurred when the pH reached 4.6 at the end of fermentation.

4- Bio- fortified stirred Yogurt production:

Fresh buffalo whole milk (8.1% fat, 9.5% SNF) was collected from animal production research, faculty of agriculture, Kafr-El-Sheikh University, Egypt. The five treatments of buffalo milk (8.1% fat & 9.5% SNF), control and four treatments were heated and fortified with different levels of *M. oleifera* (0.5 & 1% powder leaves and 0.5 & 1% powder seeds) to 90 °C for 7 min. Inoculation with ABT 10^{6} - 10^{7} CFU/ml starter culture at 40 °C for milk fermentation. Treatments were incubated at 42 °C until pH 4.7 and then cooled and kept at 5 °C overnight. Coagulated bio-yogurt was stirred by a mechanical mixer, filled in plastic bottles, and stored at

5 °C for 2 weeks as described by Habib *et al.* (2019). The treatment specifications are shown in Table (1).

5- Samples Preparation for Volatile Organic Compounds Analysis (VOCs):

If necessary, dry the sample to remove water, as moisture can interfere with silvlation. Dissolve the sample in an anhydrous solvent such as pyridine, for Derivatization Reaction add 50-200 µL of (Bis trimethylSilyl fluoro-Acetamide) BSA (depending on the sample and analyte concentration). Incubate the reaction mixture at 60-80 °C in water bath for 15-30 minutes to ensure complete derivatization. Extraction of polar and non-polar metabolites from freeze-dried powder. The following protocol describes: by Shepherda et al. (2007). The general method used for extraction of metabolites from samples. Internal standards for polar metabolites (100 lL aqueous ribitol, 2 mg ml⁻¹) and non-polar metabolites (100 lL methanolic methyl nonadecanoate, 0.2 mg ml⁻¹) were added to powdered lyophilized yoghurt samples (100 mg) in a glass culture tube (125.16 mm). Methanol (3 ml) was added and the mixture was shaken vigorously on a vortex shaker at 30 °C for 30 min. Water (0.75 ml) and chloroform (6 ml) were added sequentially, and after each addition the mixture was shaken at 30 °C for a further 30 min. Finally more water (1.5 ml) was added and the mixture was shaken by hand and then separated by centrifugation into upper (polar) and lower (nonpolar) fractions, each of which was isolated by pipette. The separated fractions were either subjected immediately to further processing, derivatisation and analysis, or alternatively were stored at 20 °C pending further processing. Polar fractions could be stored directly whereas non-polar fractions were first evaporated to dryness under nitrogen and then redissolved in iso-hexane containing 50 ppm 2,6-di-tbutyl-4-methyl phenol (BHT). 2.7. Linearity experiments to assess the linearity of the response ratios for individual metabolites with increasing sample size. Volatile compounds of the bio-vogurt samples were analyzed and identified similarly using a Thermo Finnigan Tempus GC-(TOF)-MS system.

Treatment symbol	Specifications								
C1	Plain Stirred Yogurt fresh (zero week) (control)								
C3	Plain Stirred Yogurt after storage (2 weeks) (control)								
T1-1	Bio-Stirred Yogurt fortified with 0.5 % M. oleifera leaves fresh (zero week)								
T1-3	Bio-Stirred Yogurt fortified with 0.5% M. oleifera leaves after storage (2 weeks)								
T2-1	Bio-Stirred Yogurt fortified with 1% M. oleifera leaves fresh (zero week)								
T2-3	Bio-Stirred Yogurt fortified with 1% <i>M. oleifera</i> leaves after storage (2 weeks)								
T3-1	Bio-Stirred Yogurt fortified with 0.5 % <i>M. oleifera</i> seeds fresh (zero week)								
Т3-3	Bio-Stirred Yogurt fortified with 0.5% <i>M. oleifera</i> seeds after storage (2 weeks)								
T4-1	Bio-Stirred Yogurt fortified with 1% <i>M. oleifera</i> seeds fresh (zero week)								
T4-3	Bio-Stirred Yogurt fortified with 1% <i>M. oleifera</i> seed after storage (2 weeks)								

 Table 1. Treatments specifications

Conditions used for sample injection and chromatographic separation were identical to those described for the TOF system, except that a split of 80:1 was used on the PTV injector. The GC–MS interface temperature was 250 °C, and the MS source temperature was 200 °C. Mass spectra were acquired over the mass range 35–900 a.m.u. at 6 scans s⁻¹ under EI ionization conditions at 70 eV, after a solvent delay of 1.25 min. Data were acquired using the XcaliburTM software package V. 1.4.

RESULTS AND DISCUSSION

1-Volatile compounds of bio-stirred fortified fresh yoghurt:

To investigate the bio-active compounds GC-MS analysis was performed in the Start of study after direct fermentation and during 2 weeks of storage at 4 °C. The results demonstrated that the volatile compounds separated by GC-Mass spectroscopy in the moringa fortified bio-yoghurt at zero time were classified as alcohols, Esters, Aldehydes, Sterols, Ketones, and other compounds (Table 2; Figure 1 and stacked bar in Figure 2). Identified Alcohols and esters give the aroma and the flavoring properties of the probiotic product, this is in agreement with Amer *et al.* (2023). The volatile compounds can indicate accessibility that Lanosterol,

Cholesterol and Inositol were the main found sterols in the bio-yoghurt samples, whoever, Bloj and Zilversmit (1997) stated that non-specific lipid transport protein" The sterol carrier protein-2' is believed to play an important role in lipid metabolism and CoA dehydrogenase synesis.

Thiophenecarbox aldehyde was detected in all treatments and control main while, -octadecanone Cyclohexanone, 2-Propanone,-Pentanone, 2 and 1-Butanone, ketonic compounds were isolated from all yoghurt treatment except (T 3-1) bio-yoghurt fortified with 0.5% moringa leaves powder. According to Ayad et al. (2004) results, ketones were the mainly defined volatile compounds. Among all treatments the common active compounds were Heptane, Bi cyclo heptane, Pregnan, and Hydrogen bromide Furthermore, Oxytetracycline antibiotic, lycopene, Digitoxin, and Mefloquine determined only with moringa seeds powder fortified treatment. The same results were regarded by Abdull Razis et al. (2014). Generally, as shown in stacked bar Figure (2) the recommended fortification ratio was moringa powder 1%, this is because the more functional bio-active compounds measured.

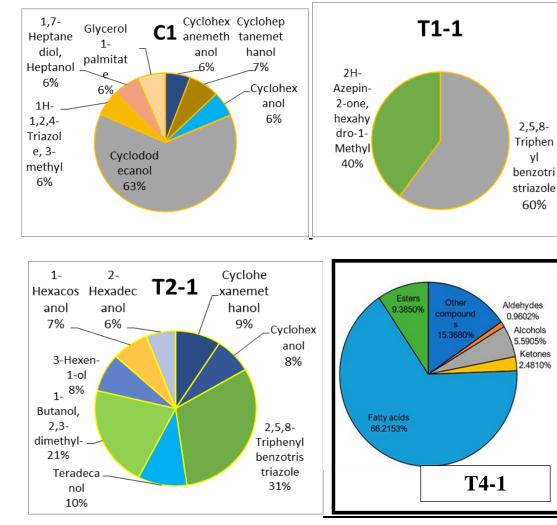

No	Compounds		Relativ	e peak ar	ea %		Molecular weight	Bio-function	Source
	a-Alcohols	C1	T1	T2	T3	T4	(Mw)		
							Daltons		
1	Cyclohexanemethanol	(B)	(A)	(C)	(D)	(A)			
		0.67							
				1.64	0.90		154-156		
2	Cycloheptanemethanol	0.82		1.35		2.51	116-128		
3	Cyclohexanol	0.68					100		
4	Cyclododecanol				0.90	1.21	154-532		
5	2,5,8-Triphenyl benzotristriazol	7.38	1.22	5.60			74-214	X 7 1 4	
								Yoghurt Aroma and	
6	Teradecanol			1.77			158	Flavor	Krastanov et al.
7	1-Butanol, 2,3-dimethyl-		0.81	3.79	1.13		112-118	Production	(2023)
8	2H-Azepin-2-one, hexahydro-1-				1.13		242	Troduction	(2023)
	Methyl								
9	1H-1,2,4-Triazole, 3-methyl	0.70		1.44			98		
10	3-Hexen-1-ol				0.56		382		
11	1-Hexacosanol			1.32			144		
12	-Methano-1H					2.77	382		
13	1,7-Heptanediol, Heptanol	0.70					270		
14	Phenol, 4-amino-2,6-dibromol	0.17					326		
15	Isopropyl 2,4-hexadienoate			1.07			158		
16	Glycerol 1-palmitate	0.74					60		
17	2-Hexadecanol					2.37	116		
18	Pr1-, opanol					1.53	242		
19	Octanol					2.54	242		
20	l-Decanol,					1.54	158		
				b- Ald					
1	Thiophenecarboxaldehyde	0.70	1.22		1.22		59 -112	improve yoghurt sensory attributes and the	Mirza Alizadeh et al. (2025)
								quality,	
								nutritional value,	
								flavor,	
								palatability, and shelf life	

Table 2. GC-MS Profiling of volatile compounds in fresh bio-stirred fortified Yogurt treatments at zero time

No	Compounds		Relati	ive peak	area %		Molecular	Bio-function	Source
	c-Esters	C1	T1-1	T2-1	T3-1	T4-1	weight (Mw)		
							Daltons		
1	Oxo hexadexyl ester	(B) 0.82	(A)	(C)	(D)	(A)			
			0.66	1.21			410-860	_	
2	Non anedioic dibutyl ester	0.86	2.55		1.71	1.71	300-860		
3	Methyl tridecyl ester	0.77	0.57				340-860	_	
4	Octanoic propenyl ester	0.77		2.25	1.26		184-624		
5	2,3 dihydroxy propyl ester	2.13					274	-	
6	9- octa decenyl ester	0.98		1.25	0.40	1.74	532-760	-	
7	2-Hydroxymethyl ester	0.83					214	- Low volatility and low	SÁ et al. (2017
8	Oxo octadecyl oxy propyl ester	0.78		2.55		1.56	532-860	Molecular weight Esters are bio- flavors responsible for Sensorial	X
9	Butryic2- ethyl hexyl ester	0.75	0.11	1.40			100-378	- sensation	
10	4-Decenoic ethyl ester	0.82					98	 Aromatic esters confer Organoleptic impacts and creamy aromas 	
11	Phosphoric acid tri octyl ester	1.10				11.35	834-860	-	
12	Imidazol ethyl ester				0.30	1.28	142		
13	Ethyl ester		0.57			1.39	834		
14	Lycopene ester	2.62	0.21	2.29	0.75	1.60	155-860	-	
15	Methyl ester	1.22	0.70		0.30		104-140	-	
16	Acetic acid, decyl ester			1.22	2.67	1.90	200-473	-	
17	Propanoic acid, hexyl ester				0.39		158		
18	Ethylene glycol diallyl ether				0.28		142	-	
19	nitro-, acetate (ester				0.39		150	-	

							<u>d-Sterols</u>		
1	Lanosterol	0.86					426	<u>Sterols</u> as a crucial lipid molecules presents in all	García et al. (2000)
2	Cholesterol	8.62					368	 eukaryotic cells ,1- maintaining membrane fluidity , 2-acting as signaling molecules for signal 	
3	Inositol		0.31	1.19			340-764	transduction pathways , 3- important precursors for fat soluble Vitamins and several Hormones .	
						e- Ket	ones		
1	3-octadecanone	0.75			0.32	1.55	268	concentration of, <u>ketones</u> Enhance The odour, flavour and	Sfakianakis and Tzia (2017)
2	Cyclohexanone	7.55			0.45	2.90	143-154	taste sensory in yoghurt, derived from milk off-flavours led to the reduction of Ketones formation	
3	2-Propanone			3.28			194	_	
4	-Pentanone, 2			0.99			100		
5	1-Butanone, 1				0.45		154	_	
						f-Other	Compounds		
1	Heptane	1.31	1.32		0.17		198	Used to block gap junction increase axial resistance between	
2	Bi cyclo heptane	1.22					96	myocytes for increase heart's susceptibility to reentrant excitation and sustained arrhythmias.	Syed et al. (2024)
3	Strophanthidin					2.56	414	heart failure diseases	Ali et al. (2013)
4	Permethrin	1.00				3.80	404-536	Antioxidant bio-accumulative enzyme bioindicator role in food webs	Günal et al. (2021)
5	Ascorbyl palmitate	0.98				2.16	390-654	Good antifungals	Ali et al. (2013)
6	Carotene	4.50					414	Antioxidant effects, cell gap junction-related functions and immune-related functions and protective effect on gastric cancer	Chen et al. (2021)
7	Berberine		0.60	1.30		1.81	536-589	an antimicrobial in the treatment of dysentery and infectious diarrhea.	Lau <i>et al</i> . (2001)
								multiple cellular mechanisms. <u>.</u> arrhythmias and/or heart failure.	
8	Hydrogen bromide		0.36	1.45			125-654	generated bromination method at room temperature.antibacterial activity against gram-negative <i>E.</i> <i>coli</i> and <i>B. cereus</i>	Shivangi et al. (2024

9	Xanthylium,	0.39	2.11			80-536	Pigment used as coloring agent, Antioxidant activity xanthophyll cycle.	Jully <i>et al.</i> (2016)
10	Pyridine			0.43		536		Prasad et al. (2018)
							important natural products, including niconine, nicotine, and nucleic acid high therapeutic properties	
							chemotherapeutic agents.	
11	Lycopen	0.75		0.43		79	protect from damage caused by UV and photoaging	Mashuri et al. (2019)
12	Oleic acid		2.05	0.50	2.51	282	Antinflmtatory induced substant	Santa-María <u>et</u> al. (2023)
13	2-Propenoic acid,		2.29			184	Pro anti-inflammatory, antibacterial and anthelmintic activity eliminate the spreading of bacteria or viruses and start the process of healing	Konopelski and Mogilnicka (2022)
14	Caprylic anhydride				1.43	270	antimicrobial properties and Minimum bactericidal concentrations	Valipe <i>et al.</i> (2011)
15	DL-Arabinose		0.98			150	low-calorie foods . chiral diastereomers that can exhibit specific co-crystallization agents in pharmaceutical formulations	Tyson et al. (2022)
16	L-(+)-Rhamnose			0.34		127	antibacterial agents, valuable for tumor immunotherapy.	Li et al. (2022)
17	Quinuclidine-3-ol				1.76	164	muscle contraction, cognition, and autonomic nervous system regulation.	Žunec et al. (2024)
18	Decanoic acid, silver(1+) salt				1.77	278	edible food additive for improving taste	Chowdhury <i>et al.</i> (2021)
19	Oxytetracycline				1.40	460	used for infections caused by a wide spectrum of bacteria infections respiratory tract (pneumonia), urinary tract, soft tissues, and skin	Li et al. (2020)
20	Cytosine				1.55	557	Active enzymatic deamination of cytosine	Shapiro (1999)
							beneficial and detrimental implications on various cellular processes n organismal evolution.	
21	Mefloquine				1.54	111	antimalarial	Ali et al. (2013)

a-Alcohols

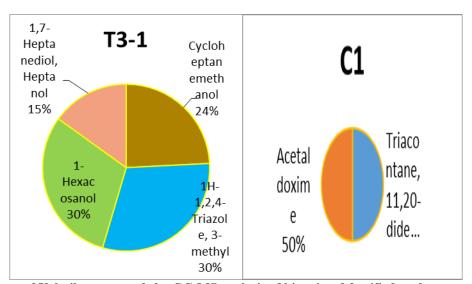


Fig. 1. Pie Charts of Volatile compounds by GC-MS analysis of bio-stirred fortified yoghurt treatments at zero time

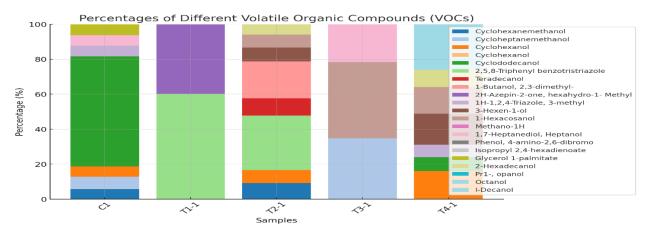


Fig. 2. The percentages of volatile organic compounds (VOCs) in the different samples (C1, T1-1, T2-1, T3-1, T4-1) using stacked bars

2-Volatile compounds of bio-stirred fortified yoghurt in the end of study after storing at 4 °C for 2 weeks

Regarding data in the Table (3) and Figure (3), strong positive correlation between the there was a moringa percent in the functional bio-stirred yogurt and the volatile bioactive detected profiles. concluded that the obtained results revealed that the approximate percent of identified volatile compounds was distributed as follows: esters 50%, alcohol 15%, other compounds 20%, ketones 8%, aldehydes 5%, and sterols at the lowest percent 2%. The same finding was recorded with Ayad et al. (2004). Polar volatile compounds, alcohols, and esters are the highly determined percent and responsible for yogurt aroma flavor, while sterols are formed after two weeks of cold storage. Also, Ali et al. (2013) mentioned that the concentration of metabolites depends on the storage temperature and storage period. Control treatments included plain bio-yogurt at fresh and 2-week periods (C1, C3) with adjunct cultures (Lactobacillus acidophilus, Bifidobacterium bifidum) without moringa fortification, enhancing functional promising metabolites, which exhibit nutraceutical functions, i.e., strophanthidin, which is used in heart failure diseases, ascorbyl palmitate, and pyrones, which are considered good antifungals, and xanthylium pigment in the C1 treatment. Mefloquine is an antimalarial, atorvastatin (reductase inhibitor, slowing cholesterol production), piperidine 4-methyl (anticancer and anti-inflammatory), acetyldigitoxin (phytosteroid used in cardiopathies), and sarcosine (inhibitor to glycine receptor) in C3 treatment. In comparison, the probiotic bacteria showed almost a similar pattern, where the Bifidobacterium spp. has a biological role in human health that can be maintained at the initial levels and then decreased slightly by 32 weeks (Ali *et al.*, 2013). Fortification with *M. oliefera* leaves powder at levels 0.5% and 1% in treatments T1-1 and T1-3, respectively, plays an important role as a prebiotic. The main effective metabolites profiling produced are heptane, hydrogen bromide, pyridine, oleic acid and cabrylic anhydride with T1-1 while, tripalmitin, lycobene, quinquepheryl, hexasiloxane and zeaxanthin with T 1-3 treatment. Several reports have indicated that there are 27 major compounds in leaf extracts. Most of these compounds pose different biological roles and give symbiotic and well-being welfare to the consumers (El-Ziney *et al.*, 2017 and Shokery *et al.*, 2017).

Stacked bar in Figure (4) illustrates the identified phytochemical compounds by GC-MS in the waterethanol extract of the M. oliefera seeds powder fortified in the bio-yogurt (T4-1 and T4-3) samples. The most abundant compounds were Mefloquine, Bupropion (major depressive and stop smoking programs). Bemegride (respiratory stimulator), Pyrimidi netrione (Boron) (bone health and affect estrogen/testosterone), Rescinnamine, Glaucine (decrease sleepiness), and Decanoic acid, silver (1+) salt (edible food additive for improving taste). These compounds improve food taste, and they have an impact on health as antioxidants, antiinflammatories, anti-atherosclerosis and antimicrobial agents. The obtained results by Amer et al. (2023) using GC-MS recorded that thirty-eight volatile compounds were identified. Several epidemiology studies have suggested the adequate intake of lycopene at skin level it seems to protect from damage caused by UV and photoaging (Mashuri et al., 2019).

No	Compounds		Relative p	eak area	%		r weight (Mw) Daltons	Bio-function	Source
	a-Alcohols	C3	T1-3	T2-3	T3-3	T4-3			
		(B)	(A)	(C)	(D)	(A)			
Н	Iexacosanol	1.14							
1							382		
2 G	Blycerol 1-palmitate	1.23			1.15		176-330		
3 2	-Hexadecanol	1.48					242		
4 P	Phenol, 4-amino-2,6-dibromo	2.64				1.01	112-265		
5 C	Cyclohexanemethano	0.97					114		
6 C	Cyclohexanol	2.47	0.11				116-132		
7 1	,7-Heptanediol	2.47	0.31	1.00			132-156		
8 1	-Butanol, 2,3-dimethyl-	2.22		3.25			242		
9 1	-Decanol, 2-hexyl	0.97					88		
10 1	-Propanol, 2,2-dimethyl-	1.82	1.00	1.53	2.12	0.38	144-242		
11 5	-Amino-2-methoxypheno l		2.97			0.37	60-88	¥7 1 4	
12 3	-Pentanol	1.70	0.14		2.91		88-702	Yoghurt	
13 -I	Indenol,	0.70	0.56	1.51			59-98	Aroma and	
14 C	Cholest-5-en-3-ol,	1.16	0.06			4.35	150-448	Flavor Production	Krastanov et al. (2023)
15 B	Behenic alcohol	1.27					310	Production	Klastallov <i>el al.</i> (2023)
16 1	-Tricosanol	0.97		2.49			378-386		
17 2	-Furanmethanol		0.34				\473		
18 P	Phytol			1.59			340		
19 S	ilanol, trimethyl				2.91		314		
20 1	-Octanol, 2-butyl-		0.17	1.51	2.12		98-326		
21 E	Ethanol, 2-(dodecyloxy		0.21		0.97		230-683		
22 1	-Tricosanol			1.30	1.05		340-444		
23 Is	sopropyl Alcohol				2.01		60		
24 1	-Undecanol				1.25		186		
25 2	-Dodecanol					1.25	172		
26 L	.anostan-3á-ol,					1.30	444		
27 3-	-Tetradecanol					1.34	214		
28 2	-Hexadecanol					0.58	242		

Table 3. GC-MS analysis of volatile compounds in bio-stirred fortified Yogurt treatments after (2weeks)

						b- Ald	ehyde			
1	Triacontane, 11,20-didecyl		1.20						improve yoghun sensory attribute and the quality nutritional value flavor, palatability, an shelf life	s (2025) 7,
2	Acetaldoxime		1.20					506		
No	Compounds]	Relative pe	eak area %	6	Molecular weight (Mw) Daltons		Bio-function		Source
	c-Esters	C3	T1-3	T2-3	T3-3	T4-3				
1	methyl ester	1.20		1.72	1.32	0.45	171-654	_		
2	dimethyl ester		0.26				624	_		
3	ethenyl ester				1,27		834	_		
4	diethyl ester	1.31					128	_		
5	Octadecanoic acid, ethenyl ester	3.78				2.87	310-330	_		
6	tetradecyl ester		0.16				860	_		
7	hexadecyl ester	0.08					370			
8	2-Propenoic acid, ESester	3.40	0.64		1.20		296-472	Low volatilit Molecular w	eight Esters	SÁ et al. (2017)
9	methylpropyl ester	0.93					440	are bio-flavors	-	
10	Octadecenoic acid (Z)-, 2,3-dihydroxypropyl ester	2.36	0.17	2.62			200-390		ters confer	
11	2,3-dihydroxypropyl ester	2.90				3.49	390	 Organoleptic creamy aromas 	-	
12	4-nitrophenyl n-Caprylic acid isobutyl ester	1.82		2.03	1.67		165-472	_		
13	1,2-enzenedicarboxylic acid, diisooctyl ester			2.10			233	_		
14	Carbamic acid, methyl-, 3-methylphenyl ester	2.27		1.40			428-472	_		
15	Benzoic acid ester	2.27		1.83			260-428	_		

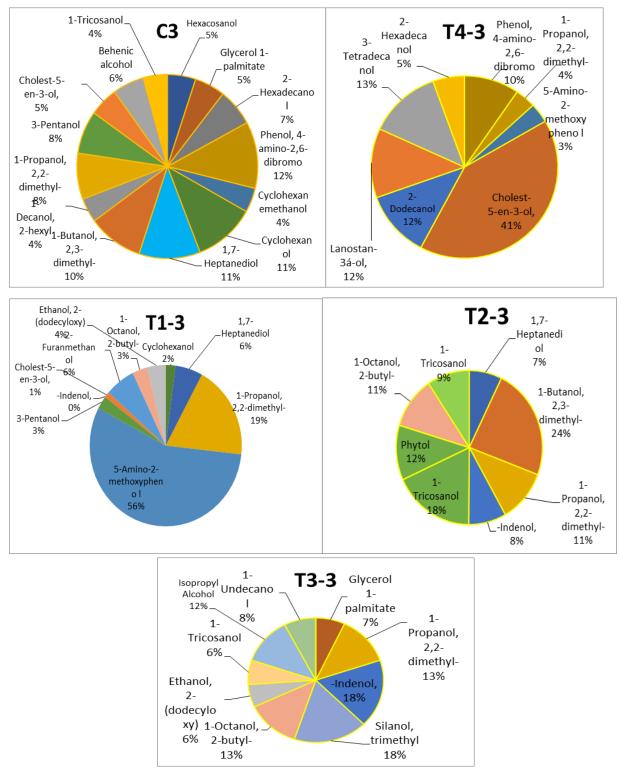
16	propyl ester	3.77		1.35			426-434		
17	-Alanine,ester		0.17				860	_	
18	2-Butenedioic ester		1.65				268	_	
19	Decanoic acid, 2-			0.26			624		
	propenyl ester							_	
20	2,3-dihydroxypropyl ester	1.76					234	_	
21	Phosphoric acid, trioctyl					0.83	412		
	ester							_	
22	1,2,3-propanetriyl ester				1.36		472	_	
23	2-Propenoic acid, 3-(4-				1.76		370		
	methoxyphenyl)-, 2-								
	ethylhexyl ester							_	
24	2-Butenoic acid, ethyl					0.68	114		
	ester							_	
25	Ethanimidic acid, ethyl					0.37	87		
	ester								
							<u>d-Sterols</u>		
1	Stigmasterol	3.73					212	Sterols as a crucial lipid	García et al. (2000)
2	Lanost-8-en-3-ol	1.61					638	molecules presents in all	
3	Lanosterol	1.04					412	eukaryotic cells ,1-	
								maintaining membrane	
								fluidity , 2-acting as	
								signaling molecules for	
								signal transduction	
								pathways , 3-important precursors for fat soluble	
								Vitamins and several	
								Hormones .	
							e- Ketones	normones .	
1	Cyclohexanone	1.30			2.21	1.18	140-154		
2	Cyclohexanone, 4-	1.65					168	-	
	dimethylpropyl)								
3	2(3H)-Furanone	1.48	0.25				268-282	_	
4	3-Octadecanone			1.72			268	_	
5	Ethanone, 1-	0.93					268	-	
6	cyclohexyl-	2.90					126	_	
	Bentazon								
7	Hexahydro-2(1H)-azocino n	¢ 1.03					240	_	

8	11-Heneicosanone	0.94				7.29	127-310		
9	2-Propanone	1.27					310	_	
10	Pantolactone	0.12		8.12			310	_	
11	-Heneicosanone			8.12			310	concentration of, <u>ketones</u> Enhance The odour,	Sfakianakis and Tzia (2017)
12	3-Octadecanone			1.72			130-194	flavour and taste sensory in	
13	2-Butanone, 3-				1.17		86	yoghurt, derived from milk	
14	methyl-				2.02	1.04	114-142	off-flavours led to the	
	3-Heptanone							reduction of Ketones	
15	3-Octadecanone				3.43		268	formation	
16	-Heneicosanone				2.00		310		
17	Benzofuranone,				1.03	1.36	112-282		
18	1,4-Cyclohexanedione					2.91	184		_
						f-Other	Compounds		
1	Mefloquine	1.16			0.39	0.42	378	antimalarial	Ali et al. (2013)
2	Antimycin A2	3.78					534	species of Streptomyces,	
								Antimycin A is a mixture	Liu et al. (2023)
								of A1a and A1b	_
								isomers;An antifungal	
								toxin (inhibits fungal food	
3	Atorvastatin	1.61					558	reductase inhibitor, slowing	Amer et al. (2023)
								cholesterol production)	
4	Oleic Acid	1.76					282	Anti-Inflammatory_induced	Santa-María et al. (2023)
								substant	
5	Piperidine, 4-methyl	1.19	0.29				99-282	(anticancer and anti-	Srividya <i>et al</i> . (2023)
								inflammatory)	
6	Acetyldigitoxin	0.94			•		806	phytosteroid used in	Amer et al. (2023)
								cardiopathies	
7	Bromophenol blue	1.27					666	lysozyme-bromophenol	Akpomie et al. (2024)
								blue binding system	
8	4,6-Dihydroxypyrimidine	1.64					112	Broad-spectrum	Zhou et al. (2024)
								antimicrobial agents are	
								often useful for the	
								management of	
								phytopathogenic fungi,	
								bacteria, and cyanobacteria	

Enaam S. Shokr..... et al:- Identification of Functional Therapeutic Compounds in Moringa oleifera Fortified Bio-yoghurt 223

								species.	
9	Sarcosine	3.09	0.21	2.10			233-654	inhibitor to glycine	Cernei et al. (2013)
								receptor , a Potential	
								Prostate Cancer Biomarker	
10	Fenoxanil	3.09	0.16			2.83	59-233	mycotoxins pesticide residues	Yan <i>et al.</i> (2024)
11	Guanidine		78.94				104	Guanidinium-based	Gomes et al. (2023)
								transporter \vectors acting	
								as Antithrombotic	
								,Antidiabetic,	
								Chemotherapeutic agents	
								,Anti-Inflammatory	
								,Na+\H+ Inhibitor	
								Exchanger	
12	Tetrafluorohydrazine		0.21		1.17	0.31	86-233	Used in organic synthesis	Daddiouaissa et al. (2021)
								and as an oxidizing agent	
13	Berberine		0.39				256	an antimicrobial in the	Lau et al. (2001)
								treatment of dysentery and	
								infectious diarrhea.	
								multiple cellular	
								mechanisms., arrhythmias	
								and/or heart failure.	
14	n-Hexadecanoic acid		0.20	1.13		0.80	654-806	antioxidant and	Ganesan et al. (2024)
								antibacterial activity	
15	Tripalmitin		0.91				458	inhibits glucose-stimulated	
								insulin secretion and	
								reduces viability of INS1	Pellegrino et al. (2022)
								cells in a dose-dependent	
								manner. Formulations	
								containing Tripalmitin	
								are used in cosmetic	
								products to condition skin	
								and as a thickening agent.	
								Tripalmitin is also used to	
								form the lipid matrices of	
								nanoparticles for drug	
								delivery.	

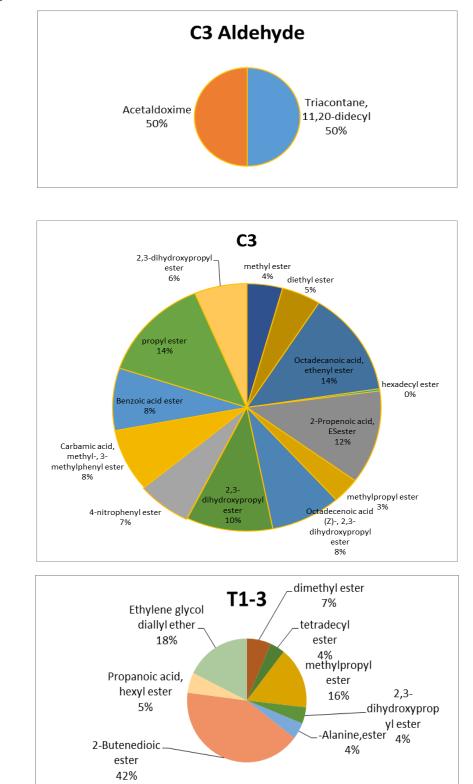
16	Hexasiloxane,	0.24				382	carbohydrate 3-O-Methyl- d-glucose has been reported to antimicrobial effects, anti-inflammatory and antioxidant effects	Youssef et al. (2023)
17	Quin quephenyl	0.34				536	anticancer, antihypertensive, antimicrobial, antifungal, antibacterial, analgesic, anti-inflammatory, antituberculosis, and antimalarial activity	Al-Kaf and Al-Robaidi (2024)
18	Lycopene	0.29				338	protect from damage caused by UV and photoaging	Mashuri et al. (2019)
19	Erucic acid		2.76	0.93	0.80	536-624	antioxidant and anti- inflammatory effects and it is a ligand of PPAR-δ. EA may act beneficial in Multiple Sclerosis and Alzheimer's Disease.	Altinoz and Ozpinar (2019)
20	Zeaxanthin	0.41			0.42	378-568	Pigment used as coloring agent , protective of macular in the eye, and in maternal and infant health.	Li et al. (2023)
21	Piperidine, 1-acetyl			0.88		568	pharmacology. Employing DFT techniques,	Abdelshaheed et al. (2021)
22	Demeclocycline		1.14			127	exhibit anti-viral, anti- infammatory, and immunomodulatory activities, mild-to-moderate COVID-19	Iwahori <i>et al.</i> (2023)
23	Glycine		1.20	1.32		171-464	Pro anti-inflammatory lowering free fatty acids improve the insulin response,	Aguayo-Cerón_ et al. (2023)

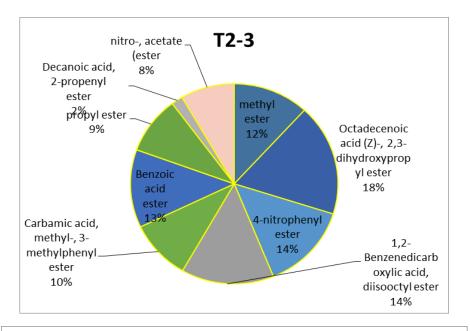

24	Ascorbyl Palmitate	1.45	1.27	7.29	75-414	food industry antioxidant, preservative, especially for preventing rancidity in fats\	Imran <i>et al.</i> (2024)
	D.Cl	1.12			414	oils. cosmetics and pharmaceuticals	D (2022)
25	D-Glucose,	1.13			414	The obligatory cellular energy source, signaling molecule for glucose- sensing and proteins, yield phosphorylation energy	Dey et al. (2022)
						molecules	
26	á Carotene	2.76	0.93		536	Antioxidant effects, cell gap junction-related functions and immune- related functions and protective effect on gastric cancer	Chen <i>et al.</i> (2021)
27	Pyrimidi netrione(Boron		1.27	0.36	360-536	bone health and affect	Amer et al. (2023)
)*					estrogen/testosterone)	
28	Normorphine		2.61	-	271	restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics	Zemljic-Harpf et al. (2021)
29	Cholic acid		2.61		271	Bile salt help in nutreients absorption and excretion of toxic metabolites .	Qian <i>et al.</i> (2022)
30	1H-Imidazole		1.50	0.26	93-98	fungicides, herbicides, plant growth regulators anticancer, antifungal antiviral , antibacterial antitubercular, antiparasitic, antihistaminic, anti- inflammatory, anti- neuropathic, anti-obesity, and antihypertensive	Almarhoon <i>et al.</i> (2024)_
						effects, other therapeutic <u>functions</u>	

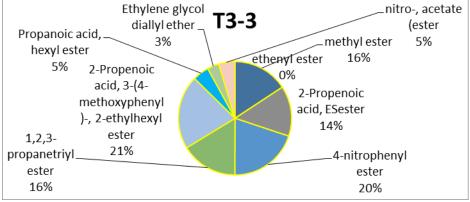
31	Chlortetracycline	1.54	478	enhances performance via improving digestive enzyme activities,	Long <i>et al.</i> (2021)
				antioxidant capacity, anti-	
				inflammatory function	
32	Rescinnamine	1.54	634	decrease sleepiness	Amer et al. (2023)
33	Bemegride	2.58	155	Respiratory stimulator,	
				Activation Agent	
34	Quinoxaline	1.03	282	greener catalytic	Sharma et al. (2022)
				systemsantibacterial,	
				antifungal, anticancer, anti-	
				inflammatory, antiviral,	
				and antiprotozoal activity	
35	L-Tyrosine	1.76	523	an essential component for	Boča <i>et al.</i> (2023)
				the production of several	
				important brain chemicals	
				called neurotransmitters,	
				including epinephrine,	
				norepinephrine, and	
				dopamine.	
				Neurotransmitters help	
				nerve cells communicate	
				and influence mood.	
				Tyrosine also helps	
				produce melanin, the	
				pigment responsible for	
				hair and skin color.	
36	1-Alanine	2.83	233	involved in sugar and acid	Osborn <i>et al.</i> (2025)
				metabolism, increases	
				immunity, and provides	
				energy for muscle tissue,	
				brain, and the central	
				nervous system.	
37	D-Proline	2.07	115	used in peptide design to	Azevedo (2019)
				create a kink that promotes	
				intramolecular folding and	
				the formation of hydrogen	
				bonds, leading to a β -	
				hairpin conformation.	

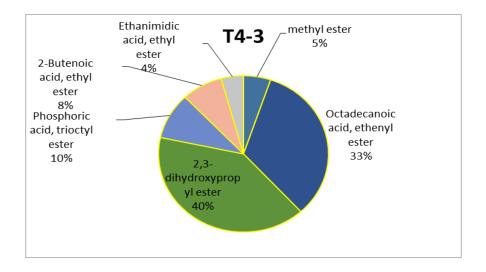
Enaam S. Shokr..... et al:- Identification of Functional Therapeutic Compounds in Moringa oleifera Fortified Bio-yoghurt 227

ALEXANDRIA SCIENCE EXCHANGE JOURNAL, VOL. 46, No.2. APRIL- JUNE 2025

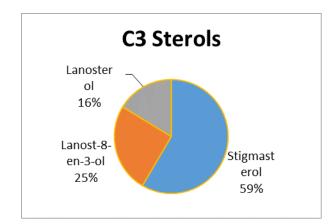

38	Glaucine	0.67	355	decrease sleepiness Amer et al. (2023)
39	Bupropion	0.67	239	major depressive and stop Amer et al. (2023)
				smoking programs
40	Propanoic acid	0.31	74	Pro anti-inflammatory, Konopelski and Mogilnicka
				antibacterial and (2022)
				anthelmintic activity
				eliminate the spreading of
				bacteria or viruses and start
				the process of healing

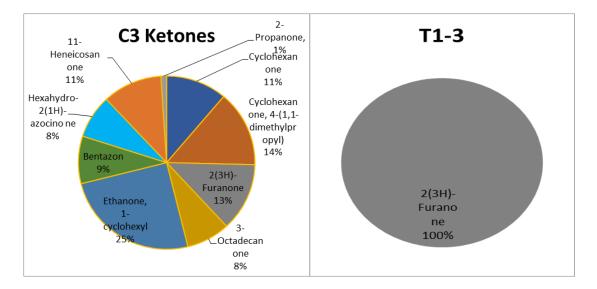


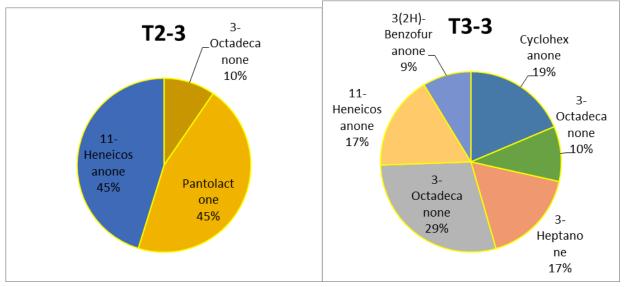

Alcohols

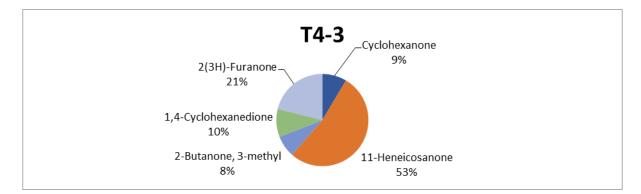

b-Aldehydes

c-Esters

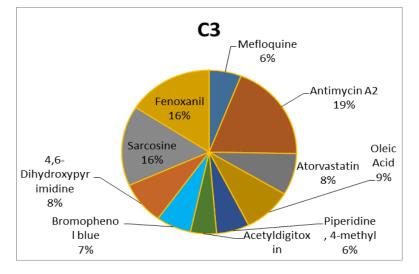


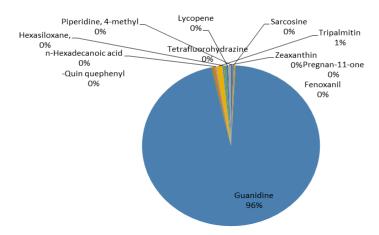






d-Sterols





f-Other compounds

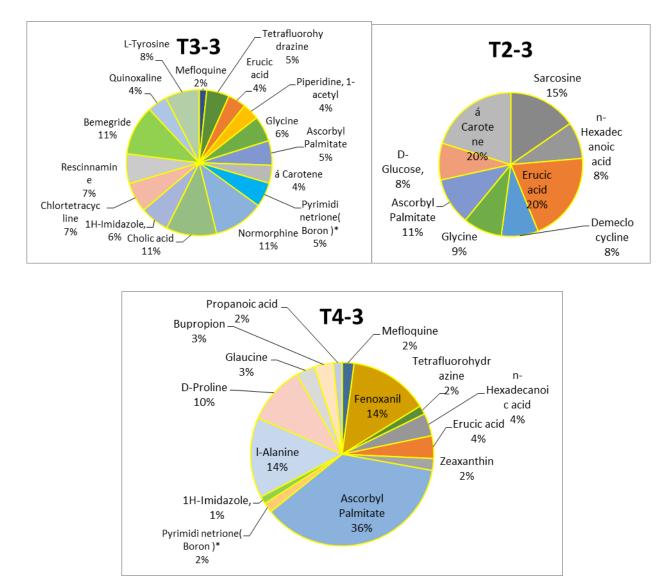


Fig. 3. Pie Charts of Volatile compounds by GC-MS analysis of of bio-stirred fortified yoghurt treatments after two weeks storage period

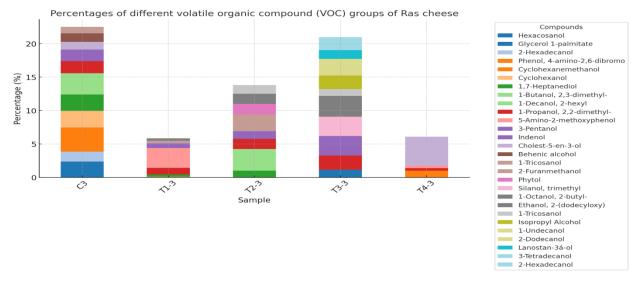


Fig. 4. The percentages of volatile organic compounds (VOCs) in the different samples (C3, T1-3, T2-3, T3-3, T4-3) using stacked bars

CONCLUSIONS

The outcomes of this Study is the better probiotic fortified voghurt assess functionality and provides nutraceutical functions, enhancing functional promising metabolites, and successfully producing symbiotic. GC-MS methodology was a more comprehensive analysis for volatile compounds in bio-stirred fortified yogurt as well 28 the data analysis showed а strong positive correlation between the moringa percent and the bio-active polar and nonpolar compounds. The results also confirmed that combining in various ratios adjunct cultures (Lactobacillus of acidophilus. Bifidobacterium bifidum) with moringa fortification supports and optimizes the growth, stability and health benefits of the final bio-product. Additionally the study ensuring that bioprocess technology of probiotic stirredyoghurt maintained several biological functions, i.e. antifungals. anticancer, anti-inflammatory, and phytosteroid used in cardiopathies, also our findings highlight the potential of atorvastatin, the precursors of reductase inhibitor, it slowing cholesterol production which can be used as an ideal functional vulnerable diet to hypertension and blood pressure patients. Future efforts should focus on evaluating extended storage stability, conducting large-scale production trials for developing a new line of probiotic fermented dairy products and fermentation parameters that align with growing consumer demand for diet-based and functional foods.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Central Laboratory Faculty of Agriculture, Alexandria University, for their effort in GC Mass, and the Dairy Science Faculty of Kafr El-Sheikh for helping in biostirred yogurt manufacture, and the Agriculture Research Center El Doki, Ministry of Agriculture, for providing Moringa oleifera leaves and seeds powder. Additionally, the authors would like to extend their appreciation to Prof. Dr. Tarek El-Khateeb, Economics Department, Faculty of Agriculture, Kafr El-Sheikh University, for the pie chart graph designs.

REFERENCES

- Abdelshaheed, M.M., I.M. Fawzy and H.I. El-Subbagh.2021. Piperidine nucleus in the field of drug discovery. Futur J Pharm Sci 7. 188. https://doi.org/10.1186/s43094-021-00335-y
- Abdull Razis, A.F., M.D. Ibrahim and S.B. Kntayya. 2014. Heat Benefits of Moringa oleifera Asian Pac. J. Cancer Prev 15 (20) pp. 8571-8576 FAK.
- Muhammad, D.I. and B.K. Saie. 2014. Heat Benefits of Moringa oleifera Asian Pac. J. Cancer Prev 15 (20) pp. 8571-8576.
- Aguayo-Cerón, K. A., F. Sánchez-Muñoz, R. A. Gutierrez-Rojas, L. N. Acevedo-Villavicencio, A. V.Flores-Zarate, F. Huang, A. Giacoman-Martinez, S.Villafaña and R. Romero-Nava. 2023. Glycine: The Smallest Anti-Inflammatory Micronutrient. International Journal of Molecular Sciences, 24(14): 11236. https://doi.org/10.3390/ijms241411236

- Akpomie, K.G., K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor and J. Conradie. 2024. Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefnery.14:13629-1365714:13629-13657 https://doi.org/10.1007/s13399-022-03592- · 1
- Ali, F. S., O. A.O. Saad and A .G. H. Salwa.2013. Probiotic stability of yoghurts during refrigerated storage. Egypt. Acad. J. Biolog. Sci., 5(2): 9-19.
- Al-Kaf, G. A. and R. A. Al-Robaidi. 2024. Biological activities of recent advances in guinazoline. IntechOpen. doi: 10.5772/intechopen.1004051
- Almarhoon, Z.M., C. Usha, M.S. Devi, A. Panneerselvam, M. Anandhan, R. Balu, G. Devendrapandi and P.C. Karthika. 2024. Crystal growth, structural, vibrational assignments, electronic, topological behavior and Hirshfeld surfaces of 1H-imidazole-1-methanol (HIM) single crystal. Journal of Materials Science: Materials in Electronics, 35(27), p.1774.
- Altinoz, M.A. and A. Ozpinar. 2019. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's disease. Likely benefits in terms of immunity and metabolism. International immunopharmacology, 69, pp.245-256.
- Amer, A., A.M.Albadri, H. A. El-Hamshary, N. Yasser, A.H. Makhlouf, M.Y.El-Hawary and S.Awad. 2023. Changes in Sensory Properties, Physico-Chemical Characteristics, and Aromas of Ras Cheese under Different Coating Techniques. Foods. https://doi.org/10.3390/foods12102023.

- Ayad, S., A. A. C. El Attar de Jong, M. El-Soda.2004. Characterisation of Egyptian Ras cheese. 2. Flavor formation. Food Chemistry 86:553-561.
- Azevedo, H.S. 2019. Biomaterials inspired by biology: from molecules to self-assembly. Reference Module in Biomedical Sciences Encyclopedia of Tissue Engineering and Regenerative Medicine . P.109-117
- Bloj, B. and D. B. Zilversmit. 1997. Rat liver proteins capable of transferring phosphatidylethanolamine. Puri®cation and transfer activity for other phospho lipids and cholesterol. J. Biol. Chem. 252: 1613-1619.
- Boča, R., J. Štofko and R. Imrich. 2023.Ab initio study of molecular properties of l-tyrosine Journal of Molecular Modeling 29:245 https://doi.org/10.1007/s00894-023-05648-8 ORIGINAL PAPER
- Cernei, N., Z. Heger, J. Gumulec, O. Zitka, M. Masarik, P. Babula, T. Eckschlager, M. Stiborova, R. Kizek and V. Adam. 2013. Sarcosine as a Potential Prostate Cancer Biomarker-A Review. International Journal of Molecular Sciences. 14(7): 13893-13908. https://doi.org/10.3390/ijms140713893
- Chen, Q.H., B.K. Wu, D. Pan, L.X. Sang and B. Chang. 2021. Beta-carotene and its protective effect on gastric cancer. World Journal of Clinical Cases, 9(23), p.6591.

- Chowdhury, S.K., T. Dutta and A.P. Chattopadhyay.2021. Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies. J Nanostruct Chem 11:573-587. https://doi.org/10.1007/s40097-020-00385-3
- Daddiouaissa, D., A. Amid, M.S.A. Sani and A.A. Elnour. 2021. Evaluation of metabolomics behavior of human colon cancer HT29 cell lines treated with ionic liquid graviola fruit pulp extract https://www.sciencedirect.com/journal/journal-ofethnopharmacology vol.270.
- Darwish, A.M.G., M.G.Allam, E.S.Shokery, E.H.E.Ayad. 2022. Functional products fortified with probiotic LABisolated from Egyptian dairy sources showed hypolipidemic effects in Albino rats. PLOSONE https://doi.org/10.1371/journal.pone.0263241.
- Dey, S., N. Murmu, T. Mondal, I. Saha, S. Chatterjee, R. Manna, S. Haldar, S.K. Dash, T.R. Sarkar and B. Giri. 2022. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomedicine & Pharmacotherapy, 156, p.113801.
- El-Ziney M. G., E. S. Shokery, A. H. Youssef and R. E. Mashaly.2017 Protective Effects of Green Tea and Moringa Leave Extracts and Their Bio-Yoghurts against Oxidative Effects of Lead Acetate in Albino Rats. Journal of Nutrition Health Food Sci 5(1):1-11.2017.
- Ganesan, T., M. Subban, D.B. Christopher Leslee, S.B. and P. Seedevi. Kuppannan 2024. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery, 14(13), pp.14547-14558.
- García, F.L., T. Szyperski, J.H. Dyer, T. Choinowski, U. Seedorf, H. Hauser and K.Wüthrich. 2000. NMR structure of the sterol carrier protein-2: implications for the biological role. Journal of Molecular Biology, 295(3), pp.595-603.
- Gomes, A.R., C.L.Varela, A.S. Pires, E.J. Tavares-da-Silva and F.M. Roleira. 2023., Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review Bioorganic chemistry vol. 138 ,https://doi.org/10.1016/j.bioorg.2023.106600
- Günal, A.Ç., S.K. Tunca, P. Arslan.2021. How does sublethal permethrin effect non-target aquatic organisms?. Environ Sci Pollut Res 28, 52405-52417. https://doi.org/10.1007/s11356-021-14475-4
- Habib, E., S. Awad, S. Shamsia and H. Ziena. 2019. Physicochemical Characteristics an Antioxidant Capacity of Bio Drinking Yogurt Fortified with Salvia officinalis Extract" Asian J. Biol. Sci., 12 (3): 430-436.
- Imran, M., B. Titilayo, M. Adil, Q. Mehmood, S.H. Mustafa and Q. Shen. 2024. Ascorbyl palmitate: A comprehensive review on its characteristics, synthesis, encapsulation and applications. Process Biochemistry. Volume 142: 68-80.

- Isnan, W. and M. Nurhaedah. 2017 J. Info Teknis Eboni 14: 63-75.
- Iwahori, K., T. Nii and N. Yamaguchi.2023. A randomized phase 2 study on demeclocycline in patients with mild-tomoderate COVID-19. Sci Rep 13, 13809. https://doi.org/10.1038/s41598-023-41051-2
- Jully, K.M.M., C.S. Toto and L. Were. 2016. Antioxidant effect of spent, ground, and lyophilized brew from roasted coffee in frozen cooked pork patties. LWT-Food Science and Technology, 66, pp.244-251.
- Karamy, A.B., A.A. Quddus and R. Tubagus and K. K. Dan Organoleptik. 2024. Set Yogurt Dengan Penambahan Tepung Daun Kelor (Moringa Oleifera) Chemical and Organoleptic Characteristics of Yogurt Set with the Addition of Moringa Leaf Flour (Moringa Oleifera). Jurnal Pangan dan Gizi p-ISSN, 2086, p.6429. echnology, 74(4): 812-820. https://doi.org/10.1111/1471-0307.12770
- Konopelski, P. and I. Mogilnicka. 2022 Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. Int. J. Mol. Sci, 23(3),
- Krastanov, A., P.J. Yeboah, N.D.Wijemanna, A.S. Eddin, R.D. Ayivi and S.A.Ibrahim. 2023 .Volatile Aromatic Flavor Compounds in Yogurt: A Review .DOI: 10.5772/intechopen.109034
- Lau, C.W., X.Q. Yao, Z.Y. Chen, W.H. Ko and Y. Huang. 2001. Cardiovascular actions of berberine. Cardiovascular Drug Reviews, 19(3), pp.234-244.
- Li, C., X. Dong, N. Zhu, X. Zhang, S.Yang, Z. Sun, Y. Liu, S. Zheng and D.D. Dionysiou. 2020. Rational design of efficient visible-light driven photocatalyst through 0D/2D structural assembly: Natural kaolinite supported monodispersed TiO2 with carbon regulation. Chemical Engineering Journal, 396, p.125311.
- Li, S., F. Chen, Y. Li, L.Wang, H. Li, G. Gu and E. Li. 2022. Rhamnose-Containing Compounds: Biosynthesis and Applications. Molecules, 27(16), 5315. https://doi.org/10.3390/molecules27165315
- Li, X., R.R. Holt, C.L. Keen, L.S. Morse, A.M. Zivkovic, G. Yiu and R.M. Hackman. 2023. Potential roles of dietary zeaxanthin and lutein in macular health and function. Nutrition reviews, 81(6), pp.670-683.
- Liu, Z., K. Ishikawa, E. Sanada, K. Semba, J. Li, X. Li, H. Osada and N. Watanabe. 2023. Identification of antimycin A as a c-Myc degradation accelerator via high-throughput screening J. Biol. Chem , 299(9) 105083 1. https://doi.org/10.1016/j.jbc.2023.105083 Ziyu Liu1,2
- Long, S., S. Liu, J.Wang, S. Mahfuz and X. Piao.2021. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs. Animal Nutrition, 7(2), pp.305-314.
- Maharani, M.B.S., S. Soviana and H. Pisestyani. 2020. Examination of milk quality from milk shops in the residential areas of IPB dramaga and Cilibende Jurnal Kajian Veteriner 8(1): 24-33.

- Mashuri, M., L.D.M. Sihombing, S. Alfaqihah, E. Edyson and E.Suhartono.2019. Kelakai Extract Protects Skin From UV-Induced Oxidative Damage Journal of Physics: Conference Series 1374 012014 IOP Publishing doi:10.1088/1742-6596/1374/1/012014 1 M Mashuri1 , L D M .
- Mirza Alizadeh, A., M. Mohammadi, F. Hashempour-baltork, 2025. Process-induced toxicants in food: an overview on structures, formation pathways, sensory properties, safety and health implications. Food production Volume 7, article number 7,
- Mustika, S. and S. Yasni.2019. Suliantari making fresh cow's milk yogurt with purple sweet potato puree as an ingredient Jurnal Pendidikan Teknologi Kejuruan 2(3):97-101.
- Osborn, R.M., C.S. Anderson, J.R. Leach, C.Y. Chu, S.Dewhurst, T.J. Mariani and J. Thakar.2025. Single-cell analysis of lung epithelial cells reveals age and cell population-specific responses to SARS-CoV-2 infection in ciliated cells. Clinical and Experimental Immunology, uxae118, https://doi.org/10.1093/cei/uxae118.
- Pellegrino, L., G.Tyagi, E.S.Robles and J.T. Cabral. 2022, Phase behaviour of model triglyceride ternary blends: triolein, tripalmitin and tristearin. Phys. Chem. Chem. Phys., 24, 29413-29422
- Prasad, K.D., M.S. Rani and D. Anusha. 2018. Synthesis, characterization of benzimidazole derivatives carrying pyridine moiety. Asian Journal of Research in Chemistry, 11(2), pp.241-243.
- Qian, M., Z. Luo, W. Hou, J. Sun, X. Lu, Q. Zhang, Y. Wu, C.Xue, S. Zhao and X.Chen. 2022. Discovery of novel cholic acid derivatives as highly potent agonists for G protein-coupled bile acid receptor. Bioorganic Chemistry, 120, p.105588.
- Rockwool, J.W., B.G. Anderson, D.A. Casamatta.2013.
 Potential Uses of Moringa oliefera and Examination of Antibiotic Efficasy Comferred M. Oleifera Seed and LeavesExtract Using Crude Extraction TechniquesAvailable to Underserved Indigenous Population Int. J. Phytoterapy Res. 3 pp. 61-71(2013
- SÁ, A.G.A., A.C. de Meneses P.H.H., de Araújo and D. de Oliveira. 2017.A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries.Trends in Food sci., and Tech.,part 1 vol., 69 :95-105.
- Santa-María, C., S. López-Enríquez, S. Montserrat-de la Paz, I. Geniz, M. E.Reyes-Quiroz, M. Moreno, F. Palomares, F.Sobrino and G.Alba. 2023. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients, 15(1):224. https://doi.org/10.3390/nu15010224
- Segers, M. E., and S. Lebeer. 2014. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions. Microbial Cell Factories, 13: 1–16. https://doi.org/10.1186/1475-2859-13-S1-S7.

- Sfakianakis, P. and C. Tzia. 2017. Flavour profiling by gas chromatography–mass spectrometry and sensory analysis of yoghurt derived from ultrasonicated and homogenised milk.Inter.,Dairy Journal,Vol., 75 pages 120-128.
- Shapiro, R., 1999. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proceedings of the National Academy of Sciences, 96(8), pp.4396-4401.
- Sharma, A., A. Deep, M.G. Marwaha and R.K. Marwaha. 2022. Quinoxaline: A chemical moiety with spectrum of interesting biological activities. Mini Reviews in Medicinal Chemistry, 22(6), pp.927-948.
- Shepherda, T., G. Dobsona, R.Verralla, S. Connera, D. Wynne, Griffithsa, W, McNicolb,V.Daviesa and D.Stewart. 2007. Potato metabolomics by GC–MS: what are the limiting factors? Metabolomics, Vol. 3, No. 4DOI: 10.1007/s11306-007-0058-2 475.
- Shivangi, Das, S., S.Mal and S. Naskar. 2024. Synthesis and Biofunctional Properties of NaBr/H2O2-Induced Brominated Uracil Derivatives. ChemistrySelect, 9(17), p.e202400715.
- Shokery, E. S., M. G. El-Ziney, A. H. Yossef and R. I. Mashaly.2017. Effect of Green Tea and Moringa Leave Extracts Fortification on the Physicochemical, Rheological, Sensory and Antioxidant Properties of Set-Type Yoghur. J Adv Dairy Res : 5:2
- Srividya, J., D.R.Jonathan, B.K. Revathi, V. Sivamadhavi and G. Anbalagan. 2023. Molecular structure analysis of 4fluoro phenyl(4-methyl piperidin-1-yl) methanone and a comparative study of its optical, antimicrobial and antioxidant activities with 4-chloro phenyl (4-methyl piperidin-1-yl) methanone Journal-of-molecular-structure vol. 1271 https://www.sciencedirect.com/journal/journalof-molecular-structure
- Syed, R.U., H. Mohd.Abdul, A. A. Mofareh, A. .Mohammad, H. A. Yusra, A. A. Abdulrahman, D. L. M. B. Break, L.Rhodiola. 2024. extract ameliorates ethanol-induced gastric ulcer in rats by alleviating oxidative stress and inflammation via NF-κB pathway inhibition. Current Plant Biology 40,100421.
- Thomas, A. N. S Tanaman Obat Tradisional 2. Penerbit Kanisius Yogyakarta, 1992.

- C.Trigo, M.L.Castelló and M.D.Ortolá. 2023. Potentiality of Moringa oleifera as a nutritive ingredient in different food matrices. *Plant Foods for Human Nutrition*, 78(1), pp.25-37.
- Tyson, B., C.M. Pask, N. George and E.Simone. 2022. Crystallization behavior and crystallographic properties of DL-arabinose and DL-xylose diastereomer sugars. Crystal Growth & Design, 22(2), pp.1371-1383.
- Valipe, S.R., J.A. Nadeau, T. Annamali, K. Venkitanarayanan, and T. Hoagland. 2011. In vitro antimicrobial properties of caprylic acid, monocaprylin, and sodium caprylate against Dermatophilus congolensis. American journal of veterinary research, 72(3), pp.331-335.
- Yan, X., H. Zhang, Z. Zhu, Y. Xie, X. Wu, Z. Shi, C.Fan and H.Chen. 2024. Simultaneous determination of 78 pesticide residues and 16 mycotoxins in tsampa by an improved QuEChERS method coupled with ultra performance liquid chromatography-tandem mass spectrometry. Analytical Methods, 16(30), pp.5178-5190.
- Youssef, A. M. M., D. A. M. Maaty and Y. M. Al-Saraireh. 2023. Phytochemistry and Anticancer Effects of Mangrove (Rhizophora mucronata Lam.) Leaves and Stems Extract against Different Cancer Cell Lines. Pharmaceuticals, 16(1), 4. https://doi.org/10.3390/ph16010004
- Zemljic-Harpf, A.E., Hoe L.E. See, J.M.Schilling, J.P.Zuniga-Hertz, A.Nguyen, Y.J. Vaishnav, G.J. Belza, B.P.Budiono, P.M. Patel, B.P. Head and W.H. Dillmann. 2021. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. The FASEB Journal, 35(3), p.e21407.
- Zhou, H., L. Zeng, C.Cao, Y. Zhou and H. He. 2024. Synthesis, Activity Evaluation, and Putative Mode of Action of 4, 6-Dihydroxypyrimidine Hydrazones as Antimicrobial Agents Against Fungi, Bacteria, and Cyanobacteria. ACS Agricultural Science & Technology, 4(10), pp.1002-1013.
- Žunec, S., D. Vadlja, A. Ramić, A. Zandona, N. Maraković, I.Brekalo, I. Primožič and M. Katalinić. 2024. Profiling Novel Quinuclidine-Based Derivatives as Potential Anticholinesterase Drugs: Enzyme Inhibition and Effects on Cell Viability. International Journal of Molecular Sciences, 25(1), 155. https://doi.org/10.3390/ijms25010155.

الملخص العربي

التعرف علي المركبات العلاجية الوظيفية في الزبادي الحيوي المدعم بمستخلص المورينجا أوليفيرا إنعام شكرى، سوسو العصفوري، إيمان ابراهيم

تزايد حديثا بشكل كبيراستهلاك الزبادي الحيوي ويفضل معظم المستهلكين تناول الزبادي الداعم للحيوية وذلك لطعمه المميز وقيمته الغذائية العالية ويهدف هذا البحث لتقدير مدي تأثير وصفات الجودة للزبادي المدعم بالمركبات المفيدة لصحة الإنسانولك من خلال تصنيع ٤ معاملات مدعمة بنسب مختلفة من المسحوق المجفف لأوراق وبذور المورنجا أوليفيرا مع معاملة كنترول للزبادي العادي بدون بادئ ثانوي مساعد وبدون التدعيم بمسوق المورنجا المجفف واستخدم في هذه الدراسة السلات الداعمة للحيوية من

Lactobbacillus acidophilus and Bifidobacterium bifidium

لتحضير منتج وظيفي وعلاجي مفيد لصحة الإنسان تم تصنيع زبادي مخفوق كوسيلة لتوصيل فوائد المورنجا والبادئ المساعد الحيوي للمستهلك. وتم تحليل GC-Mass لعينات الزبادي المدعم لتقدير المركبات الميتابولزمية الفعالة في كل من عينات الزبادي في بداية التصنيع وكذلك بعد فترة تخزين علي درجة حرارة الثلاجة لمدة أسبوعين لتقدير العمر

التخزيني. وأوضحت نتائج الدراسة أن الزبادي الحيوي المدعم بمسحوق المورنجا بتركز ١% كان لها تأثيرات صحية وغذائية أفضل مقارنا بالتركيز الأقل من مسحوق المورنجا المجفف ٥,٠% حيث تعمل المورنجا كمكمل غذائي ومقوي للوصول للحالة الصحية المطلوبة للبادئ الثانوي. ووجد أن أضافة مسحوق المورنجا المجفف حسن من جودة وكفاءة المنتج النهائي ودوره الحيوي في الأمعاء وكذلك في التغذية العلاجية وتغذية الفئات الخاصة والحالات الصحية لمرضي القلب وضغط الدم المرتفع. ونحتاج للمزيد من الدراسات المستقبلية للتعرف علي الدور الحيوي المركبات الطيارة الناتجة من النشاط الأنزيمي والميتابولزمي للسلالات الداعمة الحيوية عند استخدامها مع المورنجا أوليفيرا.

الكلمات المفتاحية: المورينجا أوليفيرا، الزيادي الحيوي، السلالات الداعمة للحيوية، المركبات الميتابولزمية الفعالة، الزبادي الحيوي المُخفوق كمكمل غذائي.