
111 

M.A. Abu Radia, S.A. Saafan                                                                     

 

 

An Overview for Beginners on Density 

Functional Theory in Computational Materials 

Science and Some of the Related Software 

Packages 

M.A. Abu Radia
*
 and S.A. Saafan 

Department of Physics, Faculty of Science, Tanta University, Tanta 31527, Egypt 

Abstract 

This review article explores the basic principles and some practical 

applications of Density Functional Theory (DFT) in computational materials science, 

highlighting its significance in predicting and analyzing the electronic, structural, 

thermodynamic, optical, electrical, and magnetic properties of materials. We begin 

with discussing the fundamental principles of DFT, including the Hohenberg-Kohn 

theorems and the Kohn-Sham equations, which provide the framework for solving 

quantum mechanical equations for many-body systems. The review then explores 

further approximations used to make these complex calculations feasible, such as the 

Local Density Approximation (LDA), Generalized Gradient Approximation (GGA), 

and hybrid functionals. We also mention and classify some popular DFT-based 

software packages, such as WIEN2k, Quantum ESPRESSO, VASP, ABINIT, and 

CASTEP, according to their basis set types, computational requirements, and typical 

use cases. The discussion leads to a focus on WIEN2k, considering the balance of its 

accuracy and cost, and concluding its choice as a preferred software for our future 

research in materials science using computational methods. 
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1. Introduction 

At their most basic level, materials are made up of atoms. Each 

atom contains a nucleus, consisting of protons and neutrons. The nuclei in 

a solid are often treated as point charges, allowing for a simplified 

representation that neglects the complex interactions between protons and 

neutrons. Surrounding the nucleus are core electrons, which are tightly 

bound and situated close to the nucleus, playing a minimal role in 

chemical interactions. Farther from the nucleus are the valence electrons, 

which are responsible for bonding between atoms and are important in 

shaping the material's overall characteristics [1]. 

At this microscopic level, when dealing with individual atoms and 

electrons, the behavior of materials must be described using quantum 

mechanics. This is because, at such small scales, the classical laws of 

physics, which describe the macroscopic world, no longer apply 

accurately. Instead, particles like electrons exhibit wave-particle duality, 

where they can behave both as particles and as waves. Quantum 

mechanics provides the framework to describe these behaviors, including 

phenomena such as superposition, entanglement, and tunneling, which 

have no classical analogs. Moreover, the discrete energy levels, 

probabilistic nature of electron positions, and the importance of 

wavefunctions in determining the behavior of electrons are all aspects 

that can only be captured by quantum mechanical principles [2, 3]. 

Despite the profound insights that quantum mechanics offers into 

the behavior of matter at the microscopic level, applying these principles 

to real-world problems presents significant challenges. These challenges 

were famously summarized by Paul Dirac in 1929 who stated, "The 

general theory of quantum mechanics is now almost complete. The 
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underlying physical laws necessary for the mathematical theory of a large 

part of physics and the whole of chemistry are completely known, and the 

challenge lies in the fact that applying these laws precisely results in 

equations that are too complex to solve [4]."  In other words, we know 

the laws, we know the equations, but we can't solve them. So, what that 

tells us is that we have to look at reliable approximations. 

This difficulty of solving the Schrödinger equation for many-

electron systems led to the development of several approximations. Two 

early and important methods are the Hartree approximation and the 

Hartree-Fock (HF) approximation, both of which attempted to simplify 

the multi-electron wavefunction. The Hartree approximation assumes that 

the total wavefunction of a multi-electron system is expressed as a 

product of single-electron wavefunctions. This approach reduces the 

many-body problem to a series of single-particle equations. The Hartree 

potential represents the effective potential an electron experiences, 

considering Coulomb interactions between electrons while ignoring 

exchange and correlation effects. This potential represents the classical 

electrostatic interaction among electrons. However, the Hartree 

approximation does not consider the Pauli Exclusion Principle, which 

states that electrons with identical spin cannot share the same quantum 

state. The Hartree-Fock method improved further the Hartree 

approximation by incorporating the exchange interaction, which arises 

because of the Pauli Exclusion Principle. Instead of treating electrons 

independently, the Hartree-Fock method introduced an antisymmetrized 

wavefunction known as a Slater determinant, to ensure that electrons with 

the same spin are kept apart. The Hartree-Fock approximation replaces 

the Hartree potential with an effective potential that includes an 

additional exchange term. This exchange term modifies the interaction 
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between electrons by accounting for the statistical repulsion between like-

spin electrons [5]. Despite its advantages, the Hartree-Fock method still 

neglects electron correlation, which refers to the additional interaction 

effects beyond exchange. This limitation is one of the key reasons why 

Density Functional Theory (DFT), which includes correlation effects via 

the exchange-correlation functional, became a widely used method in 

electronic structure calculations. In other words, this improvement over 

the two previously mentioned methods lies in how DFT treats the 

electron-electron interaction. While the Hartree method ignores both 

exchange and correlation, and the Hartree-Fock method includes only 

exchange, DFT incorporates both through the exchange-correlation 

functional. This allows DFT to capture essential many-body effects at a 

much lower computational cost. And as a result, DFT often produces 

more accurate predictions of ground-state energies and other material 

properties, especially in systems where electron correlation plays a 

critical role. 

DFT provides an approach to simplify and solve the quantum 

mechanical equations governing the behavior of electrons in many-body 

systems, making it possible to predict and analyze material properties 

with remarkable accuracy. The development and application of DFT have 

led to a range of software tools designed to perform these calculations, 

each with its own strengths and specialized applications [6]. In this 

review article, we will explore various levels of simplifications which are 

the theoretical basis of DFT and we will provide a summarized overview 

of some popular DFT software packages used in computational materials 

science. 

2. First simplification: Born-Oppenheimer approximation 
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Before this approximation, the main challenge was the inability to 

practically solve the full Schrödinger equation for multi-particle systems, 

particularly molecules. The coupling between electronic and nuclear 

motions resulted in an intractable problem due to the high dimensionality 

and complexity of the wavefunction. This made it extremely difficult to 

study and understand molecular behavior and to develop models that 

could accurately predict chemical properties and reactions. The total 

Hamiltonian, which includes effects from both the nuclei and the 

electrons, can be expressed as [7]:  
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The first two terms represent the kinetic energy of the nuclei and 

electrons, respectively. The remaining terms describe the electrostatic 

interactions among the electrons and each other, between the electrons 

and nuclei, and among the nuclei. 

To address this problem in actual materials, the Born-Oppenheimer 

approximation is presented as a first level of approximations to simplify 

the complex task of solving the Schrödinger equation for molecules. This 

approximation considers the nuclei in a molecule to be significantly 

heavier and moving much slower than the electrons. Consequently, the 

motions of electrons and nuclei can be treated separately, assuming that 

the ions are fixed in their positions and the term containing the kinetic 

energy of the nuclei will be zero and term containing the electrostatic 

forces between nuclei will be constant [7]. With this separation, the 

electronic Hamiltonian is represented as follows: 
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Omitting the zero and constant terms we get:  
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(3)              

Equation (3) can be written as:  

   ̂   ̂   ̂ext                                                                                                        

(4) 

Equation (4) shows that the Hamiltonian ends up with only three 

terms. The first term,  ̂  represents the kinetic energy of the electrons. 

The second term, ̂  accounts for the interaction between the electrons, 

known as the electron-electron interaction. The final term,  ̂ext, describes 

the electron-ion attraction, which can be considered now as an external 

potential to which the electrons are exposed due to the presence of the 

ions.  

As mentioned previously, solving this equation was challenging, so 

many other approximations had been developed to further simplify the 

process. Examples of these approximations include the Hartree 

approximation and the Hartree-Fock approximation which were not very 

accurate for solids. Therefore, DFT had emerged as a more modern and 

powerful method that offers reliable solutions to the problem. 

3. Second simplification: Density Functional Theory 

DFT is a quantum mechanical approach for analyzing the 

electronic structure of multi-particle systems, including atoms, molecules, 
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and condensed matter. The theory is founded on several key theorems and 

principles, including two important theorems of Hohenberg and Kohn and 

the Kohn-Sham equations [7]. 

3.1. Hohenberg-Kohn theorems 

In 1964, Pierre Hohenberg and Walter Kohn had investigated a 

revolutionary idea: what if instead of focusing on the complicated many-

electron wavefunction, they could describe everything just by knowing 

the electron density function? The electron density function is a much 

simpler object. It describes the probability of finding electrons at a given 

point in space while depending on only three spatial coordinates instead 

of the 3N required for the wavefunction. 

3.1.1. The first Hohenberg-Kohn theorem 

Hohenberg and Kohn had proved that the ground-state density 

function of a multi-electron system has one-to-one correspondence with 

the external potential  ̂     mentioned above. This means that the 

ground-state properties of a multi-electron system depend solely on the 

electron density function [7]. 

For more clarification, consider two different electron systems with 

exactly the same ground-state electron density; Hohenberg and Kohn 

demonstrated that it is impossible for these two systems to have different 

external potentials (apart from an additive constant). In other words, the 

electron density alone is enough to uniquely define the external potential 

and, therefore, the entire Hamiltonian (the operator that describes the total 

energy of the system).  

A mathematically summarized form of this first theorem is: 
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The total ground-state energy of a quantum mechanical system is 

uniquely determined by the electron density functional. 

   [ ( )]  

; Where  ( ) is the electron density [6] 

It can be obviously seen that the resulted simplification is significant, that 

is, instead of dealing with a function of 3N variables—such as 78 

variables for a single iron atom for example —we now have a function of 

just three variables, the electron density as a function of position. 

 

3.1.2. The second Hohenberg-Kohn theorem 

Kohn and Hohenberg had shown that the electron density could 

uniquely determine the system's properties. The next question was: how 

do you actually find the correct electron density? This question led to the 

second Hohenberg-Kohn theorem, which applies the variational principle 

to determine the ground-state density. 

The true ground-state electron density is the one that minimizes the total 

energy functional. 

 [ ( )]    [  ( )]  

; where   ( ) is the ground state density [6] 

This is similar to the variational principle in quantum mechanics, where 

you find the lowest energy by varying the wavefunction. However, here, 

the focus is on varying the electron density. 

Hohenberg and Kohn showed that if you start with any trial 

electron density and plug it into this energy functional, the resulting 

energy will always be equal to or greater than the true ground state 
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energy. When you find the density that minimizes this energy functional, 

it can be assumed that you’ve found the true ground state density, and the 

corresponding energy is the true ground state energy. 

While the Hohenberg-Kohn theorems establish a strong theoretical 

basis for using the electron density as the central quantity in quantum 

mechanical calculations, they do not provide a practical method for 

determining the energy functional or solving for the ground-state density. 

The main difficulty arises from the complexity of the many-body 

problem, where electron-electron interactions make direct computation of 

the total energy extremely challenging. To make DFT usable in practice, 

an approach was needed to approximate these interactions in a 

computationally feasible way. This need led to the development of the 

Kohn-Sham formulation. 

3.2. The Kohn-Sham equations: Making the theory practical 

In 1965, Walter Kohn, along with his collaborator Lu Jeu Sham, 

provided the solution. They introduced what are now known as the Kohn-

Sham equations, which reformulated the problem in a way that made it 

computationally tractable. 

Kohn-Sham simplified Hohenberg-Kohn theory by substituting the 

real interacting electron system with an auxiliary system of non-

interacting electrons, incorporating interaction effects through an 

exchange-correlation potential. In more explaining words, imagine that 

the electrons are not interacting with each other at all. They only interact 

with an "effective potential" that we will construct. This effective 

potential is carefully designed to mimic the effects of the real interactions 

in the original problem [7, 8]. 
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Then, the Kohn-Sham equations for a system of non-interacting electrons 

moving in an effective potential     ( ) are: 

( 
 

 
        ( ))   ( )        ( )   

; where  

  ( ): are the Kohn-Sham orbitals (the wavefunctions of the non-

interacting electrons). 

  : are the eigenvalues corresponding to these orbitals. 

    ( ): is the effective potential experienced by the Kohn-Sham 

electrons. The effective potential     ( ) is made up of three parts: 

1. External potential     ( ): This is the potential due to the nuclei in the 

system. 

2. Hartree potential   ( ): This accounts for the classical electrostatic 

interaction between electrons. 

3. Exchange-correlation potential    ( ): This includes all the quantum 

mechanical effects of exchange and correlation. 

So, The Kohn-Sham equations can be written: 

( 
 

 
      ( )     ( )      ( ))   ( )        ( )   

3.3.  The Exchange-Correlation (XC) Function 

The exchange-correlation function    ( ) is perhaps the most 

complex part of the Kohn-Sham equations. It encompasses all the 

intricate quantum mechanical effects that aren’t captured by the Hartree 

potential alone [7]. These include: 
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 Exchange interactions: Arising from the Pauli Exclusion Principle, 

which states that two electrons with the same spin cannot share the 

same quantum state. 

 Correlation effects: Arising from the fact that electrons avoid each 

other more than what is accounted for by the Hartree potential due 

to their mutual repulsion and correlated motion. 

Mathematically, the exchange-correlation function is a functional 

of the electron density  ( )         [ ( )] The exact form of    [ ( )] 

is not known, but there are various approximations used in practice [7], 

such as: 

 Local Density Approximation (LDA): It assumes that the 

exchange-correlation energy at each point in space depends only on 

the local density. LDA assumes a uniform electron gas model, 

making it particularly effective for systems with nearly constant 

electron density, such as simple metals and some bulk solids. 

Despite its simplicity, LDA often overestimates binding energies 

and struggles with systems where the electron density varies 

rapidly, such as molecules and surfaces [9]. 

 Generalized Gradient Approximation (GGA): It considers not 

just the local density, but also its gradient (how the density changes 

in space), allowing for a more accurate description of systems with 

varying electron densities. However, GGA still faces challenges 

when the interactions between electrons are particularly complex 

or when electrons influence each other over long distances [9]. 

 Meta-GGA functionals: Include extra terms like the second 

derivative of the electron density. These functionals offer improved 

accuracy in capturing intermediate-range interactions and more 
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detailed electron correlations. However, this increased accuracy 

comes at the cost of greater computational demand, limiting their 

use in large or complex systems [9]. 

 Hybrid functionals: represent another significant advancement by 

incorporating a portion of exact exchange energy from Hartree-

Fock theory into the DFT framework. By mixing exact exchange 

with GGA or LDA exchange-correlation energies, hybrid 

functionals can achieve higher accuracy, particularly in systems 

where exact exchange interactions are critical. This makes hybrid 

functionals particularly effective for studying organic molecules, 

transition metal complexes, and systems involving significant 

charge transfer. However, the inclusion of exact exchange makes 

hybrid functionals more computationally expensive, limiting their 

practicality for very large systems or complex unit cells [9]. 

In summary, selecting a DFT functional depends on the particular 

material or system under investigation and the desired balance between 

computational cost and accuracy. LDA is often a good starting point for 

bulk solids, while GGA is more versatile and widely used. Meta-GGA 

and hybrid functionals offer higher accuracy but at a greater 

computational expense, making them suitable for more complex or 

delicate systems [9]. 

The exchange-correlation potential    ( ) is a functional derivative of 

the exchange-correlation energy: 

   ( )  
     ( )

   ( )
     [9]. 

4. Applications of DFT in computational materials science 
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Density Functional Theory has become a key tool in materials 

science due to its ability to provide accurate predictions of structural, 

electronic, and magnetic properties while significantly reducing 

computational costs compared to traditional wavefunction-based 

methods. Its predictive power enables researchers to screen, design, and 

optimize materials before experimental validation, accelerating discovery 

and reducing trial-and-error in the lab. One key application is in 

electronic structure calculations, where DFT allows researchers to 

determine a material's band structure and density of states (DOS). The 

band structure reveals the energy levels electrons can occupy, crucial for 

predicting electrical conductivity and semiconducting behavior, while the 

DOS provides insights into the distribution of electrons among these 

energy levels [10]. Reshak and Azam [11] employed DFT to investigate 

the electronic structure, electronic charge density, Fermi surface, and 

optical properties of the Sm2NiMnO6 compound. The specific 

implementation involves using the full potential linear augmented plane 

wave (FP-LAPW) method within the WIEN2K code. To handle the 

exchange-correlation potential, the study used LDA, GGA, and Engel-

Vosko GGA (EVGGA) to solve the Kohn-Sham equations. The article 

mentioned that the calculated bond lengths and bond angles from the 

DFT calculations are in good agreement with existing experimental data. 

However, it also stated that there is no tentative data on the band structure 

of this compound in the literature to be compared with the results. 

In terms of structural properties, DFT is employed to predict 

equilibrium lattice parameters, which define the crystal structure, and to 

calculate elastic constants such as bulk modulus and Young's modulus, 

which describe how a material deforms under stress. These calculations 

are fundamental for understanding a material's geometric structure and 
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mechanical strength [12-14]. Ghaleb and Ahmed [15] calculated 

structural properties of Zinc blende ZnS using DFT as implemented in the 

CASTEP code. GGA and LDA were used to measure exchange-

correlation energy. The equilibrium lattice constant was calculated by 

fitting the outcome data of the equilibrium energy and volume to the 2
nd

 

order Murnaghan's equation of state (EOS). The bulk modulus was 

calculated using Murnaghan's equation of state. The elastic constants 

C11, C12, and C44, which define the mechanical stability of the material, 

were calculated by measuring the total energy.  The estimated lattice 

constant, bulk modulus, and elastic constant outcomes agreed very well 

with existing experiments. 

DFT also plays a significant role in thermodynamics, helping 

construct phase diagrams that illustrate the stability of different phases 

under varying conditions. Additionally, it calculates the free energy of a 

system, aiding in predicting phase stability and reaction spontaneity [16, 

17]. In [18], DFT was employed to compute the thermodynamic 

properties of Na2MgSiO4, including heat capacity, entropy, Helmholtz 

free energy, thermal expansion coefficient, and bulk modulus. The 

calculated heat capacity was validated against experimental data obtained 

via differential scanning calorimetry (DSC), demonstrating good 

agreement. 

For optical properties, DFT can predict the dielectric function and 

absorption spectra of materials. The dielectric function defines a 

material's response to an electric field, crucial for insulating properties 

and electronic devices, while the absorption spectra indicate how 

materials absorb light at different wavelengths, important for applications 

like solar cells [19, 20]. Gerbi [21] employed DFT and time-dependent 
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density functional perturbation theory (TDDFPT) to explore the 

electronic and optical properties of monolayer MoS2, assessing its 

potential for optoelectronic and quantum applications. By examining the 

band structure, absorption spectrum, dielectric function, and joint density 

of states (JDOS), the study identified MoS2's direct bandgap, the role of 

Mo-d and S-p orbitals, and its potential in photonic applications, UV 

detection, and high-energy light emitters. 

Magnetic properties is another area where DFT shows unique 

distinction, as it helps calculate magnetic moments and magnetic ordering 

in materials, essential for the development of magnetic materials and 

spintronic devices, which exploit electron spin [19, 20]. 

DFT is also crucial for studying nanomaterials, whose electronic 

and mechanical properties can differ significantly from bulk materials 

due to quantum confinement effects. This makes DFT a fundamental tool 

for advancing nanotechnology and materials engineering [22]. 

While DFT is a powerful tool, it has notable limitations because 

the practical implementations require approximations for the exchange-

correlation functional. These approximations may introduce systematic 

errors. As discussed by Cohen, Mori-Sánchez, and Yang [23], two major 

sources of error in standard functionals are the delocalization error and 

the static correlation error. The delocalization error arises because current 

functionals artificially spread the electron density and fail to cancel self-

interactions, even for single-electron systems. This artificial spread of the 

electron density happens because, in DFT, the electron density is treated 

as a continuous, non-local quantity. When only one electron is present, its 

own density still interacts with itself, leading to an artificial self-

repulsion. This unphysical interaction should not exist, but most standard 
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functionals do not eliminate it, resulting in errors in energy calculations 

and electron distributions. On the other hand, the static correlation error 

arises because DFT's usual way of handling electrons is using just one 

arrangement of these electrons. Therefore, it struggles when electrons are 

in more than one arrangement at the same time, like when a chemical 

bond is broken. This leads to big errors when predicting what happens as 

bonds break or when describing materials with lots of electron 

interactions. 

5. Widely used DFT software packages 

Over the years, various software packages have been developed to 

implement DFT calculations, enabling researchers to study and predict 

the electronic structure and properties of materials at the atomic level. 

Each DFT software package has its own unique set of features, 

algorithms, and capabilities, designed to address specific types of 

materials, computational methods, and research needs [24].  

The classification of popular DFT tools, as presented in Table 1, 

can be organized based on various criteria, such as basis set type, typical 

use cases, computational demand, and licensing. 

  

5.1. Basis Set Types 

In computational materials science, basis sets are used to 

approximate wavefunctions and electron densities. A basis set is a 

collection of mathematical functions used to represent the spatial 

distribution of electrons in a system. DFT tools are often categorized into 

those using plane-wave basis sets, such as Quantum ESPRESSO, VASP, 

ABINIT, and CASTEP, which are ideal for periodic systems like 
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crystalline solids. On the other hand, tools like Gaussian, ORCA, and 

SIESTA utilize localized basis sets, which are atomic-like functions, 

making them well-suited for molecular and non-periodic systems [24]. 

CP2K employs a hybrid approach, combining atomic-like functions with 

plane waves, making it highly efficient for large systems and mixed-

phase simulations [25]. WIEN2k, utilizing the Full-Potential (Linearized) 

Augmented Plane Wave (FP-LAPW) method, stands out for its precision 

in solid-state calculations [26]. 

5.2. Typical Use Cases 

In terms of typical use cases, Quantum ESPRESSO, VASP, 

WIEN2k, ABINIT, and CASTEP are highly regarded in the field of 

materials science, particularly for investigating the electronic properties 

of bulk materials and surfaces. For quantum chemistry and molecular 

modeling, Gaussian, ORCA, and NWChem are preferred due to their 

versatility in handling molecular systems. CP2K and SIESTA shine in 

scenarios involving large-scale simulations, such as those involving 

complex biological molecules or solid-liquid interfaces. Tools like 

WIEN2k, VASP, and ABINIT also support advanced electronic structure 

methods, making them indispensable for researchers needing high 

precision in electronic and magnetic property calculations [27]. 

5.3. Computational Demand 

Considering computational demand, WIEN2k and VASP are 

known for their high computational requirements due to the precision of 

their methods [26, 28]. Quantum ESPRESSO, ABINIT, and CASTEP 

offer a balance between accuracy and computational efficiency, making 

them applicable to various solid-state systems [27]. For large systems 

where computational efficiency is critical, SIESTA, ORCA, and CP2K 
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provide more resource-efficient solutions, while Gaussian offers 

flexibility depending on the choice of basis sets and functionals [24, 29, 

30]. 

5.4. Licensing 

Regarding licensing, VASP, Gaussian, and WIEN2k require 

commercial licenses, which may limit accessibility but provide robust 

support and advanced features [30-32]. In contrast, open-source tools like 

CASTEP, Quantum ESPRESSO, ABINIT, SIESTA, CP2K, ORCA, and 

NWChem are freely available to the academic community, encouraging 

widespread use and active development [27, 33, 34]. 



 

 

Table 1: Summary of Classification of Popular DFT Tools Based on basis set type, 

methodology focus, computational demand, and licensing 

 

Given our research focus in materials science, the programs of 

interest include WIEN2k, Quantum ESPRESSO, VASP, ABINIT, and 

CASTEP. However, when considering both accuracy and capabilities, we 

narrowed down this list to WIEN2k and VASP. WIEN2k, priced at 400 

Category Software Tools 

Basis Set Type 

Plane-Wave 

Quantum ESPRESSO, VASP, ABINIT, 

CASTEP 

Localized Gaussian, ORCA, SIESTA, NWChem 

Hybrid CP2K 

Full-Potential 

LAPW 

WIEN2k 

 

Typical Use Cases 

Materials Science 

WIEN2k, Quantum ESPRESSO, VASP, 

ABINIT, CASTEP 

Quantum 

Chemistry 

Gaussian, ORCA, NWChem 

Large Systems CP2K, SIESTA 

Computational 

Demand 

High WIEN2k, VASP 

Moderate Quantum ESPRESSO, ABINIT, CASTEP 

Lower SIESTA, ORCA, CP2K 

Flexible Gaussian 

Licensing 

Commercial WIEN2k, VASP, Gaussian 

Open-Source 

CASTEP, Quantum ESPRESSO, ABINIT, 

SIESTA, CP2K, ORCA, NWChem 
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euros for academic use, is much more affordable compared to VASP, 

which costs 2000 euros. Therefore, we will primarily concentrate on 

WIEN2k in the following section. 

6. WIEN2k: Key Features and Applications 

6.1. Key Features 

WIEN2k is a computational tool designed for accurate electronic 

structure calculations in solids. The name "WIEN2k" [35] originates from 

its development location, Vienna, and the year 2000 when a major update 

to the WIEN code [36] was released, leading to the modern version 

widely used today. It uses the Full-Potential Augmented Plane Wave plus 

Local Orbitals (APW+lo) method. This method divides space into two 

distinct regions: the muffin-tin spheres centered around each atom, where 

wavefunctions are expanded in spherical harmonics, and the interstitial 

region between the atoms, where wavefunctions are expressed as plane 

waves. This approach provides a highly accurate representation of the 

electronic wavefunctions in all regions of the crystal [26]. 

WIEN2k is composed of a series of programs, mainly written in 

Fortran 90, which are interconnected through tcsh-shell scripts. This 

structure makes WIEN2k very adaptable, allowing users to select and run 

a particular program for a specific task. However, it requires users to 

understand which individual program to use for each task based on input 

file instructions. The software can be operated through the command line 

or via a web-based graphical user interface called "w2web," which can be 

accessed through any standard web browser [26]. 

The key features of WIEN2k can be summarized in the following points: 



 

 

 Full-Potential Treatment: Unlike methods that use 

pseudopotentials to approximate the core electrons, the APW+lo 

method does not rely on any such approximation. It treats all 

electrons explicitly and self-consistently, ensuring a detailed and 

precise description of the electronic structure [26]. 

 Augmented Plane Waves (APW): In the interstitial regions of the 

crystal, wavefunctions are expanded in plane waves. Near atomic 

cores, where electron density changes rapidly, the wavefunctions 

are augmented using atomic-like functions (spherical harmonics). 

This combination allows for the accurate description of both core 

and valence electrons [26]. 

 Local Orbitals (lo): To further enhance accuracy, WIEN2k uses 

local orbitals for core or semi-core states. These orbitals are added 

to describe localized electrons that cannot be captured well by the 

APW basis set alone. This inclusion ensures flexibility and 

precision, especially in systems with heavy elements where 

relativistic effects become significant [26]. 

This combination of plane waves in the interstitial regions, atomic-

like functions near the cores, and local orbitals for localized electrons 

provides an exceptionally accurate representation of both the bonding 

environment and the electron distribution in solids.  

WIEN2k’s use of this combination method allows it to handle a 

wide range of materials, including those with complex electronic 

structures, such as semiconductors, metals, and insulators. 

As a result of these distinctive features, WIEN2k has been widely 

used in computational materials science to predict and analyze the 

electronic, structural, optical, electrical and magnetic properties of 
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different materials, as will be shown briefly in a few examples in the 

following section.  

6.2. Applications 

In ref. [37] the authors utilized the WIEN2k software package to 

explore the effects of Fe doping on the electrical , electronic, and optical 

characteristics of ZnO compounds. The WIEN2k package was used to 

model the electronic band structure and DOS for both pure and Fe-doped 

ZnO. Their study found that Fe doping has reduced the band gap, from 

2.7 eV in pure ZnO to 2.2 eV in the doped version. The article also 

reported the dielectric function, infrared-light and visible-light 

absorption, and other optical properties of ZnO, which has changed 

significantly upon Fe doping. WIEN2k calculations along with semi-

classical Boltzmann transport theory were used by the authors to 

determine the electrical properties of ZnO. The study found that Fe 

doping has enhanced the electrical conductivity but reduced the carrier 

mobility. 

In ref. [38], a comprehensive study of             ternary alloys, 

examining how varying the yttrium concentration (x = 0, 0.25, 0.5, 0.75, 

and 1) influences the alloy’s structural, electronic, optical, and elastic 

properties with the aid of WIEN2k software. The researchers applied 

several exchange-correlation functionals for different aspects of the 

calculations: Wu-Cohen generalized gradient approximation (WC-GGA) 

for structural properties, Engel-Vosko GGA (EV-GGA) for accurate 

electronic properties, and the Trans-Blaha modified Becke-Johnson (TB-

mBJ) exchange potential to improve band gap predictions. These 

calculations were conducted at the level of FP-L(APW)+lo structured 



 

 

within DFT. Their computed results were found to be in good agreement 

with the available experimental measurements and theoretical predictions. 

In ref. [39], the WIEN2K software was employed to examine the 

thermodynamic, electronic, and structural properties of antimony-doped 

indium phosphorus alloys (         ) through FP-LAPW method. The 

authors utilized WIEN2K to simulate unit cells for the binary compounds 

InP and InSb, subsequently extending the computations to their ternary 

alloy compositions. The study successfully determined critical properties, 

including the bandgap energies, elastic constants, and thermodynamic 

behavior, thereby providing valuable insights into the optoelectronic 

applications of these alloys. 

In the DFT analysis of Ba2NbRhO6 in ref. [40], WIEN2k was also 

used to determine the electronic band structure, including the bandgap, as 

well as the structural properties like lattice parameters and atomic 

positions. Additionally, it was employed to compute the phonon 

dispersion relation, confirming the material's thermodynamic stability. 

Furthermore, the optical and thermoelectric properties, such as the 

dielectric function, refractive index, absorption coefficient, electrical 

conductivity, Seebeck coefficient, and power factor, were calculated.  

For the study of Mn2NTx MXenes in ref. [41], WIEN2k was the 

chosen tool in investigating the studied materials. It was used to calculate 

the electronic band structure, particularly to understand the influence of 

surface functionalization on the electronic behavior. Moreover, it was 

employed to determine the optical properties, including absorption, 

refraction, and reflection. 

In ref. [42], WIEN2k was used too, to optimize the crystal structure 

and calculate the lattice parameters and bond lengths of A2PdCl6 lead-free 

perovskite. Additionally, it was used to determine the electronic band 
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structure, including the bandgap, as well as the optical properties, such as 

the optical conductivity, dielectric constant, and absorption coefficient. 

There are thousands of research papers that have used WIEN2k 

and we would like to recommend the following recent articles for 

beginners for further exploration of the capabilities of this software [43-

52]. However, in spite of these capabilities, WIEN2k has some 

limitations. First, setting up calculations requires a good understanding of 

DFT and careful selection of parameters to ensure accurate results. For 

larger problems, the size of the calculations may exceed the memory 

available on regular computers, meaning you’ll need access to high-

performance computing clusters. Additionally, WIEN2k relies on specific 

software libraries (like ScaLAPACK and LAPACK), and its performance 

can vary depending on the hardware and how well these libraries are 

optimized. 

7. Conclusions 

DFT is widely used as the theoretical basis in computational materials 

science for developing successful software packages used to explore a 

wide range of material properties at the atomic level. When considering 

accuracy, cost and many case studies all together, WIEN2k proves 

versatility and accuracy in modeling complex materials, making it a 

valuable tool for exploring promising materials in future research work. 

Declaration of Conflicting Interests 

The author(s) declared no potential conflicts of interest concerning the 

research, authorship, and/or publication of this article. 

 

 



 

 

References 

[1] W. D. Callister Jr and D. G. Rethwisch, Materials science and engineering: an 

introduction. John wiley & sons, 2020. 

[2] P. A. M. Dirac, The principles of quantum mechanics (no. 27). Oxford 

university press, 1981. 

[3] S. Rajasekar and R. Velusamy, Quantum Mechanics I: The Fundamentals. 

CRC Press, 2022. 

[4] E. Scheibe, The Reduction of Physical Theories A Contribution to the Unity of 

Physics Part 1: Foundations and Elementary Theory, Springer Nature, 2022. 

[5] Wikipedia. Hartree–Fock method, Wikipedia,  (Accessed), Available: 

https://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_method 

[6] J. Kapil, P. Shukla, and A. Pathak, "Review Article on Density Functional 

Theory," Springer Proceedings in Physics, pp. 211-220, 2020. DOI: 

https://doi.org/10.1007/978-981-15-8625-5_22  

[7] S. Cottenier, "Density Functional Theory and the family of (L) APW-methods: 

a step-by-step introduction," Instituut voor Kern-en Stralingsfysica, KU 

Leuven, Belgium, vol. 4, no. 0, p. 41, 2002. 

[8] D. Bagayoko, "Understanding density functional theory (DFT) and completing 

it in practice," AIP Advances, vol. 4, no. 12, 2014. 

[9] D. S. Sholl and J. A. Steckel, Density functional theory: a practical 

introduction. John Wiley & Sons, 2022. 

[10] N. N. Anua, R. Ahmed, M. Saeed, A. Shaari, and B. U. Haq, "DFT 

investigations of structural and electronic properties of gallium arsenide 

(GaAs)," in AIP Conference Proceedings, 2012, vol. 1482, no. 1, pp. 64-68: 

American Institute of Physics. 

[11] A. Reshak and S. Azam, "Electronic band structure and specific features of 

Sm2NiMnO6 compound: DFT calculation," Journal of magnetism & magnetic 

materials, vol. 342, pp. 80-86, 2013. DOI: 

https://doi.org/10.1016/j.jmmm.2013.04.060  

[12] P. Aghdasi, S. Yousefi, and R. Ansari, "Doping-induced changes in the 

structural and mechanical properties of germanene monolayers: A DFT-based 

study," Materials Science in Semiconductor Processing, vol. 174, 2024. DOI: 

https://doi.org/10.1016/j.mssp.2024.108246  

[13] I. Hatraf et al., "Structural, elastic, optoelectronic and magnetic properties of 

CdHo2S4 spinel: a first-principle study," Bulletin of Materials Science, vol. 

40, no. 6, 2017. DOI: https://doi.org/10.1007/s12034-017-1482-1  

https://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_method
https://doi.org/10.1007/978-981-15-8625-5_22
https://doi.org/10.1016/j.jmmm.2013.04.060
https://doi.org/10.1016/j.mssp.2024.108246
https://doi.org/10.1007/s12034-017-1482-1


 

135 

                                                                )5) (20247Egypt J. Solids, Vol. (            

 

 

[14] M. F. Rahman et al., "A computational study of electronic, optical, and 

mechanical properties of novel Ba3SbI3 perovskite using DFT," Optical 

Quantum Electronics, vol. 56, no. 2, p. 206, 2024. DOI: 

https://doi.org/10.1007/s11082-023-05738-0  

[15] A. Ghaleb and A. Ahmed, "Structural, electronic, and optical properties of 

sphalerite ZnS compounds calculated using density functional theory (DFT)," 

Chalcogenide Letters, vol. 19, no. 5, pp. 309-318, 2022. DOI: 

https://doi.org/10.15251/cl.2022.195.309  

[16] A. Settouf, H. Rached, N. Benkhettou, and D. Rached, "DFT calculations of 

structural, optoelectronic and thermodynamic properties of BxAl1-xP alloys," 

Computational Condensed Matter, vol. 19, p. e00377, 2019/06/01/ 2019. DOI: 

https://doi.org/10.1016/j.cocom.2019.e00377  

[17] F. Zerarga et al., "Ab initio study of the pressure dependence of mechanical 

and thermodynamic properties of GeB2O4 (B = Mg, Zn and Cd) spinel 

crystals," Computational Condensed Matter, vol. 32, p. e00705, 2022/09/01/ 

2022. DOI: https://doi.org/10.1016/j.cocom.2022.e00705  

[18] J. You et al., "Thermodynamic properties of Na2MgSiO4: DFT calculation 

and experimental validation," Calphad, vol. 79, 2022. DOI: 

https://doi.org/10.1016/j.calphad.2022.102480  

[19] B. U. Haq et al., "Investigations of the physical behavior of Cr2PX (X= C and 

N) MAX phases through first-principles calculations," Computational 

Condensed Matter, vol. 40, 2024. DOI: 

https://doi.org/10.1016/j.cocom.2024.e00937  

[20] B. U. Haq et al., "V2XT2 (X: C, N; T: O, F) MXenes; potential two-

dimensional materials for spintronics, optoelectronics, and photovoltaic 

applications," Materials Today Communications, vol. 40, 2024. DOI: 

https://doi.org/10.1016/j.mtcomm.2024.109370  

[21] Z. D. Gerbi, "Electronic and optical properties of molybdenum disulfide 

(MoS2) mono layer using density functional theory (DFT) calculations," AIP 

Advances, vol. 15, no. 2, 2025. DOI: https://doi.org/10.1063/5.0256769  

[22] P. Makkar and N. N. Ghosh, "A review on the use of DFT for the prediction of 

the properties of nanomaterials," RSC advances, vol. 11, no. 45, pp. 27897-

27924, 2021. DOI: https://doi.org/10.1039/D1RA04876G  

[23] A. J. Cohen, P. Mori-Sánchez, and W. Yang, "Insights into current limitations 

of density functional theory," Science, vol. 321, no. 5890, pp. 792-794, 2008. 

DOI: https://doi.org/10.1126/science.1158722  

[24] I. Kabadshow, "Available atomic scale simulation software packages," 

Technische Universitat Chemnitz, Studienarbeit, pp. 1-35, 2005. 

https://doi.org/10.1007/s11082-023-05738-0
https://doi.org/10.15251/cl.2022.195.309
https://doi.org/10.1016/j.cocom.2019.e00377
https://doi.org/10.1016/j.cocom.2022.e00705
https://doi.org/10.1016/j.calphad.2022.102480
https://doi.org/10.1016/j.cocom.2024.e00937
https://doi.org/10.1016/j.mtcomm.2024.109370
https://doi.org/10.1063/5.0256769
https://doi.org/10.1039/D1RA04876G
https://doi.org/10.1126/science.1158722


 

 

[25] cp2k, Wikipedia,  (Accessed:  Accessed on 8 September 2024), Available: 

https://www.cp2k.org/ 

[26] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, and L. D. Marks, 

"WIEN2k: An APW+ lo program for calculating the properties of solids," The 

Journal of chemical physics, vol. 152, no. 7, 2020. DOI: 

https://doi.org/10.1063/1.5143061  

[27] M. V. Malyshkina and A. S. Novikov, "Modern software for computer 

modeling in quantum chemistry and molecular dynamics," Compounds, vol. 1, 

no. 3, pp. 134-144, 2021. DOI: https://doi.org/10.3390/compounds1030012  

[28] J. Hafner, "Ab‐initio simulations of materials using VASP: Density‐functional 

theory and beyond," Journal of computational chemistry, vol. 29, no. 13, pp. 

2044-2078, 2008. DOI: https://doi.org/10.1002/jcc.21057  

[29] T. D. Kühne et al., "CP2K: An electronic structure and molecular dynamics 

software package-Quickstep: Efficient and accurate electronic structure 

calculations," The Journal of Chemical Physics, vol. 152, no. 19, 2020. DOI: 

https://doi.org/10.1063/5.0007045  

[30] gaussian, Wikipedia,  (Accessed:  8 September 2024), Available: 

https://gaussian.com/ 

[31] VASP, Wikipedia,  (Accessed:  Accessed on 8 September 2024), Available: 

https://www.vasp.at/ 

[32] Wien2k, Wikipedia,  (Accessed:  Accessed on 8 September 2024), Available: 

http://susi.theochem.tuwien.ac.at/index.html 

[33] CASTEP, Wikipedia,  (Accessed:  Accessed on 8 September 2024), Available: 

https://www.castep.org/ 

[34] ORCA, Wikipedia,  (Accessed:  Accessed on 8 September 2024), Available: 

https://www.faccts.de/orca/ 

[35] K. Schwarz and P. Blaha, "Solid state calculations using WIEN2k," 

Computational Materials Science, vol. 28, no. 2, pp. 259-273, 2003/10/01/ 

2003. DOI: https://doi.org/10.1016/S0927-0256(03)00112-5  

[36] P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, "Full-potential, 

linearized augmented plane wave programs for crystalline systems," Computer 

Physics Communications, vol. 59, no. 2, pp. 399-415, 1990/06/01/ 1990. DOI: 

https://doi.org/10.1016/0010-4655(90)90187-6  

[37] M. Hammi et al., "Effect of Fe doping on the electronic structure, optical and 

electrical properties of ZnO compound: Ab initio insights," Optik, vol. 131, 

pp. 399-405, 2017. DOI: https://doi.org/10.1016/j.ijleo.2016.11.086  

[38] S. Touam et al., "First-principles computations of Yx Ga1-x As-ternary alloys: 

a study on structural, electronic, optical and elastic properties," Bulletin of 

https://www.cp2k.org/
https://doi.org/10.1063/1.5143061
https://doi.org/10.3390/compounds1030012
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1063/5.0007045
https://gaussian.com/
https://www.vasp.at/
http://susi.theochem.tuwien.ac.at/index.html
https://www.castep.org/
https://www.faccts.de/orca/
https://doi.org/10.1016/S0927-0256(03)00112-5
https://doi.org/10.1016/0010-4655(90)90187-6
https://doi.org/10.1016/j.ijleo.2016.11.086


 

137 

                                                                )5) (20247Egypt J. Solids, Vol. (            

 

 

Materials Science, vol. 43, 2019/12/18 2020. DOI: 

https://doi.org/10.1007/s12034-019-1978-y  

[39] S. Gagui et al., "Tailoring of elastic, optoelectronic, and thermal properties of 

antimony doped indium phosphorus alloys for optoelectronic applications," 

Journal of Alloys and Compounds, vol. 858, 2021. DOI: 

https://doi.org/10.1016/j.jallcom.2020.157632  

[40] S. Belhachi et al., "DFT Analysis of Ba2NbRhO6: A Promising Double 

Perovskite for Sustainable Energy Applications," Journal of Inorganic and 

Organometallic Polymers and Materials, 2024. DOI: 

https://doi.org/10.1007/s10904-024-03336-5  

[41] B. Ul Haq et al., "Effect of Surface Functional Groups on the Electronic 

Behavior and Optical Spectra of Mn2N Based MXenes," ChemPhysChem, 

2024. DOI: https://doi.org/10.1002/cphc.202300605  

[42] S. Behilil et al., "First-principles prediction of optoelectronic and 

thermoelectric properties of novel materials A2PdCl6 for Photovoltaic 

Applications," Computational Condensed Matter, vol. 38, 2024. DOI: 

https://doi.org/10.1016/j.cocom.2023.e00869  

[43] M. Bencheikh et al., "Determination of the structural and optoelectronic 

properties of InTe cubic monochalcogenide using the WIEN2k code for its 

application in photovoltaics," Journal of Optics 2024. DOI: 

https://doi.org/10.1007/s12596-024-01775-4  

[44] G. Murtaza, M. Haseeb, A. Javed, M. Rafiq, M. Rasul, and A. Hussain, "First-

principles study of structural, electronic, mechanical, optical, thermodynamic 

and thermoelectric properties of ternary ZnSnN2 and ZnMoN2 nitrides," 

Materials Science in Semiconductor Processing, vol. 176, 2024. DOI: 

https://doi.org/10.1016/j.mssp.2024.108354  

[45] A. Z. OTUEBE, A. A. OMAGBEMI, and N. O. Nenuwe, "DFT-based 

Investigation of Physical Properties of LiYSn and LiScSn for Photovoltaic and 

Optoelectronic Applications," FUPRE Journal of Scientific & Industrial 

Research, vol. 8, no. 4, pp. 38-51, 2024. 

[46] S. C. T. Rueshwin and R. Eithiraj, "Computational Screening of 2D Cs2O for 

photocatalysis and thermoelectric properties," Journal of Physics & Chemistry 

of Solids, vol. 199, 2025. DOI: https://doi.org/10.1016/j.jpcs.2024.112547  

[47] A. Jabar, L. Bahmad, and S. Benyoussef, "Structural, optical, elastic, 

thermoelectric and thermodynamic properties of the IrMn material: A DFT 

study," Modern Physics Letters B, vol. 38, no. 11, 2024. DOI: 

https://doi.org/10.1142/S0217984924500659  

[48] M. A. Jehangir et al., "Study of the optical response and thermal heat 

conversion efficiency of quaternary Zintl (RECuZnAs2, where RE= Y, Lu) 

https://doi.org/10.1007/s12034-019-1978-y
https://doi.org/10.1016/j.jallcom.2020.157632
https://doi.org/10.1007/s10904-024-03336-5
https://doi.org/10.1002/cphc.202300605
https://doi.org/10.1016/j.cocom.2023.e00869
https://doi.org/10.1007/s12596-024-01775-4
https://doi.org/10.1016/j.mssp.2024.108354
https://doi.org/10.1016/j.jpcs.2024.112547
https://doi.org/10.1142/S0217984924500659


 

 

compounds through first principles study," Computational Condensed Matter, 

vol. 41, 2024. DOI: https://doi.org/10.1016/j.cocom.2024.e00985  

[49] S. C. T. Rueshwin and R. Eithiraj, "Structural, electronic, vibrational, optical 

and thermoelectric properties of 1T-Na2O monolayer via MD and DFT 

study," Physica Scripta, vol. 100, no. 1, 2024. DOI: 

https://doi.org/10.1088/1402-4896/ad97ef  

[50] H. Karim, H. Labrim, M. Lakhal, B. Hartiti, and A. Lfakir, "Structural, 

optoelectronic, and magnetic behaviors of Li2BeTM (TM= V, Cr, Mn, Fe) 

Se4 compounds using DFT investigations," Physica Scripta, vol. 99, no. 7, 

2024. DOI: https://doi.org/10.1088/1402-4896/ad4ca6  

[51] S. Rueshwin and R. Eithiraj, "Theoretical prediction of 2D Rb2O monolayer: 

A DFT study," in AIP Conference Proceedings, 2025, vol. 3198, no. 1: AIP 

Publishing. 

[52] M. Miri, Y. Ziat, H. Belkhanchi, and Y. A. El Kadi, "Structural, elastic, and 

opto-electronic conduct of half Heusler Li (Ca, Mg, Zn) N alloys: Ab initio 

computation," Solid State Communications, vol. 396, 2025. DOI: 

https://doi.org/10.1016/j.ssc.2024.115765  

 

https://doi.org/10.1016/j.cocom.2024.e00985
https://doi.org/10.1088/1402-4896/ad97ef
https://doi.org/10.1088/1402-4896/ad4ca6
https://doi.org/10.1016/j.ssc.2024.115765

