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INTRODUCTION  
Aquaculture in Indonesia is an important economic sector that continues to grow 

rapidly, in line with increasing domestic and international market demand (Mukti et al., 
2020; Samara et al., 2024; Amin et al., 2025). According to data from the Ministry of 
Maritime Affairs and Fisheries (KKP), in 2022, aquaculture production was anticipated to 
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The use of zinc oxide nanoparticles (ZnO-NPs) across various industries has 
raised concerns about their potential toxic effects on aquatic organisms, 
including hybrid grouper. The study aimed to evaluate the toxicological effects 
of ZnO-NPs exposure on hybrid grouper (±20g) through the analysis of 
mortality rate, blood performance, organ histopathology, and changes in 
immune response. The methods involved exposure of ZnO-NPs in four 
treatment groups (i.e., 0, 50, 100, and 200 ppm) for 96 hours, followed by 
analyzing the hematology, histopathology, and TNF-α, IL-1β antibody using 
flow cytometry. The obtained data were analyzed using ANOVA. The results 
indicated that ZnO-NPs significantly increased fish mortality up to 50% at 
200ppm concentration. Significant changes were recorded in hematology, 
including a 62.96% reduction in hematocrit and a 20.28% increase in leukocyte 
count. Histopathological analysis showed severe intestinal tissue damage levels 
reaching 40.43%. Enhanced immune activity expressing TNF-α and IL-1β 
antibodies, which increased by 15.08% and 6.81%. The highest accumulation of 
ZnO-NPs was found in the gill organs, with a concentration of 2.94 ppm. This 
study highlights the toxic risk of ZnO-NPs to hybrid grouper, emphasizing the 
need for strict monitoring and the development of safety standards to support 
safer and more sustainable aquaculture practices. 
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reach more than 16 million tons, with significant contributions coming from various 
marine and freshwater fish commodities. One species that has high economic value in 
marine aquaculture is the hybrid grouper (Epinephelus fuscoguttatus x Epinephelus 
lanceolatus), a cross between the tiger grouper and the kertang grouper (Angwarmas et 
al., 2020; Khasanah et al., 2020; Mahasri et al., 2023; Yanuhar et al., 2024). Hybrid 
grouper has the advantage of fast growth, resistance to changes in environmental 
conditions, and has a taste that is popular in the export market, especially in Asian 
countries (Mahasri et al., 2020; Nisa et al., 2021). The value of grouper production in 
Indonesia in 2021 reached around 38,000 tons, with an estimated economic value of more 
than 79.779.050 USD, showing great potential to support the national economy through 
the aquaculture sector (Zhou et al., 2023).  

Along with the development of technology, nanomaterials have begun to be 
utilized in various fields, including fisheries. The use of nanotechnology in the fisheries 
industry, especially in the form of nanoparticles, has shown great potential in increasing 
cultivation efficiency. Some nanomaterials that have been applied in fisheries include 
silver nanoparticles (Ag-NPs) (Clark et al., 2019), copper oxide nanoparticles (CuO-
NPs) (Aziz & Abdullah, 2023), titanium dioxide nanoparticles (TiO2-NPs) (Canli et al., 
2018), and zinc oxide nanoparticles (ZnO-NPs). Ag-NPs are often used by farmers 
because they can prevent infections in fish and shrimp (Vali et al., 2020). In addition, 
CuO-NPs are also applied in the fisheries sector to prevent water contamination and help 
maintain the cleanliness of fish farming equipment (Canli et al., 2018; Aziz & 
Abdullah, 2023). Another commonly applied nanomaterial is TiO₂-NPs which have 
multifunctional properties such as antimicrobial activity, photocatalytic ability (Souza et 
al., 2019), and potential as a nutritional supplement (Grasso et al., 2020). In addition, 
nanotechnology products that are increasingly being used, such as ZnO-NPs. ZnO-NPs, 
are widely utilized because they are not only applied to control pathogenic bacteria in 
ponds but also as additives in fish feed, which can increase the growth and immunity of 
farmed animals (Borysiewicz, 2019). As a microessential element, zinc (Zn) helps 
strengthen the immune system of fish by increasing the production of white blood cells 
and antioxidant enzymes that protect cells from oxidative stress (Senapati et al., 2015; 
Tang et al., 2024). ZnO has environmentally friendly properties, so it is widely applied in 
pharmaceutical use (Mirzaei & Darroudi, 2017).  

The estimated production of ZnO-NPs in the world is 0.1 to 1.2 million tons 
(Janani et al., 2021). The widespread utilization of ZnO-NPs possibly enters the aquatic 
ecosystem through wastewater streams with an estimated concentration of 0.001–
0.058µg/ l in surface waters (Mandal et al., 2024). The study conducted by Geppert et 
al. (2021) demonstrated that ZnO-NPs have low toxicity, with an EC50 value (the 
concentration at which 50% of cells exhibit toxic effects) exceeding 100mg/ L. This is 
attributed to the fact that ZnO-NPs almost completely dissolve into zinc ions (Zn2+), 
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which likely contributes to their low particulate toxicity. Mahjoubian et al. (2023b) also 
reported that the LC50 value for zinc oxide nanoparticles (ZnO-NPs) following acute 96-
hour exposure exceeds 100mg/ L, indicating relatively low acute toxicity to the zebrafish 
when compared to silver nanoparticles (Ag-NPs), exhibiting an LC50 value of 0.224mg/ 
L. This disparity underscores that ZnO-NPs possess a significantly higher lethal 
concentration threshold than many other nanoparticle types, including Ag-NPs. The 
reduced toxicity of ZnO-NPs may be attributed to factors such as their propensity to 
aggregate in aqueous environments, particle size characteristics, and their reduced 
reactivity due to the formation of less reactive ionic compounds. 

ZnO in the form of nanoparticles also raises concerns regarding the toxicological 
impact on fish. Exposure to ZnO-NPs in high concentrations can interfere with the 
physiological functions of fish, including the respiratory, digestive, and immunological 
systems. Several studies have shown that exposure to ZnO-NPs in fish can cause 
significant changes in hematological parameters, such as decreased red blood cell counts 
and increased inflammatory responses, which can negatively impact fish health (Dai et 
al., 2020). Exposure to ZnO-NPs in fish can occur through various pathways, including 
digestion, gills, and skin (Najahi-Missaoui et al., 2020). After entering the fish's body, 
ZnO-NPs can bioaccumulate and cause toxic effects on vital organs such as the liver, 
kidneys, and immune system. Chronic exposure to ZnO-NPs caused significant changes 
in the respiratory function of fish  (Kaya et al., 2015). Meanwhile, a study by Shahzad et 
al. (2019) reported that inadvertent consumption of ZnO-NPs affected the gut microbiota 
and glucose balance in farmed fish. Although the toxicological effects of ZnO-NPs on 
organ tissues have been identified, understanding the detailed mechanisms of how these 
nanoparticles affect the specific functions of other organs, such as the liver and kidney, 
and how long-term impacts on fish growth and immunity has not yet been fully explored. 
Therefore, there is an urgent need to further explore the toxic effects of ZnO-NPs on fish, 
including their effects on fish physiology and immunology. The aim of this study was to 
evaluate the toxicological effects of ZnO-NPs on the hybrid grouper (Epinephelus 
fuscoguttatus x Epinephelus lanceolatus). Toxicology effect will be identified through 
analysis of mortality rate, blood performance, hystopathology and changes in immune 
response using flowcytometry. 

 
MATERIALS AND METHODS  
 

Ethical approval  
The Research Ethics Commission, University of Brawijaya studied the research 

design carefully and provided ethical approval (184-KEP-UB-2024). 
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Material 
ZnO-NPs used in this study were purchased from Hongwu Materials, China with 

an average particle size of 20- 30nm. This study used the hybrid grouper (Epinephelus 
fuscoguttatus x Epinephelus lanceolatus) with an average weight of 20g and a body 
length of about 10cm. The fish were obtained from a local hatchery in the coastal area of 
Bali, Indonesia that has been standardized. 

 
Acclimatization 

Prior to treatment, the fish were acclimatized in a clean, well-aerated seawater 
tank for one week with commercial pellet feeding twice a day at a temperature of 28 ± 
1°C and a salinity of 30ppt to ensure the health condition of the fish. Feeding was 
stopped 24 hours before the test began (Rasheed et al., 2023). 

 

ZnO-NPs exposure procedure 

The exposure procedure refers to the research procedure conducted by Khan et al. 
(2022). ZnO weighing 0.5 grams, 1 gram and 2 grams were mixed in 500ml of seawater 
and were then homogenized with an ultrasonic homogenizer (AH-100D, Berkley 
Scientific, China) for 30 minutes. The solution was then mixed with 9.5 L of seawater to 
produce ZnO-NPs with concentrations of 50, 100, and 200ppm (Khan et al., 2022). Fish 
were then exposed to this suspension for 4 days (96 hours) . 

Fish were divided into four treatment groups, each consisting of 6 fish. The 
control group was kept in seawater without ZnO-NPs, while the treatment group was 
exposed to ZnO-NPs suspensions at predetermined concentrations. Every 48 hours, fish 
samples from each group were taken for further analysis. Prior to blood sampling and 
dissection, fish were anesthetized with essential oils. Body weight, total length, and 
standard were recorded for each individual (Ebi et al., 2018). During the exposure period, 
physiological parameters such as fish mortality, swimming activity, and feeding response 
were recorded daily. Fish mortality was recorded every 48 hours up to 96 hours to 
determine the LC50 (Sayadi et al., 2022). 

Blood sampling and hematology 

Blood samples were taken from the caudal vein for analysis of fish hematological 
performance, including measurement of red blood cell (erythrocyte) count, hemoglobin 
(Hb) and hematocrit levels, white blood cell (leukocyte) count, leukocyte differential 
(lymphocyte and neutrophil), platelets, macronuclei, micronuclei, and erythrocyte index 
(mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean 
corpuscular hemoglobin concentration (MCHC), and then stained with gemsa solution 
(Khan et al., 2022; Rasheed et al., 2023). 



Toxicological Impact of Zinc Oxide Nanoparticles on Hybrid Grouper  
(Epinephelus fuscoguttatus x Epinephelus lanceolatus) 

 

2715 

Histopathology 

The intestine organs of hybrid grouper were taken for histopathological analysis. 
Refering to Li et al. (2024), organ tissues were fixed in 10% formalin solution, followed 
by the process of making histological preparations, then stained with hematoxylin-eosin 
(HandE) for microscopic observation. 

Flowcytometry analysis 

Cells were isolated from organs exposed such as liver and kidneys to ZnO-NPs, 
then processed by trypsinization and suspended in PBS. These cells were analyzed using 
a Flow Cytometer (BD Biosciences, FACS Calibur model from Germany) with TNF-α 
and IL-1β antibody measurements (BioLegend, Inc. San Diego, USA) to determine cell 
size and complexity. A total of 10,000 events per sample were analyzed to measure the 
percentage of cells incorporating ZnO-NPs. 

Data analysis  

Data were analyzed using Origin version 19B, with mortality expressed as a 
percentage, while hematology results and other parameters were compared between 
treatment groups by examining trends in clinically and biologically significant changes. 
Comparisons among the four experimental groups were made using one-way ANOVA, 
and results were presented as means and standard deviations with a significance level of 
P < 0.05. 

 
RESULTS AND DISCUSSION 
 

1. Fish behavior and mortality 
 

During the 4-day exposure period (96 hours), hybrid grouper (Epinephelus 
fuscoguttatus x Epinephelus lanceolatus) exhibited varying responses to different 
concentrations of zinc oxide nanoparticles (ZnO-NPs ). Fish mortality increased with 
higher concentrations of ZnO-NPs. In the control group (0 ppm ZnO-NPs), no mortality 
was observed. However, mortality rates increased significantly at concentrations of 
50ppm (16.67%), 100ppm (33.33%), and 200ppm (50%). The LC50 value was 
determined to be 200ppm over 96 hours, marking this concentration as a critical threshold 
for acute toxicity. The detailed mortality data are presented in Table (1). In addition, 
behavioral changes such as decreased swimming activity and poor appetite were also 
observed in the groups exposed to higher ZnO-NPs concentrations. Fish in the 200ppm 
concentration group also showed symptoms of stress, such as paler body color and 
sluggish movement. 
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Table 1. Mortality percentage of death of hybrid grouper 

Concentration Number of test 
Animals (heads) 

Death Mortality 
(%) 48 hours 96 hours 

Control 6 0 0 0 
50 ppm 6 0 1 16.67 
100 ppm 6 1 1 33.33 
200 ppm 6 1 2 50.00 

The LC50 results can be used to compare the toxic effects of ZnO-NPs with other 
hazardous substances and to develop mitigation strategies to protect fish health and 
aquatic ecosystems. A low LC50 value indicates that the substance is highly toxic, as it 
can cause the death of half the exposed population at a low concentration. Conversely, a 
high LC50 value suggests that the substance is less toxic (Al-Kshab & Yehya, 2021; 
Bita et al., 2021). Determining the LC50 concentration is essential to assess the safety 
and tolerance limits of various toxic substances. This difference in toxicity may be due to 
variations in the physicochemical properties of nanoscale ZnO that affect its toxicity 
mechanism. The toxicity level of ZnO-NPs exposure is due to the presence of dissolved 
free zinc ions (Zn²⁺). ZnO-NPs are more toxic than their ionic form due to their nanoscale 
properties and higher reactivity (Ahmadi et al., 2020). ZnO-NPs show increased toxicity 
at low pH due to the high solubility of Zn ions in the exposure medium (Aziz et al., 2020; 
Al-Zahaby et al., 2023). The increased mortality in the hybrid grouper exposed to ZnO-
NPs indicates that these nanoparticles have significant toxicity potential in this species. 
The higher mortality rate at higher concentrations may be due to increased nanoparticle 
exposure causing more severe cellular and organ damage. Behavioral changes such as 
decreased swimming activity and poor appetite are indicators of environmental stress 
induced by ZnO-NPs in water. 

2. Hematology analysis 

The hematological characteristics of the hybrid grouper were analyzed after 
exposure to ZnO-NPs at various concentrations (0, 50, 100, and 200ppm) for 96 hours 
(Table 2 & Fig. 1.).  

Table 2. Hematology parameters of hybrid grouper after ZnO-NPs treatments for 48 and 
96 hours 

Hematology 
parameter 

Concentration of ZnO-NPs 

0 ppm 50 ppm 100 ppm 200 ppm 
48 h 96 h 48 h 96 h 48 h 96 h 

Erythrocyte 
(cells/mm3) 

2.93 ± 
0.15 × 

104 

2.75 ± 
0.09 × 

104 

2.1 ± 
0.20 × 

104 

1.58 ± 
0.08 × 

104 

1.44 ± 
0.04 × 

104 

1.15 ± 
0.13 × 

104 

0.945 ± 
0.01 × 

104 
Hemoglobin 

(g/dL) 
6.3 ± 
1.39 

4.8 ± 
0.30 

4.4 ± 
0.20 

4.5 ± 
0.3 

3.7 ± 
0.17 

3.8 ± 
0.20 

3.4 ± 
0.40 
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Hematocrit 
(%) 

27 ± 
1.73 

21± 
2.00 

16 ± 
2.00 

18 ± 
2.65 

15 ± 
2.00 

16 ± 
1.73 10 ± 2.65 

Leukocyte 
(cells/mm3) 

14.2 ± 
3.0 × 
105 

15.5 ± 
2.65 × 

105 

15.8 ± 
2.0 × 
105 

16 ± 
4.36 × 

105 

16.4 ± 
2.65 × 

105 

16.7 ± 
1.73 × 

105 

17.3 ± 
2.0 × 105 

Neutrophil 
(%) 

14.8 ± 
0.20 

19.1 ± 
0.36 

20.8 ± 
0.44 

21.1 ± 
0.10 

23.8 ± 
0.20 

22.3 ± 
0.26 

24.4 ± 
0.26 

Lymphocyte 
(%) 

71 ± 
0.40 

59.5 ± 
0.20 

54.9 ± 
0.20 

56.4 ± 
0.26 

50 ± 
0.20 

50.5 ± 
0.20 46 ± 0.17 

Platelets (%) 22 ± 
2.00 

19 ± 
1.73 

16 ± 
2.00 

17 ± 
2.65 

15 ± 
2.65 

14 ± 
1.00 12 ± 2.00 

Macronuclei 
(cells/1000) 

9.2 ± 
0.17 

10 ± 
0.44 

12.1 ± 
0.26 

12.4 ± 
0.26 

13.5 ± 
0.20 

14.1 ± 
0.36 

14.8 ± 
0.20 

Micronuclei 
(cells/1000) 

8 ± 
0.44 

9.5 ± 
0.26 

11.6 ± 
0.20 

11 ± 
0.62 

12.5 ± 
0.10 

13 ± 
0.26 

13.9 ± 
0.20 

MCV (µm3) 76 ± 
5.13 

92 ± 
3.79 

98 ± 
9.17 

114 ± 
18.01 

103 ± 
11.02 

141 ± 
27.15 

105 ± 
26.86 

MCH (pg) 17 ± 
1.53 

21 ± 
3.61 

23 ± 
3.51 

28 ± 
3.21 

25 ± 
0.58 

33 ± 
5.77 35 ± 4.51 

MCHC (%) 23.3 ± 
4.5 

25 ± 
3.0 

27.7 ± 
2.9 

25.5 ± 
4.7 

24.9 ± 
2.3 

23.9 ± 
1.7 

35.7 ± 
10.9 
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Fig. 1. Hematology profile of hybrid grouper. (A) Erythrocytes; (B) Platelets; (C) 
Lymphocytes; (D) Basophils; (E) Monocytes; (F) Neutrophils; (G) Eosinophils; (H) 

Macronuclei; (I) Micronuclei. 

2.1 Erythrocyte 

The results showed that the number of red blood cells (erythrocytes) decreased 
significantly in fish exposed to ZnO-NPs (Table 2). Based on the calculation results, the 
average erythrocyte count in the 48-hour test ranged between 1.15x10⁴ - 2.93x10⁴ 
cells/mm³, while in the 96-hour test, the average erythrocyte count ranged between 
0.945x104 - 2.45x10⁴ cells/mm³. The highest value was found in the concentration of 
0ppm at 2.93x10⁴ cells/mm³, and the lowest value was observed at a concentration of 
200ppm, at 0.945x104 cells/mm³. This indicates that the higher the ZnO-NPs 
concentration, the lower the erythrocyte count in the hybrid grouper. The range of 
erythrocytes generally ranges from 1.05x10⁴ - 3.00x10⁴ cells/mm3 (Yanuhar et al., 
2019). This result showed that erythrocyte value was decreased by 67.73% from the 
0ppm (2.93×10⁴ cells/mm³) to the 200ppm concentration at 96 hours (0.945×10⁴ 
cells/mm³). 
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The decrease in the number of red blood cells and hemoglobin levels observed in 
this study indicated anemia in hybrid grouper fish exposed to ZnO-NPs. This anemia is 
likely caused by the cytotoxic effect of ZnO-NPs which damages red blood cells, 
disrupting erythrocyte production in the bone marrow (Suganthi et al., 2015), or 
accelerate hemolysis (Ng et al., 2017). ZnO-NPs may also cause oxidative stress in red 
blood cells, resulting in cell membrane damage and a decrease in the number of 
circulating cells. 

2.2 Hemoglobin (Hb) and hematocrit levels 

Result of Hemoglobin (Hb) and hematocrit levels also showed a significant 
decrease in fish exposed to ZnO-NPs (Table 2). The average hematocrit level in the 48-
hour test ranged from 16% to 27%, while in the 96-hour test, the average hematocrit level 
ranged from 10% to 24%. The highest hematocrit value was observed at a concentration 
of 0ppm, at 27%, and the lowest value was observed at a concentration of 200ppm, at 
10%. This indicates that as the ZnO-NPs concentration increases, the hematocrit level in 
hybrid grouper decreases. The normal hematocrit range for teleost fish is between 20 and 
30%, and in some marine fish species, it is approximately 42% (Yanuhar et al., 2019). In 
this research, the result of hematocrit value was decreased by 62.96% from the control 
(27%) to the 200ppm concentration at 96 hours (10%).  

Result of Hemoglobin values showed a similar pattern of decrease, with a sharper 
decrease at higher ZnO-NPs concentrations (Table 2). The average hemoglobin levels in 
the 48-hour test ranged between 3.8– 6.3g/ dL, while in the 96-hour test, the average 
hemoglobin levels ranged between 3.4– 5.6g/ dL. The highest hemoglobin level was 
observed in the control group at 6.3 g/dL, and the lowest was found at a concentration of 
200ppm at 3.4 g/dL. Normal hemoglobin levels in the fish range of 5.05 to 8.33 grams / 
100ml of blood or gram /%. If the Hb level is low, it will have an impact on the low 
amount of oxygen in the blood (Yanuhar et al., 2019). This research showed that the 
result of hemoglobin value was decreased by 46.03% from the 0ppm (6.3 g/dL) to the 
200ppm concentration at 96 hours (3.4g/ dL). 

Based on the research conducted, it is known that the higher the concentration of 
ZnO-NPs and the longer the test time, the lower the amount of hemoglobin and 
hematocrit produced. Exposure to ZnO nanoparticles can cause a reduction in hematocrit 
levels, indicating blood dilution or the loss of erythrocytes. This may suggest that the fish 
experience oxygen deficiency caused by stress induced by ZnO exposure (Burgos-
Aceves et al., 2019). The decrease in hemoglobin levels occurs due to lysis caused by the 
rupture of blood cells due to toxins in the blood or the so-called hemolysin (Preedia 
Babu et al., 2017; Singh et al., 2020). Low hemoglobin levels are an indication of 
infection in fish caused by ZnO-NPs. A decrease also occurs in hematocrit levels which 
can indicate that fish are experiencing oxygen deprivation due to stress related to the 
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administration of ZnO-NPs. 

2.3 Leukocyte 

The number of white blood cells (leukocytes) increased significantly with 
increasing concentration of ZnO-NPs (Table 2). The average leukocyte count in the 48-
hour test ranged between 1.33x105 – 1.67x105 cells/mm³, while the 96-hour test showed 
an average leukocyte count ranging from 1.42x105 – 1.71x105 cells/mm³. The highest 
value of leukocyte count was observed at the 200ppm concentration, with 1.71x105 
cells/mm³, and the lowest value was in the 0ppm concentration, with 1.33x105 cells/mm³. 
The study revealed that the higher the ZnO-NPs concentration and the longer the test 
duration, the higher the leukocyte count produced. The normal leukocyte range for 
healthy fish is between 0.5x105 - 1.50x105 cells/mm³ (Bardhan et al., 2024). In the 
current research, the result of leukocyte value was increased by 20.28%, from the control 
(1.42×10⁵ cells/mm³) to the 200ppm concentration at 96 hours (1.71×10⁵ cells/mm³).  

The high number of leukocytes in fish is caused by an infection, prompting the 
fish to enhance its immune response (Huda et al., 2024). Leukocytes are the body's first 
line of defense when an infection occurs. A significant increase in the number of 
leukocytes in the group exposed to ZnO-NPs indicates an immune response induced by 
these nanoparticles. This leukocytosis can be considered as an attempt by the fish body to 
fight stress and damage caused by ZnO-NPs  (Sherif et al., 2023; Yaqub et al., 2023). 
When foreign objects enter, the fish body will signal and produce large amounts of 
leukocytes to provide defense against disease and infection. 

 

2.4 Leukocyte differential 

The differential performance of leukocytes, including neutrophils and 
lymphocytes, showed varying proportion changes among the treatment groups (Table 2). 
The average neutrophil values in the 48-hour test ranged between 14.8% and 22.3%. 
Meanwhile, the average values in the 96-hour test ranged between 11.4% and 24.4%. The 
highest neutrophil measurement was observed at the 200ppm concentration, with 24.4%, 
and the lowest was in the 0ppm concentration, at 11.4%. The increase in neutrophil count 
may result from the rising concentration of ZnO-NPs, which triggers a stronger immune 
response as indicated by the neutrophil count. The appropriate neutrophil range for fish 
survival is 10%-18.1% (Palmi et al., 2019). This research showed that the result of 
neutrophils value was increased by 114.04%, from the control (11.4%) to the 200ppm 
concentration (24.4%).  

Based on lymphocyte measurements, the average lymphocyte levels in the 48-
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hour test ranged from 50.5% to 71.2%, while in the 96-hour test, they ranged from 46.6 to 
73.3%. The highest lymphocyte level was observed at a concentration of 0 ppm, with 
73.3%, and the lowest was at a concentration of 200ppm, with 46.6%. Generally, the 
appropriate lymphocyte level for fish survival is between 60 and 80% (Lulijwa et al., 
2019). The lymphocyte levels in the control group were within the normal range for fish 
survival, at 71.2-73.3%. However, at concentrations of 50, 100, and 200ppm, the 
lymphocyte levels were lower than the normal range for the hybrid grouper survival, at 
46.6%-59.5%. This research showed that the result of lymphocytes value was decreased 
by 36.42%, from the control (73.3%) to the 200ppm concentration (46.6%). 

Huda et al. (2024) explained that the range percentage of neutrophil cells in fish 
is 28%, and added that the range percentage of lymphocyte cells in fish is 74.11%. ZnO-
NPs is toxic to cells that can cause decreased lymphocyte production in the immune 
system. Lower lymphocyte levels are an indication of toxicity or harmful effects on the 
fish's body. In addition to lymphocytes, eosinophil levels also decrease because the toxic 
effects of ZnO-NPs interfere with the normal function of eosinophils and show a negative 
impact on the immune system. Meanwhile, monocytes have increasing levels due to the 
body's immune response to fight disease infections in accordance with their role as the 
main phagocyte cells (Chiu & Bharat, 2016; Guo & Dixon, 2021). Monocytes have a 
role in destroying various pathogens and diseases (Mosquera-Murillo et al., 2023). 
Basophils also have increasing levels as a response of the body to exposure to foreign 
substances. In addition, the increase in neutrophil levels is caused by ZnO-NPs which 
trigger inflammation. 

 

 

2.5 Platelets 

Platelet counts also showed significant changes in fish exposed to ZnO-NPs 
(Table 2). The average platelet levels in the 48-hour test ranged from 14% to 22%, while 
in the 96-hour test, they ranged from 12 to 25%. The highest platelet level was observed 
at 0ppm, with 25%, and the lowest was at a concentration of 200ppm, with 12%. The 
graph indicates that at 0ppm, the levels were still within the normal range, while at 
concentrations from 50ppm to 200ppm, the levels were below the normal range. The 
percentage of platelet count in fish normally ranges between 20- 30% (Witeska et al.,  
2023a). This research showed that the result of platelet value was decreased by 52.00%, 
from the 0ppm (25%) to the 200ppm concentration (12%). 

This increase in platelet count may be a compensatory response to endothelial 
damage or oxidative stress induced by nanoparticles (Noureen et al., 2022). Platelets are 
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essential components in the wound-healing process, primarily facilitating clot formation 
and tissue repair. Elevated platelet percentages in fish are indicative of physiological 
responses to injury or hemorrhage (Pridayem & Windarti, 2022). Overall, it is likely 
that ZnO-NPs exposure causes platelet reduction in fish, especially if the exposure is high 
or prolonged. 

2.6 Macronuclei and micronuclei 

The calculation of the number of macronuclei and micronuclei also showed 
significant changes in fish exposed to ZnO-NPs (Table 2). The average macronuclei 
levels in the 48-hour test ranged from 14.1 to 9.2 cells/1000, while in the 96-hour test, 
they ranged from 14.8 to 9.6 cells/1000. The highest macronuclei level was observed at a 
concentration of 200ppm, with 14.8 cells/1000, and the lowest was at 0ppm, with 9.2 
cells/1000. These results indicate that the higher the ZnO-NPs concentration, the greater 
the number of macronuclei in the hybrid grouper fish (Wang et al., 2022). 

The average micronuclei levels in the 48-hour test ranged from 8 to 13 cells/1000, 
while in the 96-hour test, they ranged from 9.7 to 13.9 cells/1000. The highest 
micronuclei level was observed at a concentration of 200 ppm, with 13.9 cells/1000, and 
the lowest was at 0 ppm, with 8 cells/1000. The research findings reveal that the longer 
the exposure duration, the higher the number of micronuclei observed. Generally, the 
frequency of micronuclei in fish red blood cells ranges between 0.1% and 1% of the total 
cells examined, equivalent to approximately 1 to 10 micronuclei per 1000 cells. 

The increase in the number of these cells indicates genetic damage and increased 
genotoxic activity due to exposure to these nanoparticles. The increased levels of 
macronuclei are caused by free radicals in the fish's body which results in DNA damage 
and spindle thread dysfunction (Xu et al., 2020). Additionally, free radicals can trigger 
the formation of macronuclei, which are cellular abnormalities induced by the effects of 
free radicals. Meanwhile, the higher levels of micronuclei can indicate that the fish is 
experiencing physiological dysfunction. Based on the results obtained, exposure to ZnO-
NPs exceeding normal limits and increasing in concentration due to high pollution in a 
water body leads to a higher micronuclei count. Conversely, the lower the number of 
micronuclei in the blood, the lower the level of pollution in the water body. 

2.7 Erythrocyte index 

Erythrocyte index including MCV, MCH, and MCHC showed varying proportion 
changes among treatment groups (Table 2). The average MCV (Mean corpuscular 
volume) in the 48-hour test ranged from 76 to 139μm³, while in the 96-hour test, it ranged 
from 76 to 105μm³. The highest MCV value was observed at a concentration of 200ppm, 
with 139μm³, and the lowest at 50ppm with 76 μm³. Based on the graph, it can be seen 
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that MCV increases with higher treatment concentrations. Generally, MCV in aquatic fish 
ranges between 150– 350μm³ (Acar et al., 2019). This research showed that the result of 
MCV value was decreased by 24.46%, from the control (139μm³ at 48 hours) to the 
200ppm concentration at 96 hours (105μm³). 

The average MCH (Mean corpuscular hemoglobin) in the 48-hour test ranged 
from 17 to 33pg, while in the 96-hour test, it ranged from 20 to 35pg. The highest MCH 
value was observed at a concentration of 200ppm, with 35pg, and the lowest at 50ppm, 
with 17pg. Based on the graph, it is evident that MCH increases with higher treatment 
concentrations. Generally, the average MCH range in fish is 30– 100pg (Arnaudov & 
Arnaudova, 2022). This research showed that the result of MCH value was increased by 
22.73%, from the control (20pg) to the 200ppm concentration at 96 hours (35pg). 

The average MCHC (Mean corpuscular hemoglobin concentration) in the 48-hour 
test ranged from 23.3 to 25%, while in the 96-hour test, it ranged from 23.3 to 34%. The 
highest MCHC value was observed at a concentration of 200ppm, with 34%, and the 
lowest MCHC value was at 50ppm, with 22.8%. MCHC values indicate that the 
hemoglobin concentration is within the volume of red blood cells and serves as a health 
indicator. Higher MCHC values indicate higher hemoglobin content in the blood (Docan 
et al., 2018). MCHC values are categorized into three levels: low (<33%), normal (33%–
36%), and high (>36%) (Witeska et al., 2023b; Tang et al., 2024). This research showed 
that the result of MCH value was increased by 45.92%, from the lowest at 50ppm 
(22.8%) to the highest at 200ppm (34.0%). 

Exposure to ZnO-NPs in fish can have varying effects depending on the 
concentration and duration of exposure. ZnO-NPs can act as an effective photocatalyst in 
degrading harmful substances but at high concentrations can be toxic to fish causing 
damage to their biological systems, including the circulatory system. These findings align 
with previous studies, suggesting that ZnO-NPs can disrupt cellular homeostasis, leading 
to compromised health and immune functionality in fish (Bojarski et al., 2021; Witeska 
et al., 2022). The MCV value will be high if the hematocrit value is high and the number 
of erythrocytes is less. The high MCV value indicates that the size of the erythrocyte cells 
is larger. The MCH value is influenced by the hemoglobin level and the number of 
erythrocytes in the blood circulation. Higher doses of ZnO-NPs and longer exposure 
times can increase MCH values. A drastic increase in MCHC values with high doses can 
cause damage or changes to the hematology system. MCHC values can indicate the 
concentration of hemoglobin in the volume of erythrocytes which can be used as an 
indicator of health. 

3. Histopatology analysis of fish 

3.1 Necrotic damage 
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The observations indicate that necrotic damage occurred in the hybrid grouper 
fish at every concentration level. Necrosis reflects a condition of decreased tissue 
activity, characterized by the sequential loss of parts of cells within a tissue, ultimately 
leading to cell death in a short period (Wallig & Janovitz, 2022). The necrotic damage 
observed in the intestine tissue of hybrid grouper fish can be seen in Fig. (2). 

 

 

The results showed that necrotic damage to the instine tissue increased in fish 
exposed to ZnO-NPs (Fig. 3). Observations conducted on the 48-hour exposure revealed 
that the treatments with 0, 50, and 100ppm concentrations exhibited low or mild levels of 
damage, categorized as score 1, with percentages ranging from 0 to 13.03%. In contrast, 
the 200ppm concentration displayed moderate damage, categorized as score 2, with a 
damage level of 15.67%. In the 96-hour exposure, 0 and 50ppm concentrations 
maintained low or mild damage levels, also categorized as score 1, with percentages 
ranging from 0 to 9.03%. However, the 100ppm concentration demonstrated moderate 
damage, categorized as score 2, with a damage level of 16.35%, while the 200ppm 
concentration showed severe damage, categorized as score 3, with a damage level of 
27.92%.  

Fig. 2. Representation of necrotic lesions in the intestinal tissue of hybrid grouper 
observed under 100x magnification 
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Fig. 3. Percentage necrosis damage in intestine organ of hybrid grouper after ZnO-NPs 
treatments for 48 and 96 hours 

Necrosis damage due to toxic exposure, such as heavy metal ZnO-NPs necrosis 
damage indicates that toxic exposure from heavy metal ZnO-NPs will cause damage to 
tissue structure in fish. As a result of necrosis damage or cell death due to the relationship 
with necrosis (Suganthi et al., 2015), if necrosis damage occurs continuously it will 
cause cell death, because cells lose the ability to repair existing damage. The observed 
damage to the intestine of hybrid groupers may be attributed to various factors, including 
the presence of toxic substances such as heavy metals entering the fish’s body. These 
substances can inhibit or disrupt tissue functionality, which is subsequently identified 
through histological changes, such as necrosis in cells (Duan et al., 2023). 

3.2 Edema damage 

The observations indicated the occurrence of edema damage in hybrid grouper at 
all concentrations. Edema is a condition characterized by the abnormal accumulation of 
fluid within body cavities or interstitial spaces, resulting in swelling (Eiras, 2008). The 
edema damage observed in the intestine tissue of hybrid grouper fish can be seen in Fig. 
(4). 

 
Fig. 4. Representation of edema lesions in the intestinal tissue of hybrid grouper observed 

under 100x magnification 
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The percentage of edema damage also showed a significant increase in fish 
exposed to ZnO-NPs (Fig. 5). At 48 hours, the observations showed no damage (damage 
score 0) in the 0ppm concentration group, as no tissue damage was identified. In fish 
exposed to a concentration of 50ppm, the damage level was categorized as moderate, 
with a damage score of 2 and an average of 15.30%. Similarly, at concentrations of 100 
and 200ppm, moderate damage was observed, with damage scores of 2 and averages of 
18.18 and 25.7%, respectively. At 96 hours, the 0ppm concentration group continued to 
show no tissue damage, maintaining a damage score of 0. For the 50ppm concentration, 
the damage progressed to a severe level, with a damage score of 3 and an average of 
34.00%. In the 100 and 200 ppm groups, severe damage was also observed, with damage 
scores of 3 and averages of 37.08 and 40.43%, respectively. The severity of the damage 
increased with both time and concentration. 

 

Fig. 5. Percentage edema damage in intestine organ of hybrid grouper after ZnO-NPs 
treatments for 48 and 96 hours 

The edema observed in the intestine of hybrid grouper is likely due to exposure to 
toxic substances or heavy metals, such as ZnO-NPs, at higher concentrations. These 
exposures can disrupt digestive system functions and physiological responses in the 
intestine (Chupani et al., 2018). Higher concentrations of heavy metals accelerate and 
worsen tissue damage. Therefore, the duration of exposure and the concentration of 
heavy metals are critical factors contributing to edema formation and tissue damage in the 
intestine of hybrid grouper. 

3.3 Hemorrhagic damage 

The observations indicated that hemorrhagic damage was found in hybrid grouper 
(Epinephelus fuscoguttatus x Epinephelus lanceolatus) across all treatments. Hemorrhage 
is classified as moderate liver damage, characterized by the rupture of blood vessels and 
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the presence of blood in abnormal locations (Fahmi et al., 2019). The hemorrhagic 
damage observed in the intestine tissue of hybrid grouper fish can be seen in Fig. (6). 

 

Fig. 6. Representation of hemorrhagic lesions in the intestinal tissue of hybrid grouper 
observed under 100x magnification 

The amount of hemorrhagic damage increased significantly with increasing ZnO-
NPs concentration (Fig. 7). The observations at 48 hours indicated that the control group 
showed no damage, with a score of 0, as no damage was detected. At a concentration of 
50 ppm, mild damage was observed, with a score of 1, showing an average of 0.6%. 
Similarly, at concentrations of 100 and 200 ppm, mild damage was observed with scores 
of 0, averaging 5.13 and 8.07%, respectively. At 96 hours, the control group again 
showed no damage, with a score of 0, as no abnormalities were found. At a concentration 
of 50ppm, mild damage persisted, with a score of 1, averaging 3.02%. At 100 and 200 
ppm, mild damage was observed, with scores of 0, averaging 12.05 and 12.26%, 
respectively. 

 
Fig. 7. Percentage hemorrhagic damage in intestine organ of hybrid grouper after ZnO-

NPs treatments for 48 and 96 hours 
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The occurrence of hemorrhage in the fish was observed in all treatment groups. 
Hemorrhage is a form of moderate tissue damage where blood vessels rupture, causing 
blood to accumulate in abnormal locations. This condition can disrupt the blood supply to 
epithelial cells, leading to damage of the villi. As a result, the absorption of nutrients is 
impaired, which may cause the fish to suffer from nutritional deficiencies. 

Histology is one of the most commonly used biomarkers to evaluate toxicity in 
aquatic organisms exposed to pollutants, especially for vital organs such as digestion 
(Shahzad et al., 2019). Histopathological damage in fish intestines showed that ZnO-NPs 
caused significant tissue damage, including hepatocyte necrosis and vacuolar 
degeneration, indicating serious metabolic disorders due to ZnO-NPs accumulation and 
increased oxidative stress. ZnO-NPs damaged cellular integrity and triggered 
inflammation, consistent with previous findings on oxidative stress induced by metal 
nanoparticles (Suganthi et al., 2015; Rajkumar et al., 2022). Epithelial cell 
degeneration and goblet cell atrophy impaired mucus secretion and intestinal protection, 
increased susceptibility to pathogens, and reduced nutrient absorption efficiency. Metal 
nanoparticles are known to produce oxidative stress, which damages cell membranes, 
DNA, and cellular components, leading to tissue damage and inflammation. 

4. Flow cytogram results  

4.1 TNF-α antibodies 

In flow cytometry testing, TNF-α and IL-1β of fluorescently labeled monoclonal 
antibodies used to detect and measure the expression of specific cytokines on the surface 
or inside cells. TNF-α is a pro-inflammatory cytokine that is important in immune 
responses and inflammation. TNF-α is produced by various types of cells, including 
immune cells such as macrophages, and is involved in regulating immune responses and 
inflammation. The relative levels of TNF-α are a parameter that can be used to determine 
the increase in activation of T lymphocytes which play a role in adaptive immunity 
(Railean & Buszewski, 2022). Analysis of the percentage of cells expressing TNF-α 
antibodies from various ZnO-NPs contents of 0, 50, 100, and 200ppm shows a 
comparison of the relative levels of TNF-α as shown in Fig. (8). 
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Prior to the exposure, the relative levels of TNF- α antibodies in the kidney organs 
were 1.32%. The results for 48-hour exposure showed that the relative levels of TNF-α 
antibodies in the kidney organs reached their highest at 3.04% at a ZnO-NPs 
concentration of 200ppm, while the lowest levels were observed in the control group at 
1.32%. After 96 hours of exposure, the kidney organs exhibited the highest relative levels 
of TNF-α antibodies at 6.32% at a ZnO-NPs concentration of 200ppm, with the lowest 
levels recorded at 3.29% at a ZnO-NPs concentration of 50ppm. This research showed 
that the result of TNF-α antibodies value in kidney was increased by 378.79%, from the 
control (1.32%) to 200ppm at 96 hours (6.32%). 

In the liver organs prior to the exposure, the relative levels of TNF- α antibodies 
in the liver organs were 6.42%. The highest relative levels of TNF-α antibodies were 
recorded at 15.08% at a ZnO-NPs concentration of 200ppm, and the lowest levels were 
found in the control group at 6.42%. After 96 hours of exposure, the highest levels were 
observed at 14.1% at a ZnO-NPs concentration of 200ppm, while the lowest levels were 
found at 9.31% at a ZnO-NPs concentration of 50ppm. This research showed that the 
result of TNF-α antibodies value in liver was increased by 134.11%, from the control 
(6.42%) to 200ppm at 96 hours (15.08%). 

While this activation demonstrates an initial protective mechanism, prolonged 
exposure at high concentrations likely exacerbates oxidative stress and inflammation, 
contributing to cellular damage. The findings demonstrate that exposure to ZnO-NPs 
enhances the activation of T lymphocytes, which differentiate into T cells. This process 
boosts the immune response by increasing the production of TNF-α antibodies, 
particularly at higher ZnO-NPs concentrations and longer exposure durations. This 
suggests a concentration- and time-dependent response of the immune system to ZnO-
NPs exposure. 

Fig. 8. Percentage of T cells expressing TNF-α after ZnO-NPs treatments for 48 and 96 
hours 
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4.2 IL-1β antibodies 

IL-1β is another proinflammatory cytokine that is also important in responding to 
infection and injury and regulating the inflammatory response. This cytokine is produced 
by various immune cells, such as macrophages, and is involved in significant 
inflammatory processes. The results of the analysis of the percentage of cells expressing 
IL-1β antibodies from various control treatments, 50ppm of ZnO-NPs, 100ppm ZnO-
NPs, and 200ppm ZnO-NPs to show the comparison, a diagram of the relative levels of 
IL-1β T cells was made as in Fig. (9). 

 

 

 

The results of the analysis of the percentage of T cells in the kidney and liver 
organs based on Fig. (9) obtained the relative levels of T cells expressing IL-1β 
antibodies. Prior to the exposure, the relative levels of IL-1β antibodies in the kidney 
organs were the lowest at 0.045% at a ZnO-NPs concentration of 0ppm. After 48 hours of 
exposure, the highest relative level of IL-1β antibodies was observed at 0.61% in the 
kidney organs at a ZnO-NPs concentration of 200ppm, while the lowest level after 
exposure was 0.06% at a ZnO-NPs concentration of 50ppm. Following 96 hours of 
exposure, the kidney organs exhibited the lowest relative levels of IL-1β antibodies at 
0.4% at a ZnO-NPs concentration of 50 ppm. The highest levels were recorded at 1.89% 
at a ZnO-NPs concentration of 200ppm. This research showed that the result of IL-1β 
antibodies value in kidney was increased by 410%, from the control (0.045%) to 200ppm 
at 96 hours (1.89%). 

In the liver organs, the relative levels of IL-1β antibodies before exposure were 
1.28% in the control group. After 48 hours of exposure, the highest relative level was 
found at 4.72% at a ZnO-NPs concentration of 200ppm, while the lowest level after 
exposure was 2.78% at a ZnO-NPs concentration of 50ppm. After 96 hours of exposure, 

Fig. 9. Percentage of T cells expressing IL-1β after ZnO-NPs treatments for 48 and 96 
hours 
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the lowest relative levels of IL-1β antibodies were observed at 3.14% at a ZnO-NPs 
concentration of 50ppm. The highest levels were found at 6.81% at a ZnO-NPs 
concentration of 200ppm. This research showed that the result of IL-1β antibodies value 
in liver was increased by 431.25%, from the control (1.28%) to 200ppm at 96 hours 
(6.81%). 

The increased expression of TNF-α and IL-1β suggests that ZnO-NPs trigger an 
inflammatory response in fish. These cytokines play an important role in modulating the 
immune response, and their increased production suggests the activation of immune cells 
in response to toxic exposure. This is consistent with previous studies showing that 
nanoparticle exposure can increase the secretion of pro-inflammatory cytokines, which 
can potentially lead to chronic inflammation if not addressed (Gholinejad et al., 2019; 
Sakr et al., 2021). The increased number of cells expressing TNF-α and IL-1β indicates 
that the fish immune system not only responds to ZnO-NPs exposure, but may also lead 
to long-term negative effects, such as autoimmune diseases or more severe immune 
system disorders. 

ZnO-NPs can stimulate antibody production at low doses due to their role in 
supporting the immune system (Abinaya et al., 2023). However, at high doses, ZnO-NPs 
trigger oxidative stress by generating excessive reactive oxygen species (ROS), which 
damage lipids, proteins, and DNA (Koner et al., 2021). ROS accumulation leads to 
mitochondrial dysfunction, membrane damage, and harm to vital tissues such as the liver, 
kidneys, and gills (Diab et al., 2022), which are critical for metabolism and respiration in 
Epinephelus fuscoguttatus x Epinephelus lanceolatus (Hybrid grouper). This damage 
disrupts bodily homeostasis, ultimately causing mortality, highlighting their 
immunostimulatory effects at low doses and high toxicity at elevated levels. 

5. Nanoparticle levels in organs 

The results of the analysis of heavy metals expressing ZnO-NPs from various 
control treatments, 50ppm ZnO-NPs, 100ppm ZnO-NPs, and 200ppm ZnO-NPs to show 
the comparison, a diagram of heavy metals in the intestine and gill organs was made, as 
illustrated in Fig. (10). 
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The results of the analysis of heavy metals in the intestine and gill organs based 
on data presented in Fig. (10) obtained the relative levels of heavy metals expressing 
ZnO-NPs in the gills and intestines. Prior to the exposure, the control group (0ppm) 
exhibited no detectable heavy metal levels in the intestine organs. After 48 hours of 
exposure, the highest relative level of heavy metals in the intestine organs was observed 
at 0.87ppm for the ZnO-NPs concentration of 200ppm. The lowest level was 0.37ppm at 
a concentration of 50ppm. Following 96 hours of exposure, the highest relative level of 
heavy metals in the intestine organs was recorded at 0.93ppm at 200ppm ZnO-NPs. The 
lowest level was observed at 0.28ppm at a concentration of 50ppm. This research showed 
that the result of ZnO-NPs value in intestine was increased by 215.79%, from 0ppm (0%) 
to the 200ppm concentration at 96 hours (0.93ppm). 

In the gill organs, no heavy metals were detected in the control group. After 48 
hours of exposure, the highest relative level of heavy metals was 0.62 ppm at a ZnO-NPs 
concentration of 200ppm, while the lowest level was 0.36ppm at a concentration of 50 
ppm. After 96 hours of exposure, the gill organs showed the highest relative level of 
heavy metals at 2.94ppm for a ZnO-NPs concentration of 200ppm, whereas the lowest 
level was 0.47 ppm at 50ppm. This research showed that the result of ZnO-NPs value in 
gill was increased by 525.53%, from 0ppm (0%) to the 200ppm concentration at 96 hours 
(2.94ppm). 

Measurement of Zn levels after 96 hours of exposure showed an increase in Zn 
accumulation in accordance with the concentration of ZnO-NPs exposure, with the 
highest accumulation correlating with the lowest mortality rate, indicating the essential 
nature of Zn (Mahjoubian et al., 2023a). This accumulation highlights the gills as a 
primary site of nanoparticle interaction, with implications for respiratory efficiency and 
detoxification processes. Lower accumulation in the intestine still indicates potential for 
digestive disruption. The gills had higher ZnO-NPs accumulation compared to the 

Fig. 10. Results of ZnO-NPs exposure in the intestine and gill organs of hybrid grouper 
after ZnO-NPs treatments for 48 and 96 hours 
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intestine, indicating its role as the main detoxification organ, which is important for the 
respiratory function and ionic balance of fish (de Campos et al., 2019). The 
accumulation of ZnO-NPs in the intestine, although lower, still has the potential to 
damage tissues and affect digestion, indicating the toxic impact of ZnO-NPs on overall 
health. 
 

CONCLUSION 
 

In conclusion, this study demonstrates that exposure to zinc oxide nanoparticles 
(ZnO-NPs) can adversely affect the hybrid grouper by causing hematological alterations, 
tissue damage in vital organs, and heightened immune responses indicative of stress. 
These findings underscore the importance of monitoring and regulating the concentration 
of ZnO-NPs in aquaculture environments to safeguard fish health and to maintain 
production efficiency. Looking ahead, further research should focus on optimizing 
application doses and investigating alternative nanoparticle formulations that minimize 
harmful impacts on fish physiology and the surrounding ecosystem. Additionally, 
developing clear regulatory guidelines and refining best practices will be crucial in 
promoting safer, more sustainable use of nanomaterials in aquaculture.  
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