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Abstract  

E study the configurations of a spherically symmetric boson star (BS) models with 

different general self-interaction terms of U(1) symmetry type. We modify these 

potentials to include only one rescaled dimensionless decay constant as a single control 

parameter, which results in a small change in the BS configuration, particularly in the star‘s 

maximum mass. We then study these BS configurations in terms of a simple accretion disc 

model spiraling around the boson star. Through the comparative study of the power 

spectrum (luminosity) at different values of the decay constants of the different boson star 

configurations studied corresponding to the different potentials involved in the present 

study, we found a unique boson star configuration that mimics a particular black hole (BH) 

configuration for each potential at a given decay constant value. Finally, we lay a blueprint 

for matching the currently observed gravitational wave signals with the maximum masses 

of the boson star mimickers we obtained. 

Keywords: boson stars, compact objects, black holes, general relativity, scalar fields, 

Einstein-Klein-Gordon equations. 

 

Introduction 

Due to several discoveries of high energy events, the nature of black hole candidates or ‗mimickers‘ is currently 

a significant issue in relativistic astrophysics. There has been some interest in the subject of whether black hole 

mimickers are just ordinary black hole solutions or something else. 

Historically, It was first discussed as particle-like object by Wheeler to construct solutions for classical fields of 

electromagneticreal scalar fieldcoupled to gravity [15, 23] to be able to describe what he called ―gravitational 

atom‖ he called the solutions to his system ―geons‖ and they were unstable. 

Then Kaup [11] replaced electromagnetic fields with a system of complex scalar field; Klein-Gordon ―geons‖. 

This system was the core of boson star model(s) used in this paper. 

Compared to most other classes of potentially compact objects, boson star (BS) models have great advantage 

because the equations describing them are relatively simple unlike other widely used neutron or fermion star 

models, for instance. Boson star models do not obey Pauli Exclusion Principle but obey Heisenberg Uncertainty 

Principle. Accordingly, bosons are being localized in their Compton wavelength causing the star to avoid 

collapsing to form a black hole. 
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As we will discuss in more depth in the next section, there exists variants of boson star models with different 

potentials. The simplest BS model, which is widely considered as a toy model for verifying and calibrating 

numerical solutions is the so-called mini-boson star model, which was first introduced by Kaup [11]. The study 

of nonlinear potentials in the context of BS modeling was first explored numerically by Mielke and Scherzer 

[14]. Later, it was shown by Colpi, Shapiro, and Wasserman that because of the quartic self-interaction potential 

in boson Lagrangian, the BS system could yield higher values for maximum mass compared with the non-

interacting equivalent [3]. 

More studies on nonlinear potentials were performed by Schunck and Torres [18] who discussed potentials that 

yield different BS maximum mass values, which can be related to some observable signals that can be used to 

detect BSs as we are going to explain in more detail in section (3.2).  

To stress the novelty of the present work at this early stage of our layout, we highlight the following:  

 We extend the discussion in ref. [18] to investigate the possibility that boson star models with different 

nonlinear unitary potentials can mimic black holes.  

 Unlike the approach used in ref. [18], we reformulate the potentials used to ensure they depend on a 

single decay constant and that they are properly rescaled to be dimensionless.  

 In this vein, we exploit the simple accretion disc model and the associated power spectrum discussed in 

refs. [7, 21].  

 Unlike the efforts reported in refs. [7, 21] using a single-type of nonlinear potentials, we implement here 

three different types of nonlinear potentials in the calculation of the power spectrum. We have also used 

the mini-boson star potential as a toy model to initially calibrate our numerical code and also as reference 

non-interacting BS system. 

 We lay down some blueprint to link our calculations of the BS maximum masses to some observable 

gravitational wave (GW) signals.  

This paper is organized as follows: in Sec. 2, the Einstein-Klein-Gordon (EKG) equations, which govern the 

behaviour of scalar fields and gravity, are outlined. Then we rescale the EKG equations to ensure they are 

dimensionless. We then modify the potentials to guarantee their dependence on only one free parameter, namely 

the rescaled decay constant. Finally numerical results for the model at different potentials are obtained at two 

different values of the rescaled decay constant. 

In Sec. 3, we determine the luminosity for both the BS system and the corresponding BH at maximum BS mass. 

We then fix the BS configuration that can mimic the BH luminosity profile. We terminate Sec. 3 with a 

discussion of the observational challenges relevant to the present work, and we introduce some GW signal based 

detection scenario. We finally summarize the present work and conclude in Sec. 4. 

Before getting any deeper, we need to alert the reader that we use throughout this paper a unit convention in 

which         
 

√  
,        

 

√    
 . 

Boson star Model 

We start with the following action 

                                                                              ∫    √  (
 

     
 )                                       1) 

The corresponding Lagrangian density is 

                                                               
 

   
       

       | | )                       (2) 

, where    Ricci scalar,      Metric function, 

   Scalar field,    Potential of the scalar field, 

 √    Determinant of the metric. 

When the action is varied with respect to the metric it gives Einstein equation which reads  

                                                                                        ,                                (3) 
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where     is Einstein tensor and     is  the momentum- energy tensor which is given based on equation (2) in 

the form  

                                    
 

 
(   

           
 )  

 

 
   (          | | ))                                (4) 

 

The variation of equation (1) with respect to the scalar field   gives Klein Gordon equation 

                                                                  (  
  

 | | 
)   ,                           (5) 

where     
 

√  
  [√        ]  

To ensure time-invariance of the square of the scalar field, we choose a scalar field   of the form: 

                                                                            )     
     ,                    (6) 

where   is the angular frequency. Note that it must be real number and also choosing this form for the scalar 

field in the previous equation makes the momentum-energy tensor time independent. Since we want deal with 

spherical symmetric boson star model(s), we use the following line element: 

                                                                                           (7) 

, where    )        ) are lapse and radial functions in    respectively. From equations (3) and (5) with line 

element (7) and using the same derivation procedures as in refs. [4, 6, 7], we construct our EKG system of 

equations as follows: 
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, where     . Note that in left hand side of (8c)   has a second derivative in r. Thus, to make all the 

constituent equations of the system (8) have first derivative in  , we introduce a new variable   such that  
  

  
  , then we obtain the following update: 
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We then rescale the system of equations (9) to ensure that system is dimensionless keeping in mind that   | | ) 

has dimension of [      ] . We rescale the following variables in this manner  ̃     ,  ̃       , 

( ̃)
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Since the action equation (1) has global invariance under U(1) symmetry for scalar field        then it implies 

that there is Noether current 

                                                                               
 )                                           (11)   

Since Noether current gives the total number of particles [16] 

                                                               ∫   √    .                                                          (12) 

As we can see from the system of equations (10), it is a system of ordinary differential equation with unknown 

variable  ̃. We numerically solve the system (10) using Runge-Kutta fourth order method, and then we perform 

a binary search for a particular  ̃ value that meets our acceptable tolerance for all variables in the system of 

equations (10). 

Lastly we calculate the mass of the boson star using Misner-Sharp mass (ADM formalism) which is calculated 

through metric functions as prescribed in ref. [1]. 

                                              )         )                                                  (13) 

 

2.1. Self-interaction potentials 

The most basic boson star model is the mini-boson star that was first introduced in [11] and [16]. According to 

[14], the non-linear expansion for the self-interacting potentials may have the generic form 

                                             | | )            | |     
    | |                                         (14)     

      If we choose the prescription outlined in [3], we also have the choice of writing the non-linear expansion for 

the potential in the form 

                                              | | )          | |  
 | | 

 
                                                                     15)   

Rescaling (15) using       
    

 , we obtain 

                                            | | )        (       
 )  | ̃|

 
 

 | ̃|
 

 
                                                  )    

      As a toy model for calibrating our numerical code, we use the rescaled mini-boson star potential given in 

eqn. (16) with      In this case, the mass scales as     
    . Note also that when      the mass   

   
    

 , which is roughly close to Chandrasekhar mass given by      
    

 , which is close to mass of the 

sun, where    is the neutron mass. 

The potentials described above are considered to be by repulsive potentials, which imply that they support the 

bosonic quantum pressure arising from the uncertainty principle and opposing the gravitational attractive force 

that tends to collapse the star. 

      Moreover, we also consider the potentials discussed in [18] in the context of our search for possible 

candidates for a black hole mimickers. The idea is to examine the possibility if a series of repulsive or repulsive 

and attractive bosonic self-interaction terms producing some maximum BS mass and compactness that makes 

those BS configurations observationally comparable with some supermassive black hole with a typical 

astronomically relevant mass in the order of      . Supermassive black holes of that mass are predicted to 

exist at the canter of massive galaxies such as M87 as well as quasars such as 3C 273 [26].  The comparison is 

planned to primarily rely on the comparative fitting of the luminous accretion rate of the disc model data.  

The first potential that we are going to consider here is the Cosh-Gordon which comes in the form 

                                                             (    ( √| | )   )                                             (17) 

      Note in last equation there are two free parameters, namely   and  , which we will reduce to only one free 

parameter, namely  , by expanding equation (17) as follows 
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From last equation we can reintroduce (17) by replacing   and   by  . This yields 

                                      (    (
√| | 

 
)   )                                                               ) 

We then use the same algorithm for modifying our potentials. The next potential to consider here is the "sin-

Gordon" which comes in the following form 

                                                     (   (   ( √| | ))   )                                                             ) 

Expanding (20) we obtain 

        (   (        ))   )     (
      

 
 

      

   
 

      

     
  )                ) 

We then replace                
 

  

 

   
 

   
 in the above expansion. Equation (20) thus becomes  

                                                   
 

  
    (   (   (

√| | 

 
))   )                                            ) 

We finally do the same procedure for the "Liouville potential" of the form 

                                                                      | | )   )                                                       ) 

Its expansion comes in the following form  

                 )   )     (     
    

 
 

    

 
  )                                         ) 

From the above expansion, we can again replace              to obtain 

                                              (   (
| | 

  
)   )                                                                        ) 

We must point out here before moving forward with the potential rescaling process that all expansions depicted 

equations (18), (21), and (24) have the mass term scales with    ), which is important to give scalar field 

solutions that decrease exponentially with the scalar field   ) to ensure the finiteness of spacial extent of the 

field. We also note that the cosh-Gordon and the Liouville-Gordon potentials are a series of repulsive potentials 

and the sin-Gordon is series of attractive and repulsive potentials. By modifying these potentials such that they 

depend on a single parameter; the decay constant, we make it easier to make better control on our numeric and 

thereby easier to compare with black hole parameters in search for candidate mimickers. 

      Now it‘s time to rescale the potentials under consideration to make them dimensionless. We follow the same 

technique we used in rescaling equation (16). 

 

Sin-Gordon potential: 
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Cosh-Gordon potential: 
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Liouville potential: 

     (       
 )  ( ̃)

 
(   (

| ̃|
 

( ̃)
 
)   )                                                                      ) 

The (rescaled) potential forms (26-28) all have ( ̃)
 
      

 . These forms are the ones we plug in the system 

of equations (10), one at a time during our numerical calculations leading to the numerical results to be presented 

in the next section. 

2.2. Results and Analysis 

In this section we present equilibrium solutions for the system of equations (10). Remember that these equations 

are of dimensionless form. 

      As a boundary condition, we must ensure asymptotic flatness for the outer boundary. Thus, we require that 

     ̃   )       ̃   )     ̃   )   ).      

       Similarly, to ensure regularity at the inner boundary, we require that 

    )       )    )      
   )   ). 

Now it is apparent that the only unknown variable remaining in the set of equations (10) is   ̃) which reduces 

our problem to an eigenvalue problem. In the equation set (10), for each value of  ̃ at  ̃    is associated with a 

unique value of  ̃ that exponentially grows with the value of  ̃. In our numerical solution, we use the shooting 

method to predict the value of  ̃. Since our system of equations (10) either diverges in the upper or the lower 

bound, we were able to perform a binary search to predict the value of  ̃. We do that by assuming we have a 

range between the lower and the upper bounds [  ̃   ̃] that contains our desired value within.  

      We then test the midpoint by solving the system of equations (10) and finally we check for divergence from 

this middle point. Based on this test, we modify the lower and upper bounds of [  ̃   ̃] till we end up with a 

very small range within which our desired value of  ̃  lies. As a test of this method, it is applied to the simplest 

BS model; the mini-boson star. We found that our solution exactly matches the maximum mass viewed of the 

mini-boson star at all points. These results are listed in Table (1). In the present paper, we don‘t explicitly study 

the stability of our model(s), which we prefer to study elsewhere. However, the interested reader is advised to 

read some other BS stability treatments, for example [4], [5], [6] for an analytical approach, and [19], [8], [12] 

for a numerical one. 

As we can see from figures (1-7), the radial profiles for different potentials are the same due to the form equation 

(10c), and this functional form is due to the initial value of    and potential form. 

                                        

Fig. 1: Scalar field for mini boson star      
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Fig. 2: Scalar field for sine potential      

                                         

Fig. 3: Scalar field for Liouville potential      

                                             

Fig.4: Scalar field for cosh potential at      

                                        

Fig.5: Scalar field for sine potential at         
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 Fig.6: Scalar field for Liouville potential at         

                                              

Fig.7: Scalar field for cosh potential at         

Next family of solutions regarding the time and space metric first we will show time metric function in its 

dimensionless form. As we can see from figures (8-11) at  ̃         as   increase for different potentials 

the there is a very small change in its configuration because as   increase the mass increase and their radius 

increase to a certain point where   decrease with mass it will result stability branches. 

                                            

Fig.8: Time metric for mini boson star     

 

Fig.9: Time metric for sine potential at      
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Fig.10: Time metric for Liouville potential at      

 

Fig.11: Time metric for cosh potential at      

As we can see from previous figures (12-14) at  ̃        that as we can the value of decay constant   ̃ change 

slightly to be (     )    as   

 increase and due to series forms of U(1) potentials and family of solutions as whole in figures at  ̃      ̃  

      have very small changes with respect to each ,lastly we have to point out due to equation (7) figures at 

 ̃      ̃        represent   ̃. 

                                            

Fig.12: Time metric for Sine potential at         

 

Fig.13: Time metric for Liouville potential at         
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Fig.14: Time metric for cosh potential at         

Next, we discuss space metric for the same values of     as we did for the time metric. In the figures (15-18), we 

notice for the space metric at  ̃             that all potentials used have the same peak shape with a very 

small shift in the peak position towards smaller values of the radial distance   as the value of    increases. 

We also observe that the sin potential have slightly lower peaks compared with corresponding cases of the 

potentials 

For the sin potential presented in equation (26) and its series expansion in equation (21), we can see that first two 

terms represent a quartic potential  similar to the one presented in equation (15) but with  different numerical 

values and alternating sign. At the value of  ̃    , the series expansion keeps getting smaller till it  becomes 

almost zero which results in lower peaks compared with the other potentials. 

 

 

Fig.15: Space metric for mini boson star at     

 

Fig.16: Space metric for Liouville potential at      
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Fig.17: Space metric for cosh potential at      

 

Fig.18: Space metric for Sine potential at      

For figures (19-21), we have the same discussion for  the case of   ̃      presented in the pervious paragraph 

for the Sin potential, but with the Cosh and Liouville potential have higher peaks at  

 

 

Fig.19: Space metric for sine potential at         

 

Fig.20: Space metric for cosh potential at         
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Fig.21: Space metric for Liouville potential at         

 ̃         because of the series expansions of these potentials. 

In figure (22), we calculated the variation of the mass of the boson star    ) versus the scalar field   using 

equation (13) for all the potentials under study. In this figure we included the case of mini-boson star as 

reference model for the mass to be compared with the other potentials and to check the validity of our numerical 

code. 

Again we use the series expansion in equations (18), (21) and (24) to explain the observed BS mass profile   

variations at decay constant value  ̃   . Since we have calculated the mass of the BS using the space and the 

time metrics, the series expansions of all potentials are expected to have influence on the variation of the mass. 

This was explained earlier for the case of the sin potential which has a lower maximum mass than the mini BS. 

                                            

Fig.22: Total star mass with various ϕ values for different potentials 

On the other hand, the Liouville and cosh potentials are expected to have higher maximum masses than the mini 

BS. 

Next, we provide table (1) below with the calculated maximum mass   ), scalar field   ), and the angular 

frequency ( ̃) values. From table (1), the decay constant for the mini-BS (   ) and for the rest of potentials at 

 ̃    . Note that all parameters listed in tables (1) and (2) are rescaled. Moreover, from table (1), and as 

compared with the mini-BS, we observe that BS obtained using Liouville potential has a      higher maximum 

mass, while that obtained with the sine potential is (4%), and finally the BS with cosh potential is only (2%) 

higher.  

Potential  (  )  (  
    ) Decay 

constant 
 ̃ 

Mini 0.38 0.633 0 1.241 

Cosh 0.38 0.643    1.247 

Sin 0.38 0.606    1.226 

Liouville 0.39 0.699    1.293 
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Table 1: Comparison of different potential forms used and their corresponding maximum mass at decay constant 

 ̃    . 

Lastly, we are going to repeat the same procedure described above but for another value of the decay constant; 

 ̃        . 

                                                     

Fig.23: Maximum mass for U(1) potential at  ̃        

As we can see from figure (23), and as compared to the  ̃     case, the maximum mass for the cases of the 

cosh and the sine potentials are significantly closer to each other, and even share almost the same maximum 

mass for the same scalar field. More interestingly, the case of Liouville potential at  ̃        shows a higher 

maximum mass than both the Cosh and Sin potentials with same decay constant. This is expected to yield a 

comparatively higher compactness for the case of Liouville potential which may be a suitable model to study 

dark matter candidates and also gravitational waves resulting from compact star collapse at much smaller values 

of the decay constant. The above-mentioned observation is left for a future study.  

Potential  (  )  (  
    ) Decay 

constant 
 ̃ 

Cosh 0.39 0.613       1.326 

Sin 0.38 0.600       1.223 

Liouville 0.39 0.715       1.305 

Table 2: Comparison of potential forms and their maximum mass at decay constant  ̃        

From Table (2), we observe that as compared with the mini-BS, the BS obtained using the cosh potential has a 

maximum mass that is lower by (3%) and BS obtained using the sine potential is almost (5%) lower. On the 

other hand, in this configuration the BS obtained using the Liouville potential has the highest maximum mass 

which is (11.5%) higher than the that for the mini-BS. 

In the next section, we will discuss the implications of the maximum mass data presented above in the context of 

the study of black hole mimicking. 

3. Accretion disc model and power spectrum 

In this section, we adopt the same procedures as in references [7] and [21] to calculate the power-spectrum of the 

compact objects being compared using the disc model. Using the spherically symmetric line element mentioned 

above in equation (7), we calculate the time-like geodesic. 

  ̇  
 

  
(  

  

  
)  

 

    
                             ) 

where        ̇ is the squared angular momentum,          ̇ is the squared total energy at spatial infinity, 

  is the azimuthal angle, and   is time. The dot over the components the right-hand side of the     and    

represent the proper time derivative for the test particle. 

The study of stable orbits of a test particle demands the following identification in equation (29) 
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(  

  

  
)                                  ) 

where           
  is an effective potential. For a test particle we only consider circular orbits with  ̇    then the 

potential becomes  

  ((  
  

  
)  

  

  
)                              ) 

Solving (31) under the conditions of circular orbits, that is  ̇      
  

  
  , we get the following equations for 

energy, angular momentum angular velocity, respectively:  

                                                     
  

√       
                                               ) 

                                                            √
     

                                                      )    

, and 

                                                        √
   

 
                                                          ) 

Then for accretion disc, we demand it to be steady, geometrically thin and optically thick  

   )  
 ̇

   

 

 
( 

  

  
) (

 

     ) 
)∫      )

  

  
  

  

  

                      ) 

Where  ̇ is accretion disc rate,     is inner disc edge and    is outer edge of disc note we choose disc inner disc 

edge to be zero for boson star since it allows circular orbits in all spatial domain and also it does not affect disc 

as long it is made of test particles. Lastly, the outer edge we demand to be at innermost stable circular orbit 

(ISCO)      . 

We assume the accretion disc to have local temperature defined by Stefan-Boltzmann law    )     , where   

is Stefan-Boltzmann constant. We can consider our disc to emit radiation as a black body then luminosity can be 

expressed by the form  

   )  
    

  
     )   ∫

   

 
  

    

    

  

               ) 

, where   is Planck constant,   is speed of light   is Boltzmann constant    is frequency and   is disc inclination. 

3.1. Results and discussion 

In this section, we are going to find the luminosity for different sets of BSs and BHs with different potentials that 

are discussed earlier in section (2). 

       First, we display the luminosity for BSs and BHs at maximum mass using equation (36). The corresponding 

results are depicted in figures from (24) to (30). 

                                            

Fig.24: luminosity at maximum mass for Mini Boson star 
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Fig.25: luminosity at maximum mass for Liouville potential Boson star at      

 

Fig.26: luminosity at maximum mass for cosh potential Boson star at      

 

Fig.27: luminosity at maximum mass for sine potential Boson star at      

 

Fig.28: luminosity at maximum mass for sine potential Boson star at         
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Fig.29: luminosity at maximum mass for cosh potential Boson star at         

 

Fig.30: luminosity at maximum mass for Liouville potential Boson star at         

 

Potential  (  ) Star mass 

 (  
    ) 

 

Boson star 

scalar field 

mass 

m[GeV] 

Black hole 

mimicker 

    [   ] 

 

Mini 0.18 0.503           

 

           

 

Cosh 0.18 0.576            

 

          

 

Sin 0.18 0.6322            

 

          

 

Liouville 0.19 0.522            

 

          

 

                       Table 3: Values of Black hole mimickers for different potentials     

Before getting deeper in our discussion, we prefer to introduce our method of calculation.  

      First, we compute the BH time and space metrics using the equation                )  ). Then we 

calculate the components of the disc model for both BHs and BSs. By ‗components‘, here, we mean energy, 
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angular momentum and angular velocity given in equations (32-34), which are necessary to calculate the 

luminosity in equation (36).  

      For both cases we use BH by mass (       ) and accretion rate ( ̇             ). Note that our 

chosen disc angle has in equation (35)       . We also choose a BH configuration for which we assume an 

inner radius at ISCO =     )   Lastly, we assume that the outer disc is at      ), where    ) is already 

defined in equation (13). 

                                                 

Fig.31: luminosity for a black hole at maximum mass and its mini-boson star mimicker 

 

Fig.32: luminosity for a black hole at maximum mass and its cosh boson star mimicker 

 

Fig.33: luminosity for a black hole at maximum mass and its Sine boson star mimicker 

 

Now we use the maximum mass data listed in tables (1) and (2) which corresponds to the potentials under study. 

We use the maximum mass because it represents the most compact configuration of the BS.  Then we search to 

find its black hole mimicker, which is some BS configuration in the present study.  
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Fig.34: luminosity for a black hole at maximum mass and its Liouville boson star mimicker 

Now we present a family of solutions for equation (36) at several frequencies  . Here we have used the 

maximum mass data from table (1). We present BSs and BHs (at maximum mass) luminosity curves depicted in 

figures from (31) through (34). These family of solutions are calculated at (     ̃    ). In these figures we 

searched for BS by changing scalar field    that can mimic BH at maximum mass until they all have almost the 

same behaviour. In this endeavour, we use the parametric relation  [   ]               )

   
 introduced in 

reference [22] to calculate scalar field mass.  Note that    ) is the rescaled value of mass calculated at the very 

far outer boundary of star and     is the corresponding BH mass. Then we search for a BS mimicker to the BH 

at maximum mass for each configuration presented in the table (3). From these values of the scalar field mass 

obtained for BS configurations corresponding to different potentials, we can see that the scalar field values that 

produce BH mimickers are all in the order of       )                                                    

this is because of the BH mass used is        .  

Table 4. Values of black hole mimickers for different potentials at  ̃        

Potential  (  ) Star mass 

 (  
    ) 

Boson star scalar field mass 

m[GeV] 

Black hole mimicker 

    [   ] 

 

Cosh 0.18 0.548            

 

           

 

Sin 0.18 0.548            

 

           

 

Liouville 0.221 0.661            

 

          

 

Table (4) depicts the BH maximum mass data but for  ̃       . As we can see from the mimicker solution 

family from table (4) and figures that figures (35-37) in all are all most identical. We expect the same behaviour 

to persist up to  ̃       .   

For  ̃ values lower than      , further studies are needed, especially for the configurations involving Liouville 

and sin potentials. We can see for tables (3) and (4) that the BH mimicker obtained using Liouville and cosh 

potentials can be used to investigate the upper bound of the scalar field mass at low  ̃. The maximum star mass 

obtained is proportional to  ̃. 

      Based on the above mentioned parametric equation, we expect that for the scalar field mass near   GeV 

scale, the corresponding black hole mimicker mass should be         , which is theorized in the models of  

the very early universe incorporating primordial black holes [25]. Thus, we anticipate that the scalar field for a 

bosonic BH mimicker could be axions, which we plan to investigate in a future study. 
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Fig.35. luminosity for a black hole at maximum mass and its sine boson star mimicker at         

 

Fig. 36. luminosity for a black hole at maximum mass and its cosh boson star mimicker at         

 

Fig. 37. luminosity for a black hole at maximum mass and its Liouville boson star mimicker at         

3.2. Observational challenges 

The two main distinctions between a black hole and a boson star are that the former has a singularity, while the 

latter does not have an event horizon. In certain situations, this distinction may be difficult to observe, although 

hints would be provided by the absence of an event horizon, shadow features, and gravitational wave signal. As 

our observational capabilities advance, particularly in direct imaging and gravitational wave astronomy, these 

distinctions will become more apparent.  

      If we want to observe a boson star configuration, we need to fix either the mass or the radius of the star. 

Determining the mass of a boson star helps make its observational characteristics more predictable and facilitates 

distinguishing it from other cosmic objects. This improves the likelihood of detecting or confirming its existence 

using different observational methods. If you detect an object with a mass between 10
2
 M  and 10

5
 M , it could 

be either a boson star or a black hole. However, if the mass surpasses 10
5
 M , it is more likely to be a black hole, 

as boson stars typically cannot attain such a large mass. In terms of orbital dynamics, if you observe orbital 

behaviour around the object and detect weaker, more spread-out gravitational effects than expected from a black 

hole, this may indicate a boson star, especially if the mass is on the lower to mid-range. In contrast, a black hole 

usually causes rapid acceleration of objects toward a dense singularity. As for the event horizon and singularity, 

if you have access to high-resolution imaging, such as from the Event Horizon Telescope, and can observe a 

"shadow" or a region of darkness at the centre of the object, it's likely a black hole. On the other hand, a boson 

star, which doesn't have an event horizon, may show a more diffuse boundary, and you might observe material 

flowing or moving in a way that indicates the absence of a distinct boundary. Moreover, if gravitational waves 
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are detected, their waveform will offer crucial information. The "ringdown" phase—unique to black hole 

mergers—will not be present in mergers of boson stars, as they lack the event horizon. Finally, in terms of light 

and radiation emission, If you detect an X-ray or gamma-ray source emitting substantial radiation from a small 

region with no visible light source (indicating a black hole), this points to the presence of a black hole. However, 

the absence of a distinct event horizon, coupled with intense radiation, could indicate a boson star.  

      The maximum mass can be controlled by the decay constant  , which by turn is controlled by the self-

interaction    A smaller decay constant typically corresponds to a larger maximum mass for the star. If 

gravitational wave signals are considered for BS detection, a larger decay constant (weaker interactions) might 

lead to less compact boson stars, producing a different gravitational waveform than more strongly interacting 

(smaller decay constant) stars. By examining the frequency, amplitude, and shape of the detected gravitational 

waves, it is possible to deduce the characteristics of the object that produced them, such as the decay constant 

through the star's self-interaction strength.   

      To determine the decay constant, the observed gravitational waveform is compared with theoretical models 

of boson stars featuring varying decay constants. By aligning the theoretical models with the observed 

waveform, the decay constant that best matches the data can be identified. This process usually involves 

parameter estimation, where the model parameters, including the decay constant, are refined to reduce the 

discrepancy between the predicted and observed waveforms.      

4.  Summary and Conclusion 

In the present paper, we introduced spherically symmetric boson stars as potential black hole mimickers, We 

used the power spectrum from a typical thin, steady-state, geometrically thin disc, similar to the standard model 

for astrophysical black holes. However, we adapted the disc model for the specific properties of boson stars.  We 

used the line element and Lagrangian adopted by the authors of ref. [7], then we extrapolated the calculations to 

a variety of other U(1) potentials beyond that in this reference. Our present work can be divided into the 

following steps: 

 Producing Boson star system of equations using ADM formalism of numerical relativity.   

 Rescaling this system of equations to be dimensionless making the numerical system more 

balanced. This can help prevent instability caused by very large or very small numbers. 

 Introducing U(1) potentials in their original form then modifying them to include only a one decay 

constant term. 

 Rescaling these potentials to be dimensionless. 

 Presenting the key parameters of the BS system such as the characteristic size, metric functions, 

central scalar field amplitude, and maximum mass. 

 Discussing accretion disc model and power spectrum for different  potentials and finding black 

hole mimickers for these potentials at maximum mass. 

In our calculations, we computed numerical solution to our ordinary differential equation with arbitrary value  ̃ 

with the main feature that as system of equations (10a10d) tends to infinity system grow exponentially, we 

performed binary search for this unknown value of  ̃ in the range [  ̃   ̃] using our code, which we coded from 

scratch, to ensure that we have unique value for  ̃ that exists in this range for each value of  ̃. The solutions 

must not have any nodes or zeros to make sure we describe the ground state of the BS but not the excited states, 

which is out of scope of this paper.  

      In this work we shed light on U(1) potentials with higher order terms than that presented in [18] to see how 

BS system will differ accordingly in its maximum mass from one type of potential to another. As depicted in 

Table (1), we primarily found that Liouville-type potential will yield slightly (9.5%) higher maximum mass as 

compared with the mini-boson star model.    

       Furthermore, as the decay constant decreases below Planck mass it will result in even higher value of 

maximum mass and also a higher compactness as presented in Table (2). In the rest of this work, we discussed 

simple compact object disc model and power spectrum to find out if these potentials will give rise to an 

―observable‖ distinct behaviour in its power spectrum.  
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      Our arguments lied down section (3.1) based upon the parametric equation correlating the scalar field mass 

with the maximum BS star mass  suggest that if one plans to model a black hole mimicker corresponding a given 

black hole mass such that the BS is composed of scalar fields that are comparable in mass with, for example, the 

theorized early universe‘s QCD axions, it‘d be more convenient to assume scalar-field self-interactions of the 

Sin-Gordon type, that is the type corresponding to the comparatively lowest maximum BS mass.  

Further studies need to be made on these BS configurations at values of decay constant lower than        . 

As detailed in section (3.2), small values of the decay constant can lead to an increase in the maximum mass of 

the boson star. This fact gives a generous opportunity for suggesting empirical scenarios not only to probe BSs 

but also to differentiate between a Black Hole and its BS mimicker.  The observation facilities to differentiate 

BHs from BSs include: 

 Gravitational wave astronomy; wave form analysis and parameter estimation. 

  Electromagnetic observations; light curves, spectra, and X-ray emissions. 

 Direct imaging via the Event Horizon Telescope. 

Possible extension of this work include but not limited to study dynamic boson star configurations at lower 

decay constants,         study of the perturbations during possible decay scenarios of boson star mimickers as a 

signature for gravitational waves. 
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 كمرشحيه لمحاكاة الثقىب السىداء U(1)وجىم البىزون راث الجهىد المتماثلت مه الىىع 

 

 

  الملخص

. َقىو ترعذٌم U(1)َحٍ َذسس ذكىٌٍ ًَىرج َجى تىصوًَ يرًاثم كشوٌاً يع ششوط انرفاعم انزاذً انعايح يٍ َىع انرُاظش 

 هح انُجى. َحٍ َذسس هزِ انرشكٍلاختسٍظ فً ذكىٌٍ كر يًا ٌؤدي إنى ذغٍٍش هزِ انجهىد نرشًم ثاتد اضًحلال واحذ فقظ 

ًُا نهثقة حىل انُجى انثىصوًَ ًَىرج قشص انرشاكى انثسٍظ تذلانح . نقذ وجذَا ذكىٌُاً فشٌذاً نُجى تىصوًَ ٌحاكً ذكىٌُاً يعٍ

انًخرهفح انرً  ٍحثىصوَُجىو انيٍ ان يخرهفح نثىاتد الاضًحلال نرشكٍلاخيٍ خلال دساسح طٍف انطاقح عُذ قٍى ورنك الأسىد 

أخٍشًا، وضعُا يخططًا نًطاتقح إشاساخ انًىجاخ انثقانٍح انرً ذى سصذها حانٍاً يع انحذ الأقصى نكرم  ذًد دساسرها.

 يحاكٍاخ انُجى انثىصوًَ انرً حصهُا عهٍها كُىاج نثحث قادو.

 

-دلاخ أٌُشرٍٍا،  يعانًضغىطح، انثقىب انسىداء، انُسثٍح انعايح، انًجالاخ انعذدٌح انثىصوٌ، انُجىو َجىو الكلماث الذالت:

 جىسدوٌ. -كلاٌٍ


