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Abstract: Diabetic foot ulcers (DFUs) and other related consequences of diabetes mellitus 

are major health challenges on a global scale. Diabetic foot ulcers (DFUs) and other severe 

side effects may be prevented with early detection. One serious condition that might re-

sult in a diabetic patient's lower limb being amputated is a DFU. For physicians, diag-

nosing DFU can be difficult because it often necessitates a variety of costly and 

time-consuming clinical examinations. Clinical professionals may now diagnose patients 

more quickly and accurately thanks to the application of machine learning, deep learning, 

and computer vision techniques in the age of data overload. Among the many advantages 

of using machine learning and deep learning for DFU detection are its ability to learn 

more features, versatility across several image modalities, with the ability for high task 

accuracy in detection and identification.  

Giving academics a thorough overview of the state of automatic DFU identification tasks 

was the article's main goal. The utilization of both machine learning and advanced deep 

learning algorithms is required to assist clinicians in making quicker and more accurate 

diagnoses, according to several observations obtained from previous research. In con-

ventional machine learning techniques, image features aid in precise identification and 

offer significant data on DFU. However, advanced deep learning techniques have shown 

greater promise than machine learning techniques in certain earlier studies. The problem 

domain has been controlled by the CNN-based solutions presented out by several au-

thors.  
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1. Introduction 

One of the primary diseases leading to death worldwide is diabetes; Diabetes can cause major side effects like 

blindness, kidney failure, heart disease and lower limb amputation frequently, diabetic foot ulcers (DFUs) occur 

before these consequences. DFUs, commonly referred to as sores, these open wounds can appear on diabetics' 

foot .A typical result of poorly managed diabetes is diabetic foot ulcers (DFUs), which can damage the feet all 

the way down to the bones. Unusual swelling, redness, stinging and irritation are early signs of diabetic foot 

ulcers. 

According to a 2021 study by the International Diabetes Federation, 537 million people between the ages of 20 

and 79 have diabetes. By 2045, this number is predicted to increase to over 783 million [1]. But 6.7 million people 

die from diabetes each year because one in two instances goes misdiagnosed. Diabetes is quite likely to lead to 

several potentially deadly conditions in the untreated population. As the disease progresses, DFU affects 15% to 

25% of diabetic people and can lead to lower limb amputation if proper care is not received [2]. Due to improper 

DFU medical care and a lack of awareness of the medical condition, over a million diabetics with "high-risk 

foot" will lose a part of their leg each year [3]. 

For patients with diabetes, hygienic personal care, ongoing medication, and routine medical checkups are nec-

essary to avoid further complications. Early identification is critical for predicting whether DFUs will heal and 

preventing additional foot-related issues including hospitalization and amputation [4]. Nowadays, the evalua-

tion of DFU early diagnosis in clinical systems includes a number of important actions that include ongoing 

monitoring of the many time-consuming procedures involved in treating and managing DFU for every indi-

vidual case. 

Among these actions are; Examination of the patient's medical history, a diabetic foot specialist's comprehen-

sive study of the DFU, and additional testing including x-ray, Magnetic resonance imaging, and CT scans, for 

assessment to develop the treatment plan. DFU patients typically have an inflated leg issue, which can vary 

from itchy to hurting depending on the situation. Additionally, the DFU typically has an asymmetrical form 

and unclear external boundaries. Numerous elements, such as scaly skin, bleeding, granulation, blisters, callus 

formation, and redness, impact how the DFU surrounding skin appears. 

Therefore, In order to develop effective computer vision algorithms for ulcer assessment, it is necessary to ac-

curately evaluate these visual symptoms, such as color descriptors and textural characteristics. Early detection 

of DFUs is important for improving patient outcomes and minimizing the strain on the healthcare system, in 

addition to preventing the development of foot-related complications [5]. 

Diabetes-related medical care could greatly benefit from the application of deep learning and machine learning 

[6, 7, 8], which are already being used in many healthcare fields. Figure 1 Describe the distinction between 

machine learning and deep learning [9]. Time-pressed multidisciplinary teams may benefit from artificial in-

telligence [10] and machine learning techniques and data that can assess DFU growth [11]. Clinical staff able to 

use these models and algorithms to help them make decisions about the treatment process and the potential 

progression or consequences of DFUs [12]. Patients and physicians may save time when the frequency of DM 

and DFUs rises, and treatment expenses related to DFU care may be decreased [13]. 

However, there are many challenges in classifying DFU [14]. Firstly, it requires a lot of time to gather DFU 

images and professionally label them. Secondly, the degree of similarities between healthy skin and DFU varies 

greatly between and within classes, depending on the DFU classification, lighting conditions, and the patient's 

ethnicity. Lastly, some situations make it difficult to distinguish between DFU and healthy skin, such as when 

DFU is small, skin wrinkles appear, or there are images of a toe.  

In the DFU identification task, an interested researcher will be able to effectively identify the general idea, and 

this article will assist them in determining the ultimate goal of their future research. This is the arrangement of 
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the remainder of the paper. Section 2 provides the related works and section 3 offers the database types and 

methods used. Then, section 4 shows the result and section 5 discussions and finally section 6 conclusions. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1-a) Machine learning Steps 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-b) Deep learning Steps 
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Learning, Transfer Learning, and Machine Learning models, component extraction, augmentation methods, 

available data sources, and the anatomy of diabetic foot ulcers. 

Munadi et al. [16] present a novel framework for DFU classification using thermal imaging-based decision fu-

sion with deep neural networks. In this case, a parallel classifier's classification result is combined with decision 

fusion. As the baseline classifier, ShuffleNet and MobileNetV2 convolutional neural network (CNN) models 

have been employed. With 100% accuracy, the proposed framework was able to classify the DFU thermal im-

ages into binary classes. In terms of image classification, the suggested framework performed more effectively 

overall than both the conventional machine-learning-based classifier and the state-of-the-art deep learning. 

Alzubaidi et al. [17] provide a new deep learning method for the automatic classification of various medical 

image types that is based on a hybrid deep convolutional neural network technique. Furthermore, the concept 

of parallel convolutional layers has been applied to improve feature representation by applying varying filter 

sizes to the same input and then concatenating the results. The suggested approach has demonstrated its ap-

plicability and resilience by handling a number of medical imaging tasks including complex and challenging 

situations.  

In [18] Binary infection and ischemia classification was done using the EfficientNet deep learning network and a 

thorough set of baselines after the DFU dataset improved with geometric and color image manipulations. This 

study shows that the EfficientNets deep learning model is a good fit for classifying infections and ischemia. 

El-Kady et al [19] devoted significant attention to medical image processing in order to enhance the precision of 

Diabetic Foot Ulcer diagnosis. The hybrid model, which combines ResNet50 with Generative Adversarial 

Networks, and the well-known ResNet50 model were assessed. The results were impressive; the ResNet50 

performed admirably. This study contributes to the field of medical image analysis's development and presents 

a viable path toward more accurate and effective DFU detection in clinical settings. The hybrid model offers 

significant improvements in diagnostic accuracy, indicating a major step forward in the management and 

treatment of DFU.  

Harahap et al. [20] investigated the accuracy of the Convolutional Neural Network model in diagnosing dia-

betic ulcer disease using a transfer learning technique based on how people with diabetes mellitus appear to 

have a foot wound in an image. For the purpose of classifying diabetic ulcers in patients with diabetes mellitus, 

the ResNet152V2 model was greatly evaluated. 

Munadi et al. [21] give the DFU classifier a new structure that combines DNNs and decision fusion to rely on 

thermal imaging. At this stage, the classifier result is integrated into a parallel classification via decision fusion. 

For the baseline classification, the author used the CNN methods of ShuffleNet and MobileNetV2. Initially, 

plantar thermogram datasets can be used to train ShuffleNet and MobileNetV2 in order to evolve the classifi-

cation process. 

In [22] advanced automatic computer vision (CV) algorithms that can classify the DFU of various steps and 

grades. In order to identify the likely misclassified causes for both classes, the authors primarily used machine 

learning approaches to classify the DFU spots versus normal skin spots of the foot area. Secondly, the authors 

segmented DFU and surrounding skin from full foot images using FCN. Lastly, the authors used robust and 

portable deep localization techniques using mobile devices to identify the DFU on foot image on a remote 

monitor. 

da Costa Oliveira et al. [23] explain how DL approaches are used to help in the treatment of DFUs. In particular, 

images of the patient's foot that were taken show ulcers. Using data augmentation and parameter modifica-

tions, the contributors present a development of Faster R-CNN. 

Al-Garaawi et al. [24] present a CNN-based DFU classification methodology that shows how, as compared to 

deep approaches that use RGB for DFU classification tasks, the CNN technique becomes more efficient when an 
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appropriate feature is added. The greatest outcomes were obtained when RGB images or their textural charac-

teristics could be combined and utilized as CNN input. 

D’Angelo et al. [25] examine the X-GPC method, which relies on Genetic Programming (GP) to create an easy 

global explainable classifier. Various current tools, like as SHAP and LIME, provide a global analysis of DFU 

using the mathematical process.  

In [26] a new image processing technique for the efficient computation and classification of DFU images was 

introduced. The foot ulcer areas were first segmented using a non-linear partial differential equation (NPDE) 

based segmentation after preprocessing was primarily finished by a cascaded fuzzy filter. As a result, the LBP 

was used to extract the useful features. These traits are then used by the hybrid GWO-CNN technique that is 

being presented to identify the DFU zones.  

In [27] to perform DFU versus normal skin classification, a novel stacked parallel convolutional layer-based 

network (DFU_SPNet) was introduced. 

In [28] DFU classification can be accomplished using a modified classical-quantum technique using a 

pre-training ResNet-50 approach as equivalent class labels such as ischaemia/non-ischaemia and nor-

mal/abnormal.  

Xie et al. [29] created a trustworthy model that predicts DFU patients' possibility of in-hospital amputation. To 

predict the three outcomes, a multi-class classification model was developed using the light gradient boosting 

machine (LightGBM). 

Saminathan, J., et al. [30] Create an effective method that uses asymmetry analysis to detect diabetes foot early 

on infrared thermal pictures. The 11 foot regions of interest were used to extract the texture and temperature 

features, and the ipsilateral and contralateral foot regions' features were subjected to asymmetric analysis. The 

region of interest was divided into normal and ulcer categories using a support vector machine. 

In [31] contrasts Deep Learning (DL) frameworks with machine learning-based methods. Created a novel 

DL-structure that can achieve greater accuracy and other quality standards after being trained from start. The 

major objective is to examine the benefits and limitations of using AI and DL to classify diabetic foot thermo-

grams.  

Mousa, Khadraa Mohamed, et al. [32] a case-control study design was employed. The researchers' instrument 

was a structured interview questionnaire with three sections: Part I: demographic characteristics; Part II: med-

ical data; and Part III: in vivo measurements. The suggested method predicts foot ulcers using two methods: a 

DT and an ANN.  

Nanda, Rachita, et al. [33] Various machine learning methods were used to analyze clinical and laboratory data 

in order to build prediction models for ulcer type classification (stage II classification) and group discrimination 

(stage I classification). Using the Stacking C algorithm as part of a decision fusion method improved prediction 

accuracy for both classification stages.  

Muralidhara, Shishir, et al. [34] present a novel convolutional neural network that uses plantar thermal images 

to distinguish between five DM severity levels and non-DM.  

Cassidy, Bill, et al. [35] provides a description and analysis of the dataset, evaluation techniques, benchmark 

algorithms, and preliminary assessment findings. 

In [36] scoping assessment, the social issues surrounding diabetic foot are being examined. Demonstrate that 

the most crucial element in the care and prevention of diabetic foot, both in terms of aggravation and other as-

pects, is the social impact of the condition. 
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3. Materials and Methods 

There are four parts to this section: (i) DFU database (ii) pre-processing and data augmentation (iii) fine-tuned 

CNNs architectures of pre-trained models (iv) Methods. 

 

3.1 DFU Database 

All of the included research, which was published between 2020 and 2023, predicted the progress of DFU using 

machine learning and deep learning. Details of DFU Database of included studies illustrate in Table 1. Ten 

studies in all utilized DFU database using data gathered from hospitals. (The same data from an Iraqi hospital 

was used in three separate studies [2, 39 ,41] This includes 754 images of the foot of diabetic individuals with 

healthy skin and DFUs, 542 normal and 1067 DFU images, in total1609 images showing areas of interest 

clipped into skin patches , Figure 2 illustrated sample images for healthy and unhealthy skin  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

Figure 2. a) Normal (Healthy), b) Abnormal (Ulcer). 
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The latest seven research from various hospitals separated into: China [40] includes 2688 images of different 

types of diabetic feet, and in [50] 21 clinical characteristics were considered as predictors for 362 individuals 

with UT3 grade DFUs. The United States of America [42] contains 48 clinical characteristics that were extracted 

from images of 208 wounds from 113 individuals (The initial dataset contained 2291 visit reports for 155 pa-

tients with 381 ulcers), and in [43] 207 individuals with a DFU were enrolled. For modeling, the natural algo-

rithm was used to transform the wound's area and duration. 

Peru and France [44] Using 219 images from a database showing various chronic wounds. Poland [45] A total of 

175 individuals (213 lower limbs with ulcers) participated in the trial; 164 patients (199 feet) were analyzed at 

the end of the study. The United Kingdom [46] where 1775 images from the Foot Snap and DFU datasets were 

used; Roughly 6909 patches were used in the training set , 987 in validation, and 1974 patches were used in the 

testing sets of the Ischemia dataset; the infection dataset used 4124, 589, and Out of the 1459 primary foot im-

ages, 1179 patches were used.  

 

Seven papers conducted their research using data from various datasets that were centered on DFUs. In [47], 

[17] where DFU1 has 1679 image patches (641 normal and 1038 abnormal images), and DFU2 contains 754 pa-

tient foot images totaling 1609 patches (542 normal and 1067 DFU images). Data from an online dataset of 

plantar thermograms was used in one research [16], which included images that were enhanced and aug-

mented to 1670 RGB images, and included 122 diabetic and 45 normal participants. One study out of five that 

published their research methodology and two were experimental studies [41, 17], a multicenter prospective 

cohort study was one of them [43], one an observational study with a prospective design [45] and one a retro-

spective study [50]. 

 

Table 1: Brief comparison of the current DFU classification techniques. 

 

Author Year Database Methodology Performance Advantages  Limitation 

Al-Garaa

wi, N. et 

al. [24] 

2022 

DFUNet 

(Part-A & 

Part-B) 

DFU-RGB-TE

X-Net using 

both RGB and 

texture coded 

mapped LBP 

images 

In comparable 

experimental 

settings and da-

tasets, the CNN 

performed simi-

larly when 

mapped LBP 

coded images 

were used as 

inputs rather 

than RGB 

 images. As a 

group, the 

handcrafted 

features and the 

CNN  

model trained 

on the RGB im-

• Enhanced Fea-

ture Representa-

tion        

• Improved  

Accuracy                                         

• Robustness to  

Illumination.                                     

• Early Detection 

• Computational 

Complexity      

• Data  

Dependency                         

• Limited  

Generalization                           

• Artifact  

Sensitivity 
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ages can im-

prove the DFU  

classification's 

overall  

performance. In 

particular, DFU 

classification 

performed better 

when RGB im-

ages were fed 

into the mapped 

LBP coded im-

ages. 

Alatrany, 

A. S. et al. 

[39] 

2022 

The diabetic 

center of 

Nasiriyah 

Hospital in 

Iraq's DFU 

dataset 

Proposed 

model with 8 

convolutional 

layers. The 

highest classi-

fication accu-

racy was at-

tained using a 

support vector 

machine with 

a polynomial 

kernel 

The most accu-

rate classifica-

tion was 

achieved with a 

support vector 

machine that 

used a polyno-

mial kernel. 

• Strong Feature 

Extraction 

• High Accuracy 

with SVM 

• Robust to  

Overfitting 

• Interpretability 

• Computational 

Cost 

• Kernel  

Sensitivity 

• Scalability  

Issues 

• Feature  

Decoupling 

Alshayeji, 

M. H. et 

al. [16] 

2023 

Plantar 

thermogram 

database 

plantar ther-

mogram foot 

images + SIFT/ 

SURF+BOF+S

VM 

A fully auto-

mated, precise, 

and dependable 

end-to-end clas-

sical machine 

learning system 

that uses foot 

thermal imaging 

to differentiate 

DFU from typi-

cal cases 

• Thermal Imag-

ing Benefits 

• Strong Local 

Characteristics 

• Efficient Repre-

sentation 

• SVM’s Strength 

• Information Loss 

in BOF 

• Sensitivity to 

Noise 

• Scalability Issues 

• Handcrafted 

Feature Depend-

ency 
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Alzubaid

i, L. et al. 

[17] 

2022 
DFU 1 & 2 

datasets 

Hybrid deep 

convolutional 

neural net-

work (DCNN) 

model was 

designed 

In order to dis-

tinguish be-

tween two clas-

ses of foot 

skin—normal 

(healthy) and 

abnormal 

(DFU)—the 

suggested ap-

proach was 

trained and 

evaluated on 

two distinct 

DFU datasets. 

Compared to 

SoTA networks 

attempting the 

DFU classifica-

tion problem, 

exceptional re-

sults were ob-

tained. 

• Enhanced Fea-

ture Learning  

• Improved Ac-

curacy  

• Adaptability to 

Variability  

• End-to-End 

Learning flexibil-

ity 

• Higher Com-

plexity 

• Data Require-

ments 

• Fusion Chal-

lenges 

• Interpretability 

Issues 

Alzubaid

i, L. et al. 

[2] 

2020 

The diabetic 

center of 

Nasiriyah 

Hospital in 

Iraq's DFU 

dataset 

 

DFU_QUTNet 

+ SVM 

proposed a new 

CNN model 

called 

DFU_QUTNet to 

automatically 

classify DFU 

into two groups: 

abnormal (DFU) 

and normal 

(healthy skin) 

achive high 

performance 

results 

• Optimized Fea-

ture Extraction 

• SVM’s Superior 

Classification 

• Flexibility in 

Kernel Choice 

• Interpretability 

• Two-Stage 

Training Com-

plexity 

• Feature Decou-

pling Issue 

• Scalability Prob-

lems 

• Hyper parame-

ter Sensitivity 

• Computational 

Cost 
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Han, A. 

et al. [40] 
2022 

DFU data 

from Chi-

na's Fujian 

Medical 

University's 

First Affili-

ated Hospi-

tal 

Refinements 

on YOLOv3 

model 

Real-time mobile 

detection and 

localization 

Wagner grades 

of systems have 

been developed 

that can offer an 

efficient assess-

ment of DF tis-

sue analysis and 

healing status, 

potentially 

changing the 

therapeutic 

treatment ap-

proach for DF in 

the future. 

• Real-Time De-

tection  

• Multi-Scale 

Feature Learning  

• Improved Ac-

curacy  

• End-to-End Effi-

ciency  

• Small Ulcer De-

tection Challenges  

• High Annotation 

Dependency  

• Computational 

Load  

• Class Imbalance 

Issues Limited 

Explain ability 

Ismael, 

H. A. et 

al. [41] 

2022 

The diabetic 

center of 

Nasiriyah 

Hospital in 

Iraq's DFU 

dataset 

Model 1: 

CNN_GLCM

Net + DNN                                                                                               

Model 2: 

CNN_GLCM

Net + SVM 

CNN_GLCMNet 

+ DNN, has 

yielded favour-

able results in 

DFU-image 

classification. In 

comparison with 

previous pub-

lished works, the 

CNN_GLCMNet 

+ SVMmodela-

chieves a higher 

f1-score metric. 

Model 1: 

• End-to-End 

Learning  

• High Accuracy 

• Automated 

Feature Fusion 

Model 2: 

• strong  

Generalization  

• Kernel  

Flexibility  

• Lower Over 

 fitting 

Model 1: 

• Computationally 

heavy 

• Over fitting risk                                                                    

Model 2: 

• Two-Stage Pipe-

line  

• Scalability Issues  

Kim, R. B. 

et al. [42] 
2020 

DFU data 

from 

Michi-gan 

Medicine 

Podiatry 

and Wound 

Clinic's 

electronic 

health rec-

ords (EHR) 

RF and SVM 

models trained 

with hand 

crafted imag-

ing features 

alone. 

Hand-crafted 

imaging bi-

omarkers were 

extracted from 

images of 

DFUs. 

Models con-

structed with 

hand-crafted 

imaging features 

alone performed 

better than 

models con-

structed with 

clinical or deep 

learning features 

alone. 

• Interpretability  

• Low Computa-

tional Cost 

• Works on Small 

Datasets  

• Less Data Hun-

gry 

• Feature Engi-

neering Burden  

• Limited Gener-

alization 

• Performance 

Plateau  

• Sensitive to 

Noise 
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Margolis, 

D. J. et al. 

[43] 

2022 

The Diabetic 

Foot Ulcer 

Consortium 

(DFUC) da-

taset was 

sourced 

from MVS 

Wound 

Care in 

Maryland, 

the Miami 

University, 

and the 

University 

of Pennsyl-

vania. 

LASSO re-

gression with 

four variables 

(wound dura-

tion, wound 

area, BMI, and 

adequate arte-

rial flow) most 

highly associ-

ated with 

healing by 

week 16 

Healing can be 

strongly pre-

dicted by the 

area and dura-

tion of the 

wound. These 

characteristics 

repeat through-

out decades and 

in many 

healthcare cen-

ters. Demon-

strated the value 

of employing 

them to compare 

centers and 

likely studies in 

order to deter-

mine the chance 

that a wound 

will heal. 

• Interpretability  

• Computationally 

Efficient 

• Works with 

Small Data 

• Linear Assump-

tion  

• Limited Predic-

tive Power 

• Dependent on 

Variable Quality  

• Static Model 

Niri, R. et 

al. [44] 
2021 

Database 

includes 

chronic  

images from 

the ESCALE 

database 

and DFU 

images 

taken at two 

hospitals in 

Peru and 

France 

Tissue seg-

mentation re-

sults: 

SPX-FCN32 

The suggested 

image segmen-

tation technique 

outperforms the 

current 

state-of-the-art 

FCN techniques 

on all measures 

and shows its 

resilience, par-

ticularly when 

applied to gran-

ulation and 

slough tissue. 

• High-Precision 

Segmentation  

• Efficiency  

• End-to-End 

Learning 

• Transfer Learn-

ing Friendly 

• Coarse Bounda-

ries  

• Limited Context 

Awareness  

• Data Hungry  

• Class Imbalance 

Sensitivity 
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Poradzka

, A. A. 

and L. 

Czupryni

ak [45] 

2023 

DFU data 

from the 

Medical 

University 

of Warsaw's 

Central 

University 

Hospital's  

ANN with 

nine input 

neurons, six 

hidden nodes 

and two out-

put neurons 

The method may 

be especially 

helpful in locat-

ing those who 

do not recover 

• Simple & Fast  

• Non-Linear 

Modeling  

• Interpretable 

Weights  

• Works with 

Small Data 

• Shallow Learn-

ing  

• Feature De-

pendency  

• Over fitting Risk  

• Fixed Architec-

ture 

Prakash, 

R. V. and 

K. S. 

Kumar 

[46] 

2022 

The Lanca-

shire 

Teaching 

Hospital's 

DFU dataset 

The TML and 

CNN ap-

proaches out-

performed the 

other methods 

in the binary 

classification 

of ischemia 

over infection. 

These methods 

can locate and 

segment a large 

number of DFU 

and have a quick 

inference rate. 

Ischemia and 

bacterial infec-

tion are two 

important DFU 

scenarios that 

have been iden-

tified using ma-

chine learning 

techniques. 

• TML (e.g., 

SVM/RF with 

Handcrafted Fea-

tures): Interpreta-

ble and Works 

well with small 

datasets. 

 

• CNN (Deep 

Learning): Auto-

matically learns 

discriminative 

features from raw 

images and Han-

dles spatial hier-

archies. 

TML: 

 Time-consuming 

and exper-

tise-dependent. 

May miss subtle 

imaging patterns 

detectable by 

CNNs. 

 

CNN: 

Requires large la-

beled datasets for 

training. 

Black-box nature 

reduces interpret-

ability for clini-

cians. 

Protik, P. 

et al. [46] 
2023 

Dataset for 

the Diabetic 

Foot Ulcer 

Grand 

Challenge 

2020 

(DFUC2020) 

Amended ver-

sion of Faster 

R–CNN 

Faster R-CNN 

with various 

fine-tuned pa-

rameters with 

ResNet50 as its 

backbone out-

performs its 

normal 

state-of-the-art 

version in terms 

of precision, re-

call, F1-score, 

and mean aver-

age. 

• High Detection 

Accuracy  

• Multi-Task 

Learning  

• Transfer Learn-

ing 

• Computational 

Cost  

• Complex Train-

ing  

• Data Hunger  

• Over fitting Risk 
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Sathya 

Preiya, V. 

and V. D. 

A. Kumar 

[48] 

2023 
DFU2020 

dataset 

Proposed 

method utiliz-

es DRNN 

based feature 

extraction and 

PFCNN-based 

classification 

The suggested 

design offers a 

useful instru-

ment for identi-

fying abnormal 

diabetic ranges 

and determining 

the likelihood of 

developing foot 

ulcers. 

• Enhanced Fea-

ture Learning  

• Precision Classi-

fication Strong 

Against Noise  

• Dynamic Adap-

tation 

• High Complex-

ity  

• Data Demands  

• Slow Inference 

Thotad, 

P. N. et 

al. [49] 

2023 DFU dataset 

Efficient Net 

based mod-

el(healthy 

skin) and ab-

normal (DFU) 

This study 

shows that on a 

series of images 

of diabetic foot 

ulcers, the Effi-

cient Net-based 

model outper-

formed other 

CNN models 

such as Goog-

leNet, AlexNet, 

VGG16, VGG19, 

DFUNet, 

DFU_QUTNet, 

and DFU_SPNet.  

• High Accuracy 

with Efficiency  

• Transfer Learn-

ing Friendly  

• Multi-Scale 

Feature Learning 

• Limited Inter-

pretability  

• Data Sensitivity 

• Over fitting Risk 

• Background Bias 

Wang, S. 

et al. [50] 
2022 

DFU data 

from the Air 

Force Hos-

pital of 

Eastern 

Theater 

Command 

in eastern 

China the 

affiliated 

hospital of 

Nanjing 

University 

Medical 

School. 

Naïve Bayesi-

an (NB) model 

The naïve 

Bayesian algo-

rithm model 

system included 

in the study is 

visualized as an 

easy-to-use 

online calculator 

that assists doc-

tors in identify-

ing refractory 

DFUs for timely 

intervention at 

initial admis-

sion. 

• Simple & Fast  

• Works with 

Small Data  

• Interpretable  

• Strong to Irrele-

vant Features 

• Strong Inde-

pendence As-

sumption  

• Oversimplifica-

tion 

• Feature De-

pendency  

• Poor Calibration 
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Xie, C 

[51]. 
2023 

The 2021 

dataset for 

the Diabetic 

Foot Ulcer 

Challenge 

(DFUC) 

Add the out-

puts of two 

models, Effi-

cientNet B3 

and the model 

based on Res-

NeXt50, with 

the segmenta-

tion modul 

Suggests an in-

tegrated ap-

proach for dia-

betic foot ulcer 

classification 

that takes into 

account both 

infection and 

ischemia. The 

testing results 

show that the 

model performs 

better than other 

good classifica-

tion models  

• Enhanced Fea-

ture Fusion  

• Segmenta-

tion-Guided Clas-

sification  

• High Perfor-

mance  

• Generalization 

• High Complex-

ity  

• Data Demands 

• Integration 

Challenges  

• Over fitting Risk 

Yogapri-

ya, J. et 

al. [52] 

2022 

Database 

containing 

DFU images 

from several 

types 

DFINET 

All CNN-based 

models are 

trained to dis-

criminate be-

tween infection 

and 

non-infection  

• High Accuracy  

• Multi-Scale 

Analysis  

• Robust to Varia-

bility  

• Efficient Feature 

Fusion 

• Computational 

Cost  

• Data Hunger  

• Black-Box Na-

ture  

• Deployment 

Challenges 

 

The model's accuracy in actual clinical settings may be impacted by the diversity of diabetic foot ulcer (DFU) 

datasets, as shown in Table 2, which includes aspects like lighting, ethnicity, and environmental circumstances. 

Diversity Observations: 

1. Skin Tone Gaps: Not every dataset has complete coverage of the Whole spectrum. 

2. Geographic Bias: 

• Middle East (Nasiriyah) and Latin America (ESCALE/Peru) help but need expansion 

• African and Indigenous populations missing entirely 

3. Clinical Variety: 

• Western datasets show better early-stage documentation 

• Middle East/Peru have more advanced cases 

4. Imaging Consistency: 

• Data from the US and Europe is often of higher quality. 

• Middle East/Peru include real-world smartphone images 

           So, it is recommended that Create fusion datasets combining strengths: 

• Nasiriyah's real-world Middle East cases 

• Fujian's early detection focus 

• ESCALE's chronic wound variety 

• DFUC's annotation quality 
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Table 2 . Brief comparison of the used DFU Datasets. 

 

Dataset 

Source 

Light 

 Conditions 

Data Collec-

tion Region 

Clinical  

Environment 

Imaging 

Technique 
Strengths 

Skin 

Color 

Nasiriyah 

Hospital (Iraq) 

Uncontrolled 

(mixed natural 

/artificial) 

Middle East 

Community 

clinics +  

hospital 

RGB + 

smartphone 

Real-world 

diversity 

olive to 

brown 

Plantar 

 Thermogram 

DB 

Lab-controlled 

(22-24°C) 
Multi-national Research labs 

Thermal  

imaging 

Early 

 ischemia de-

tection 

light to 

brown 

Fujian Medical 

University 

(China) 

Studio lighting  East Asia 
University hos-

pital 
Clinical RGB 

High-quality 

images 

light to 

olive 

Michigan 

Medicine (US) 

Mixed clinical 

documentation 
North America 

Academic 

wound center 

EHR-linked 

images 

Rich clinical 

metadata 

fair to 

brown 

DFUC (US) 
Professional ring 

lights 
Western 

Specialty 

 clinics 

High-res 

RGB 

Large 

 standardized 

set 

pale to 

olive 

ESCALE + 

Peru/France 

Extreme  

variability 

Europe/Latin 

America 

Urban/rural 

hospitals 

Mixed- 

quality RGB 

Broadest skin 

coverage 

full 

range 

Warsaw  

University 

(Poland) 

Multispectral 

lab 
Eastern Europe 

University hos-

pital 
Multispectral 

Advanced 

imaging 

light to 

olive 

Lancashire 

(UK) 
3D scan lighting 

Western  

Europe 

Teaching  

hospital 

3D wound 

mapping 

Volumetric 

analysis 

Western 

Europe 

DFUC2020 
Challenge- 

standardized 
International Mixed clinics RGB + depth 

Benchmark 

standard 

Interna-

tional 

Chinese Air 

Force  

Hospital 

Hyper spectral 

lab 
East Asia 

Military 

 hospital 

Hyper  

spectral 

Military  

precision 

East 

Asia 

Multi 

-institutional 
Varies by source Global   

Mixed  

modalities 

Most  

comprehensive 
Global 

 

This analysis shows that although the number of DFU datasets is increasing, there are still large gaps in: 

• Global skin tone representation 

• Standardized multimodal capture 

• Clinical outcome correlation 
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DFUC2021 is currently the most comprehensive option; however, for balanced studies, researchers should add Nasiriyah 

(diverse phenotypes) and Michigan (EHR depth). Thermal/hyperspecial datasets (Plantar DB, Chinese Air Force) remain 

niche due to modality-specific limitations. 

According to our analysis, there are still a lot of gaps in the creation of truly global, representative DFU data for equita-

ble AI development, even though each dataset offers insightful viewpoints. 

Misclassification errors may result from the strong similarity between healthy and afflicted skin, particularly 

when the ulcers are small or in their early stages so there are some challenges.  

1- The Challenges in Image Classification in DFU Image:  

A. Ulcers Playing Hide & Seek 

 Early sores look almost identical to healthy skin 

 Worst for: Smartphone pictures  (Nasiriyah) and datasets missing small ulcers (DFUC2020) 

B. Skin Color Shortcut 

 Most photos are of light/medium skin 

 Missing: Very dark (African) and very pale (Nordic) skin examples 

 Best right now: ESCALE+Peru (has some variety) 

C. Camera Lottery 

 Professional hospital cameras (Michigan, DFUC) vs. 

 Real-world phone pictures  (Nasiriyah - often blurry/dark) 

2- Evaluation in real hospitals or medical clinics: 

These DFU datasets (Nasiriyah, DFUC, Michigan, etc.) were mostly collected in controlled research settings, 

The AI models work well on perfect hospital images. 

But crash when faced with real clinic challenges: 

 Blurry smartphone pictures from patients 

 Strange lighting in emergency rooms 

 Doctors taking quick snaps 

3- Challenges in Large-Scale Hospital Implementation Problem: 

While AI models (tested on datasets like DFUC, Michigan, Nasiriyah) show promise in labs, real-world hospital 

deployment faces major hurdles: 

1. Cost & Equipment 

   High-end AI needs expensive hardware: 

• GPUs for processing   

• High-resolution cameras (like DFUC’s DSLR setup), 

But real clinics use: 

• Smartphones (Nasiriyah’s blurry/low-light images) 

• Old computers (can’t run heavy AI models) 

 

2. Staff Training 

• Doctors/nurses aren’t AI experts (Hard to trust or use these tools) 
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3. Computational Limits 

• Heavy models (like DFUNet) may crash hospital computers 

• Thermal imaging AI (Plantar DB) needs extra sensors (Not feasible everywhere) 

3.2 pre-processing and data augmentation 

After that, the gathered images were preprocessed to produce patches of similar sizes for training and testing 

the suggested technique and pre-trained deep learning models (AlexNet, VGG16, and GoogleNet) for DFU 

classification. To perform well, CNN needs a significant amount of the labeled training set. A limited training 

set causes CNN's parameters to be improperly adjusted, which results in considerable overfitting. 

In general, the data augmentation procedure enhances deep learning performance on various tasks [37]. Addi-

tionally, Gathering a lot of medical data is expensive and challenging. Therefore, in order to enhance the deep 

learning models' performance and prevent the overfitting issue, we applied techniques for data augmentation. 

The data augmentation was accomplished by employing a variety of images processing techniques, including 

flipping, rotation, contrast enhancement, using alternative color models, and random scaling. 

 

3.3 Pre-trained CNN architectures 

The most advanced large image datasets, like the ImageNet dataset, which contains over 1.28 million natural 

images from a variety of areas, have been used to train and test CNN networks for a number of classification 

tasks [38]. By fine-tuning pre-trained CNNs using medical image data sets, huge networks can learn particular 

elements of the intriguing task. Numerous researches have demonstrated the effectiveness and efficiency of 

transfer learning of pre-trained models for the classification of medical images [44, 50]. Performance is im-

proved by using pre-trained models with the transfer learning approach. Three CNN models—GoogleNet, 

AlexNet, and VGG16—have been employed. We refined these CNN models for the classification of DFU (ab-

normal) and healthy skin (normal) classes after they shown high accuracy in several areas. 

 

3.4 Methods  

Nine studies [39, 40, 41, 47, 17, 16] suggested several machine learning algorithms that effectively divide DFUs 

into two categories: abnormal and normal. Because it produced the best classification accuracy, one study 

suggested using a polynomial kernel in a Support Vector Machine [39] and another proposed that using ther-

mal foot images, a reliable and accurate classical machine learning method can distinguish between DFUs and 

normal cases [16].  

Convolutional neural network methods were found to be useful in four studies: DFU_QUTNet, a new CNN 

model, successfully divided DFU into normal and abnormal categories [2]; CNN_GLCMNet + SVM offered a 

greater f1-score metric than earlier research., but CNN_GLCMNet + DNN presented an identification for DFU 

images[41]; The best performance was achieved by a refined model called Faster R-CNN using ResNet50 as its 

foundation [47]; abnormal DM ranges were found using a PFCNN-based classification approach, which also 

evaluated the risk of foot ulcers [46].  

A hybrid deep convolutional neural network method with global average pooling, residual linkages, and mul-

ti-branch parallel convolutional layers was presented in one study [17]. According to the other two studies, 

Several CNN models performed better by the EfficientNet-based model [47], and promising outcomes were 

obtained using a combined strategy for classifying infection and ischemia in DFUs [48].  

 



IJT’2024, Vol.05, Issue 01. 18 of 26 

 

4. Result of previous techniques  

 

4.1 performance measures 

 

The efficacy of the model is evaluated using the following metrics: sensitivity (Recall), specificity, precision, 

F1-measure, accuracy, area under the curve (AUC), Mean average precision, DICE and Mathew correlation 

coefficient (MCC) [53]. 

 Precision or positive predictive value (PPV) is derived as in (equation 1): 

      Precision 
  

     
 

       (1) 

Recall, sometimes referred to as the true ratio of correctly predicted positive observations to all observations in 

the real class, (equation 2) displays the recall formula. 

                                            Recall=
  

     
                                                    (2) 

 

Both false positives and false negatives are taken into consideration by the F1 score (equation 3), which calcu-

lates the average of recall and precision. This is required in order to balance precision and recall. 

 

                                  F1−Score   
                

                
                     (3) 

 

Equations (4, 5) can be used to express the specificity and sensitivity, respectively, of the percentage of actual 

TNs that the model correctly predicted. 

 
         Specificity 

  

     
 

        (4) 

 
            

  

     
 

        (5) 

Where TP (True Positive) is the number of images that the Network correctly identifies as relevant.TN (True 

Negative) is the number of images the Network correctly identifies as irrelevant. FP (False Positive) is the 

number of images the Network falsely identifies as relevant. FN (False Negative) is the number of relevant 

images that the Network fails to identify 

 

AUC, or Area under the Curve, refers to the area under the Receiver Operating Characteristic (ROC) curve. The 

ROC curve is a graphical representation of a classification model's performance, plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR) at various threshold settings. 

The Matthews correlation coefficient (MCC), also referred to as the phi coefficient, is used in machine learning 

to assess how well binary classifications work [54]. Equation (6) displays the formula that is used to calculate 

MCC. 

                                       
             

√                            
                           (6) 

A statistic used to assess how similar two sets are is the Dice coefficient, sometimes referred to as the Dice sim-

ilarity coefficient, DSC. It is frequently employed when dealing with binary classification issues, particularly for 

assessing model performance in medical imaging or image segmentation tasks. 
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The mean of the average precision values across all classes is known as mean average precision, or mAP. It is a 

technique that aggregates performance from several classes to provide a broad evaluation of the model's per-

formance in tasks that require the prediction of multiple classes or objects [55]. As shown in (equation 7): 

 

                                                 
 

 
∑    

 
                         (7) 

Where     is the number of classes and      is the average precision for the     class. 

 

Various methods were used to report the model performances in the various studies. As illustrated in Table 3 

results of various methods, the most often reported metric, sensitivity (recall) was employed in 12 studies with 

values ranging from 74.53% to 98%. Each of the three metrics—accuracy, precision, and F-measure—was re-

ported eleven times in various research, with scores ranging from 64.6% to 99.32%, 62.9 to 99.0%, and 52.05 to 

99.0%. 

Table 4 shows results of remaining studies, displays the area under the receiver operating curve (AUC) for 

seven studies showed results ranging from 72.12% to 99.5%. Five studies with results ranging from 66.18% to 

97.15% reported specificity. Matthews correlation coefficient (MCC) and mean average precision (mAP) were 

reported in two separate studies [56], with findings ranging from 30.1% to 84% and 71% to 91.95%, respectively. 

Lastly, one study reported the dice similarity coefficient, or DICE, and the result was 75.74 percent 

 

Table 3. Results of various methods 

 

Author Year   Recall Accuracy Precision  F1- score AUC 

Al-Garaawi, 

N. et al. [24] 

2022 - - - 0.952 (PartA) 

0.990 (is-

chaemia) 

0.744 (infec-

tion) 

0.981 (Par-

tA) 0.995 

(ischaemia) 

0.820 (in-

fection 

Alatrany, A. 

S. et al. [39] 

2022 0.931 0.933 0.947 0.939 0.934 

Alshayeji, 

M. H. et al. 

[16] 

2023 97.81 97.81 97.9 - 99.95 

Alzubaidi, 

L. et al. [17] 

2022 94.50 (first 

database) , 

96.5 (second 

database) 

- 95.10  

98.2  

94.80  

 97.3  

- 

Alzubaidi, 

L. et al. [2] 

2020 93.6 - 95.4 94.5 - 

       

Ismael, H. 

A. et al. [41] 

2022 97.2 (Method 

1) 96.9 

(Method 2) 

97.4  

96.9  

97.5  

96.7  

97.3  

96.8  

- 

Kim, R. B. et 

al. [42] 

2020 0.885 0.811 0.852 0.868 0.760 

Niri, R. et al. 

[44] 

2021 74.53 

 

92.68 78.07 - - 

Poradzka, 2023 91.6 % 82.21 % - - 0.85 
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A. A. and L. 

Czupryniak 

[45] 

Protik, P. et 

al. [47] 

2023 0.890 - 0.773 0.827 - 

Sathya Pre-

iya, V. and 

V. D. A. 

Kumar [48] 

2023 - 99.32 - - - 

       

Thotad, P. 

N. et al. [49] 

2023 98 98.97 99 98 - 

       

        

Wang, S. et 

al. [50] 

2022 0.907 0.750 0.629 0.744 0.864 

Xie, C .[51] 2023 - - - 0.6334  - 

       

Yogapriya, J. 

et al. [52] 

2022 90.57 91.98 93.72 92.12 - 

Table 4.  Results of remaining studies 

Author Year AUC Specificity Mean aver-

age preci-

sion 

Matthews 

correlation 

coefficient 

DICE 

Han, A. et 

al. [40] 

2022 - - 91.95 - - 

Margolis, 

D. J. et al. 

[43] 

2022 0.7212 - - - - 

Prakash, R. 

V. and K. S. 

Kumar [46] 

2022 - - - 64.8 % (avg. all 

models, is-

chaemia clas-

sification) 30.1 

%  

 

- 

5. Discussion 

The article's goal was to give readers a comprehensive understanding of the state of artificial DFU identification 

research at current time. It has been demonstrated that the developments in ML and DL techniques greatly aid 

clinicians in making decisions [57]. Comparing this problem domain to other related ones, it is relatively new to 

apply engineering methods for DFU classification [58, 59]. It has been noted that the problem is resolved by 

applying both advanced DL and traditional ML techniques [60].  

It would be helpful to update this study in a future systematic review to include any findings that have not yet 

been published. We might have overlooked more extensive, in-depth machine learning and deep learning re-

search that might have included a brief sub-analysis on DFUs in our search. To further evaluate the appropri-

ateness of the proposed machine learning and deep learning models, they might be compared to other data-
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bases, environments, or patient cohorts in future studies. As a result, the results may become more broadly 

applicable and help more people around the world. 

6. Limitation  

Cross-Cutting Limitations 

1. Data Diversity Issues 

• The majority of techniques were trained on limited ethnic populations. 

• Insufficient representation of uncommon ulcer subtypes 

2. Clinical Utility Gaps 

• Few models incorporate EHR data 

• The majority lack clinical confirmation in real time.  

3. Resource Intensity 

• For mobile deployment, hybrid approaches are frequently unworkable. 

• High GPU requirements for ensemble approaches 

While there is methodological variation in DFU research, this analysis shows that the majority of methodologies 

have to make fundamental trade-offs between clinical application, accuracy, and complexity [61, 62]. 

Deep learning solutions seem to be replacing handcrafted ones in the field, but real-world deployment re-

strictions are not being given enough consideration [63, 64]. Future work should prioritize: 1) Multi-center 

validation across ethnic groups, 2) Standardized benchmarking protocols, and 3) Hybrid architectures that 

balance performance with interpretability. 

 

7. Ethics of AI Diagnosis 

 

The ethical implications of using AI in medical diagnostics are complex and multifaceted, including concerns 

about patient data privacy, algorithmic bias, and equity in healthcare outcomes. The key issues are detailed 

below: 

 

1. Patient Data Privacy and Confidentiality 

 

AI systems in medical diagnostics often require access to massive datasets, which may include sen-

sitive patient information, such as medical records, test results, and even genetic data. This raises signifi-

cant privacy concerns: 

Data Security: AI systems are vulnerable to data breaches and hacking, compromising patient infor-

mation. The integrity of healthcare systems is critical, as unauthorized access could lead to identity theft, 

insurance fraud, or misuse of personal health data. 

Informed Consent: Patients must be fully informed about how their data will be used. However, this is 

complicated by the often complex nature of AI systems, making it difficult for patients to fully understand 

how their data is processed and analyzed. Clear and transparent communication is therefore essential to 

ensure informed patient consent. 

Data Ownership: There is also the question of who owns patient data. In some cases, the healthcare pro-

vider may retain the data, while in others, the AI company developing the diagnostic tool may own it. 

This can create complications in how patient data is shared and used, especially if AI systems are used 

across different organizations or platforms. 
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2. Algorithmic Bias and Discrimination 

 

AI models are trained on historical data, which may reflect biases present in the healthcare system. If 

these biases are not carefully managed, they can manifest in the diagnostic process: 

Minority Bias: If an AI system is trained primarily on data from certain demographic groups, it may un-

derperform or even make harmful errors when diagnosing individuals from underrepresented groups. 

For example, if the majority of training data comes from a specific racial or ethnic group, the AI may be 

less accurate for patients from other demographic backgrounds, leading to misdiagnoses or unequal care. 

Socioeconomic Disparities: AI systems may also reinforce socioeconomic biases. For example, if the data 

used to train the model is biased toward wealthier or more well-insured groups, the system may not take 

into account the unique healthcare challenges faced by low-income or uninsured individuals. 

Healthcare disparities: Inaccurate or biased diagnoses can perpetuate existing health disparities. Some 

conditions may be underdiagnosed in minority populations if AI lacks the sensitivity to detect them cor-

rectly. Furthermore, AI systems may not consider important social determinants of health, such as access 

to healthcare, housing, or nutrition, which disproportionately impact marginalized groups. 

 

3. Transparency and Accountability 

 

AI decision-making is often opaque, which can pose challenges in ensuring ethical medical decisions. 

Black Box Models: Many AI models, particularly deep learning systems, operate as "black boxes," meaning 

it's difficult to explain how they reach their conclusions. This lack of transparency may make it difficult for 

healthcare professionals to trust AI-generated recommendations or explain them to patients. 

Accountability: If an AI system makes a misdiagnosis that results in harm, it may be difficult to determine 

who is responsible. Is it the AI developers, the healthcare providers using it, or the organization using the 

system? Clear guidelines and regulations are needed to ensure accountability in cases of AI failure. 

 

4. Impact on the Physician-Patient Relationship 

 

The increasing reliance on AI in medical diagnosis may alter the physician-patient relationship, raising 

ethical concerns about trust and decision-making: 

Erosion of Trust: Patients may feel uncomfortable receiving a diagnosis from a machine rather than a 

human doctor. Patients' trust in healthcare providers may erode if they feel AI systems are taking over the 

decision-making process. 

Overreliance on AI: There is a risk that healthcare providers will become overly reliant on AI systems, 

leading to a loss of human physicians' skills and a reduced emphasis on personal judgment and experi-

ence. This could undermine the comprehensive, patient-centered care that is so critical in medical practice. 

 

5. Equitable Access to AI Tools 

 

There are concerns that the widespread use of AI in healthcare could exacerbate inequalities in access to care: 

Inequality of Access: AI systems often require significant investments in infrastructure, such as advanced 

computing power and training data, which may not be available in low-resource settings. This could lead 
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to a situation where only the wealthiest patients or healthcare facilities benefit from the benefits of 

AI-assisted diagnostic 

8. Conclusions 

The need for qualified medical professionals and podiatrists is growing rapidly due to the ongoing increase in 

the number of diabetic patients and, as a result, the number of DFU cases. Furthermore, controlling DFU in-

stances is made much more difficult by the costly and time-consuming processes for DFU detection and treat-

ment. Therefore, a trustworthy, affordable, and simple computer vision-based automated system is needed to 

diagnosis diabetic foot ulcers.  

The primary objective was to provide researchers with a comprehensive understanding of the current level of 

automatic DFU recognition. It has been demonstrated that the advancement of ML and DL methods signifi-

cantly facilitates physicians' decision-making. There were numerous researches that used machine learning to 

either predicted the growth of DFUs or differentiate DFUs from healthy skin. All of the research indicated that 

different machine learning and deep learning methods could effectively classify DFUs and enhance DFU pre-

diction. The suggested machine learning models may enhance the clinical procedure for managing patients' 

DFUs. 

A standardized method and algorithm that can recognize and predict the trajectory of DFUs may be useful for 

future research. 

References 

1. Ogurtsova, K., Guariguata, L., Barengo, N. C., Ruiz, P. L. D., Sacre, J. W., Karuranga, S., ... & Magliano, D. J. (2022). IDF 

diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes research and clinical practice, 183, 

109118. 

2. Alzubaidi, L., Fadhel, M. A., Oleiwi, S. R., Al-Shamma, O., & Zhang, J. (2020). DFU_QUTNet: diabetic foot ulcer classifi-

cation using novel deep convolutional neural network. Multimedia Tools and Applications, 79(21), 15655-15677.   

3. Ahsan, M., Naz, S., Ahmad, R., Ehsan, H., & Sikandar, A. (2023). A deep learning approach for diabetic foot ulcer classi-

fication and recognition. Information, 14(1), 36.  

4. Weatherall, T., Avsar, P., Nugent, L., Moore, Z., McDermott, J. H., Sreenan, S., ... & Patton, D. (2024). The impact of ma-

chine learning on the prediction of diabetic foot ulcers–a systematic review. Journal of Tissue Viability 

5. Swerdlow, M., Shin, L., D’Huyvetter, K., Mack, W. J., & Armstrong, D. G. (2023). Initial clinical experience with a simple, 

home system for early detection and monitoring of diabetic foot ulcers: the foot selfie. Journal of Diabetes Science and 

Technology, 17(1), 79-88.  

6. Tulloch, J., Zamani, R., & Akrami, M. (2020). Machine learning in the prevention, diagnosis and management of diabetic 

foot ulcers: A systematic review. IEEE Access, 8, 198977-199000.  

7. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic markets, 31(3), 685-695 

8. Khandakar, A., Chowdhury, M. E., Reaz, M. B. I., Ali, S. H. M., Hasan, M. A., Kiranyaz, S., ... & Malik, R. A. (2021). A 

machine learning model for early detection of diabetic foot using thermogram images. Computers in biology and medi-

cine, 137, 104838. 

9. Abaker, A. A., & Saeed, F. A. (2021). A comparative analysis of machine learning algorithms to build a predictive model 

for detecting diabetes complications. Informatica, 45(1). 

10. Briganti, G., & Le Moine, O. (2020). Artificial intelligence in medicine: today and tomorrow. Frontiers in medicine, 7, 

509744. 

11. Ellahham S. Artificial intelligence: the future for diabetes care. Am J Med 2020; 133:895–900. 



IJT’2024, Vol.05, Issue 01. 24 of 26 

 

12. Cassidy, B., Kendrick, C., Reeves, N. D., Pappachan, J. M., O’Shea, C., Armstrong, D. G., & Yap, M. H. (2021). Diabetic 

foot ulcer grand challenge 2021: evaluation and summary. In Diabetic foot ulcers grand challenge (pp. 90-105). Cham: 

Springer International Publishing. 

13. D’Angelo, G., Della-Morte, D., Pastore, D., Donadel, G., De Stefano, A., & Palmieri, F. (2023). Identifying patterns in 

multiple biomarkers to diagnose diabetic foot using an explainable genetic programming-based approach. Future Gen-

eration Computer Systems, 140, 138-150.  

14. Monteiro‐Soares, M., Boyko, E. J., Jeffcoate, W., Mills, J. L., Russell, D., Morbach, S., & Game, F. (2020). Diabetic foot ulcer 

classifications: a critical review. Diabetes/metabolism research and reviews, 36, e3272.  

15. Nagaraju, S., Kumar, K. V., Rani, B. P., Lydia, E. L., Ishak, M. K., Filali, I., ... & Mostafa, S. M. (2023). Automated Diabetic 

Foot Ulcer Detection and Classification Using Deep Learning. IEEE Access, 11, 127578-127588.  

16. Munadi, K., Saddami, K., Oktiana, M., Roslidar, R., Muchtar, K., Melinda, M., ... & Arnia, F. (2022). A deep learning 

method for early detection of diabetic foot using decision fusion and thermal images. Applied Sciences, 12(15), 7524.  

17. Alzubaidi, L., Fadhel, M. A., Al-Shamma, O., Zhang, J., Santamaría, J., & Duan, Y. (2022). Robust application of new deep 

learning tools: an experimental study in medical imaging. Multimedia Tools and Applications, 81(10), 13289-13317 

18. Liu, Z., John, J., & Agu, E. (2022). Diabetic foot ulcer ischemia and infection classification using efficientnet deep learning 

models. IEEE Open Journal of Engineering in Medicine and Biology, 3, 189-201. 

19. El-Kady, A. M., Abbassy, M. M., Ali, H. H., & Ali, M. F. (2024). Advancing Diabetic Foot Ulcer Detection Based On Resnet 

And Gan Integration. Journal of Theoretical and Applied Information Technology, 102(6), 2258-2268.   

20. Harahap, M., Anjelli, S. K., Sinaga, W. A. M., Alward, R., Manawan, J. F. W., & Husein, A. M. (2022). Classification of 

diabetic foot ulcer using convolutional neural network (CNN) in diabetic patients. Jurnal Infotel, 14(3), 196-202.  

21. Munadi, K., Saddami, K., Oktiana, M., Roslidar, R., Muchtar, K., Melinda, M., ... & Arnia, F. (2022). A deep learning 

method for early detection of diabetic foot using decision fusion and thermal images. Applied Sciences, 12(15), 7524.  

22.  M. Goyal, ‘‘Novel computerised techniques for recognition and analysis of diabetic foot ulcers,’’ Ph.D. thesis, Man-

chester Metropolitan Univ., 2019. [Online]. Available: https://e-space.mmu.ac.uk/625105/ 1/Thesis_Manu_Revised.pdf 

23. Ellahham, Samer. "Artificial intelligence: the future for diabetes care." The American journal of medicine 133, no. 8 (2020): 

895-900. 

24. Al-Garaawi, N., Ebsim, R., Alharan, A. F., & Yap, M. H. (2022). Diabetic foot ulcer classification using mapped binary 

patterns and convolutional neural networks. Computers in biology and medicine, 140, 105055. 

25. D’Angelo, D. Della-Morte, D. Pastore, G. Donadel, A. De Ste fano, and F. Palmieri, ‘‘Identifying patterns in multiple 

biomarkers to diagnose diabetic foot using an explainable genetic programming based approach,’’ Future Gener. Com-

put. Syst., vol. 140, pp. 138–150, Mar. 2023 

26. Arumuga Maria Devi, T., & Hepzibai, R. (2023). Clinical assessment of diabetic foot ulcers using GWO-CNN based hy-

perspectral image processing approach. IETE Journal of Research, 69(12), 8705-8716. 

27. Das, S. K., Roy, P., & Mishra, A. K. (2022). DFU_SPNet: A stacked parallel convolution layers based CNN to improve 

Diabetic Foot Ulcer classification. ICT Express, 8(2), 271-275 

28. Amin, J., Anjum, M. A., Sharif, A., & Sharif, M. I. (2022). A modified classical-quantum model for diabetic foot ulcer 

classification. Intelligent Decision Technologies, 16(1), 23-28. 

29. Xie, P., Li, Y., Deng, B., Du, C., Rui, S., Deng, W., ... & Deng, W. (2022). An explainable machine learning model for pre-

dicting in‐hospital amputation rate of patients with diabetic foot ulcer. International wound journal, 19(4), 910-918. 



IJT’2024, Vol.05, Issue 01. 25 of 26 

 

30. Saminathan, J., Sasikala, M., Narayanamurthy, V. B., Rajesh, K., & Arvind, R. J. I. P. (2020). Computer aided detection of 

diabetic foot ulcer using asymmetry analysis of texture and temperature features. Infrared Physics & Technology, 105, 

103219 

31. Cruz-Vega, I., Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J. D. J., & Ramirez-Cortes, J. M. 

(2020). Deep learning classification for diabetic foot thermograms. Sensors, 20(6), 1762 

32. Mousa, K. M., Mousa, F. A., Mohamed, H. S., & Elsawy, M. M. (2023). Prediction of foot ulcers using artificial intelligence 

for diabetic patients at Cairo university hospital, Egypt. SAGE open nursing, 9, 23779608231185873. 

33.  Nanda, R., Nath, A., Patel, S., & Mohapatra, E. (2022). Machine learning algorithm to evaluate risk factors of diabetic foot 

ulcers and its severity. Medical & biological engineering & computing, 60(8), 2349-2357. 

34.  Muralidhara, S., Lucieri, A., Dengel, A., & Ahmed, S. (2022). Holistic multi-class classification & grading of diabetic foot 

ulcerations from plantar thermal images using deep learning. Health information science and systems, 10(1), 21. 

35.  Cassidy, B., Reeves, N. D., Pappachan, J. M., Gillespie, D., O’Shea, C., Rajbhandari, S., ... & Yap, M. H. (2021). The DFUC 

2020 dataset: analysis towards diabetic foot ulcer detection. touchREVIEWS in Endocrinology, 17(1), 5. 

36.  Costa, D., Ielapi, N., Caprino, F., Giannotta, N., Sisinni, A., Abramo, A., ... & Serra, R. (2022). Social aspects of diabetic 

foot: a scoping review. Social Sciences, 11(4), 149 

37. A. Oliveira, A. B. de Carvalho, and D. Dantas, ‘‘Faster R-CNN approach for diabetic foot ulcer detection,’’ in Proc. 16th 

Int. Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl., 2021, pp. 677–684 

38. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Berg AC (2015) Imagenet large scale visual recognition chal-

lenge. Int J Comput Vis 115(3):211–252 

39. Alatrany, A. S., Hussain, A., Alatrany, S. S., & Al-Jumaily, D. (2022, August). Application of deep learning autoencoders 

as features extractor of diabetic foot ulcer images. In International conference on intelligent computing (pp. 129-140). 

Cham: Springer International Publishing. 

40. Han, A., Zhang, Y., Li, A., Li, C., Zhao, F., Dong, Q., ... & Zhou, S. (2022, July). Deep learning methods for real-time de-

tection and analysis of Wagner Ulcer Classification System. In 2022 International Conference on Computer Applications 

Technology (CCAT) (pp. 11-21). IEEE. 

41. Ismael, H. A., & Al-A’araji, N. H. (2022). An Enhanced Diabetic Foot Ulcer Classification Approach Using GLCM and 

Deep Convolution Neural Network. Science, 8(4), 11. 

42. Kim, R. B., Gryak, J., Mishra, A., Cui, C., Soroushmehr, S. R., Najarian, K., & Wrobel, J. S. (2020). Utilization of 

smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers. Computers in biology and 

medicine, 126, 104042. 

43. Kim, R. B., Gryak, J., Mishra, A., Cui, C., Soroushmehr, S. R., Najarian, K., & Wrobel, J. S. (2020). Utilization of 

smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers. Computers in biology and 

medicine, 126, 104042. 

44. Niri, R., Douzi, H., Lucas, Y., & Treuillet, S. (2021). A superpixel-wise fully convolutional neural network approach for 

diabetic foot ulcer tissue classification. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual 

Event, January 10–15, 2021, Proceedings, Part I (pp. 308-320). Springer International Publishing. 

45. Poradzka, A. A., & Czupryniak, L. (2023). The use of the artificial neural network for three-month prognosis in diabetic 

foot syndrome. Journal of Diabetes and its Complications, 37(2), 108392. 

46. Prakash, R. V., & Kumar, K. S. (2022). Development of Automatic Segmentation Techniques using Convolutional Neural 

Networks to Differentiate Diabetic Foot Ulcers. International Journal of Advanced Computer Science and Applica-

tions, 13(11). 



IJT’2024, Vol.05, Issue 01. 26 of 26 

 

47. Protik, P., Atiqur Rahaman, G. M., & Saha, S. (2023). Automated Detection of Diabetic Foot Ulcer Using Convolutional 

Neural Network. In The Fourth Industrial Revolution and Beyond: Select Proceedings of IC4IR+ (pp. 565-576). Singapore: 

Springer Nature Singapore. 

48. Sathya Preiya, V., & Kumar, V. A. (2023). Deep Learning-Based Classification and Feature Extraction for Predicting 

Pathogenesis of Foot Ulcers in Patients with Diabetes. Diagnostics, 13(12), 1983. 

49. Thotad, P. N., Bharamagoudar, G. R., & Anami, B. S. (2023). Diabetic foot ulcer detection using deep learning approach-

es. Sensors International, 4, 100210. 

50. Wang, S., Xia, C., Zheng, Q., Wang, A., & Tan, Q. (2022). Machine learning models for predicting the risk of hard-to-heal 

diabetic foot ulcers in a Chinese population. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 3347-3359. 

51. Xie, C. (2022, November). FCFNet: A Network Fusing Color Features and Focal Loss for Diabetic Foot Ulcer Image Clas-

sification. In International Conference on Neural Information Processing (pp. 434-445). Singapore: Springer Nature Sin-

gapore. 

52. Yogapriya, J., Chandran, V., Sumithra, M. G., Elakkiya, B., Shamila Ebenezer, A., & Suresh Gnana Dhas, C. (2022). Au-

tomated detection of infection in diabetic foot ulcer images using convolutional neural network. Journal of Healthcare 

Engineering, 2022(1), 2349849. 

53. Ahsan, M., Naz, S., Ahmad, R., Ehsan, H., & Sikandar, A. (2023). A deep learning approach for diabetic foot ulcer classi-

fication and recognition. Information, 14(1), 36. 

54. Shaban, W.M., Moustafa, H.ED., El-Seddek, M.M. (2025). BCDM: A Novel AI-Based Model for Detection of Breast Can-

cer. In: Abdelgawad, A., Jamil, A., Hameed, A.A. (eds) Intelligent Systems, Blockchain, and Communication Technolo-

gies. ISBCom 2024. Lecture Notes in Networks and Systems, vol 1268. Springer, Cham. 

https://doi.org/10.1007/978-3-031-82377-0_38 

55. Elgendy, M.S., Moustafa, H.E.D., Nafea, H.B. and Shaban, W.M., 2025. Utilizing Voting Classifiers for Enhanced Analysis 

and Diagnosis of Cardiac Conditions. Results in Engineering, p.104636. 

56. Yap, M.H.; Hachiuma, R.; Alavi, A.; Brüngel, R.; Cassidy, B.; Goyal, M.; Zhu, H.; Rückert, J.; Olshansky, M.; Huang, X.; et 

al. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Comput. Biol. Med. 2021, 135, 104596. 

57. Alkhalefah, S., AlTuraiki, I., & Altwaijry, N. (2025, March). Advancing Diabetic Foot Ulcer Care: AI and Generative AI 

Approaches for Classification, Prediction, Segmentation, and Detection. In Healthcare (Vol. 13, No. 6, p. 648). MDPI. 

58. Guan, H.; Wang, Y.; Niu, P.; Zhang, Y.; Zhang, Y.; Miao, R.; Fang, X.; Yin, R.; Zhao, S.; Liu, J. The role of machine learning 

in advancing diabetic foot: A review. Front. Endocrinol. 2024, 15, 1325434. 

59. Cassidy, B.; Reeves, N.D.; Pappachan, J.M.; Gillespie, D.; O’Shea, C.; Rajbhandari, S.; Maiya, A.G.; Frank, E.; Boulton, A.J.; 

Armstrong, D.G. The DFUC 2020 dataset: Analysis towards diabetic foot ulcer detection. Touchreviews Endocrinol. 2021, 
17, 5.  

60. Schäfer, Z.; Mathisen, A.; Svendsen, K.; Engberg, S.; Rolighed Thomsen, T.; Kirketerp-Møller, K. Toward ma-

chine-learning-based decision support in diabetes care: A risk stratification study on diabetic foot ulcer and amputa-

tion. Front. Med. 2021, 7, 601602 

61. Reddy, S.S.; Mahesh, G.; Preethi, N.M. Exploiting machine learning algorithms to diagnose foot ulcers in diabetic pa-

tients. EAI Endorsed Trans. Pervasive Health Technol. 2021, 7, e2 

62. Kaushal, R.K.; Pagidimalla, P.P.; Nalini, C.; Kumar, D. Predicting and Propagation of Diabetic Foot Infection by Deep 

Learning Model. EAI Endorsed Trans. Pervasive Health Technol. 2024, 10.  

63. Huang, H.-N.; Zhang, T.; Yang, C.-T.; Sheen, Y.-J.; Chen, H.-M.; Chen, C.-J.; Tseng, M.-W. Image segmentation using 

transfer learning and Fast R-CNN for diabetic foot wound treatments. Front. Public Health 2022, 10, 969846. 

64. han, K.S.; Chan, Y.M.; Tan, A.H.M.; Liang, S.; Cho, Y.T.; Hong, Q.; Yong, E.; Chong, L.R.C.; Zhang, L.; Tan, G.W.L. Clin-

ical validation of an artificial intelligence-enabled wound imaging mobile application in diabetic foot ulcers. Int. Wound 

J. 2022, 19, 114–124.  

 

 

 

 


