

Egyptian Journal of Agronomy

http://agro.journals.ekb.eg/

Citric Acid Foliar Application Impact on Growth and Yield Parameters of Maize (*Zea Mays*) Under Drought Stress Conditions

Ebtessam A. Youssef*, Marwa M. Abdelbaset and Ahmed F. El-Shafie

Water Relations and Field Irrigation Department, National Research Centre, Cairo 12622, Egypt

T HIS experimental investigation was carried out on maize Giza 10 (*Zea mays*) during the course of two consecutive seasons, 2022 and 2023. By spraying applications with varying concentrations of citric acid (0, 100, 200, 300, and 400 ppm) via drip irrigation system, this study sought to improve maize growth and yield under various levels of drought stress (100, 75, and 50% of evapotranspiration ETc) to save irrigation water due to its scarcity at the moment. These treatments reflected conditions achieved as optimal water stress, moderate level of water supply, and severe level of water supply, respectively. In the Belbeis district of the El Sharkia Governorate of Egypt, maize plants are grown in sandy loam soil under water stress. The data demonstrated that the highest values for most of parameters was always for a water supply level of 100% ETc and that when citric acid was used, the best results were in favor of 300 and 400 ppm without any statistical differences between the two concentrations. As for the interaction between the two factors, we find that the highest results were in favor of the interaction level of 100% ETc with spraying at 400 ppm, but we recommend using 300 ppm of citric acid with a water supply level of 75% ETc because it led to increased corn growth and increased its productivity higher than the comparison treatment, which may save 25% of irrigation water while achieving a higher yield and quality than the control treatment.

Keywords: Maize, Water stress, Drought stress, Citric acid, Drip irrigation.

Introduction

Maize (Zea mays L.) is one of the most important crops farmed globally, especially in humid tropical and subtropical regions, with an area of 203,470,0007 hectares. It produced 1163,947,383 tons in total in 2022, with an average yield of 5 tons per hectare (FAOSTAT, 2022). Because it has a higher potential for production than other cereal crops, it is referred to as the "Queen of Cereals". Being a C4 plant, it can use solar light much more quickly, even at higher radiation intensities. Around the world, 67 percent of corn is used for animal feed, 25 percent is used for human consumption and industry, and 5 percent can be used as seeds to plant the following crop. As a result, maize is on par with rice and ranks second behind wheat. It serves both human and animal use and is vital to Egyptian diets. Consequently, great care has been taken to increase its overall output. Additionally, efforts are being made to increase the productivity of the maize crop by cultivating highvielding varieties and/or improving agronomic practices including fertilization and irrigation (El-Yazal, 2019 and Youssef and Hozayen, 2019).

Abiotic environmental factors, such as drought stress, are important in limiting agricultural productivity and can negatively impact maize plant output capacity. On the other hand, maize plants are extremely sensitive to conditions of water scarcity. In semi-arid and rain-fed regions, drought stress lowers agricultural output as well as availability and productivity efficiency. Drought stress affects a number of physiological and biochemical processes, ion uptake, photosynthesis, food including metabolism, respiration, transport, stem expansion, root propagation, ionic imbalance, disturbances in solute accumulation, depression of enzymatic activities, alteration of metabolic activities, or a combination of these processes. The severity of the damage depends on the growth stages and exposure to drought. It is regarded as one of the most notable and common ecological stresses (Ghazi, 2017 and Youssef, Hozayen, 2019; Soroori and Danaee, 2023; Youssef, 2023 and Youssef and Abdelaal, 2023).

Several studies have demonstrated the advantages of use different substances to lessen the effects of drought. Citric acid, a weak organic acid with pHregulating and antioxidant qualities, is one of these substances (Soroori *et al.*, 2021). As a source of carbon and energy, this molecule is essential for the Krebs cycle, membrane integrity, transport enzyme activation, and carbohydrate metabolism and transport. Furthermore, it promotes plant growth and fresh and dry weight for roots and shoots while also having a favorable effect on chelating free radicals. Additionally, it enhances protein, carotenoids, antioxidant enzyme activity, and chlorophyll (Mujahid *et al.*, 2017; El-Yazal, 2019 and Soroori and Danaee, 2023). The goal of the current study is to enhance certain growth and yield characteristics of maize (*Zea mays* L.) under drought stress conditions by applying citric acid topically in varying doses.

Materials and Methods

This experimental investigation was carried out on maize Giza 10 (Zea mays) during the course of two consecutive seasons, 2022 and 2023. The purpose of this study was to increase maize production and growth under varying drought stress levels (100, 75, and 50% of evapotranspiration ETc) by using a drip irrigation system to spray varying concentrations of citric acid (0, 100, 200, 300, and 400 ppm). In the Belbeis district of the El Sharkia Governorate of Egypt, maize plants are grown in sandy loam soil under water stress. With the exception of the experimental treatments, all maize plants in this study were subjected to the identical applicable agricultural methods. Five replicates, each measuring 10.50 m^2 $(3.00 \times 3.50 \text{ m})$, were used in the experimental setup, which was a split plot arrangement of a complete randomized block design (factorial experiment-split plot design). A backpack sprayer with a 20-liter capacity was used to add a wetting agent (Triton B) to the spraying solution at a concentration of 0.1%. The main plot contained 100, 75, and 50% ETc, and the sub-plot included five citric acid concentrations (0, 100, 200, 300, and 400 ppm). 15 kg of maize seeds per feddan were manually seeded in mid-April. Mid-May and mid-June saw two applications of the necessary rates of citric acid treatments. Irrigation ended at the end of July, but the experiment continued

until the end of mid-August. The tested irrigation levels—2647, 1985, and 1324 m³/feddan/season for the first season, and 2634, 1976, and 1317 m³/feddan/season for the second season—were determined by different rates of irrigation water and are displayed in Tables 1 and 2. The CROPWAT (2012) version 8.0.1.1 computer program used the region's meteorological data (2022-2023 seasons) to produce these figures. Additionally, the estimated crop water need (ETc) is calculated by multiplying the reference evapotranspiration (ETo) by the specific crop coefficient (Kc), so that ETc = ETo × Kc.

Growth and yield parameters

The tested treatments were evaluated through the following parameters The fresh and dried weight (g) of the flag leaf was measured and recorded 70 days after it was planted. Furthermore, at the conclusion of each experimental season (harvest time), the following parameters were measured and recorded: plant height (cm), stem diameter (cm), number of leaves per plant, fresh weight per plant (g), dry weight per plant (g), ear length (cm), ear diameter (cm), number of grains per ear, grain weight/ear (g), 100-grains weight (g), ear weight/plant (g), grain yield ton per feddan, ear yield ton per feddan, and straw yield ton per feddan.

Photosynthetic pigments Acetone (80%) was used to extract chlorophyll a, b, and total carotenoids from fresh leaves. The quantities of these compounds were then calculated as mg/100g fresh weight in accordance with Von-Wettestein, 1957. **proline content** The Bates *et al.*, 1973 method was used to calculate the proline content of fresh leaves (μ moles/g fresh weight).

Fig. 1. The experiment layout.

Table 1. The rate of reference crop evapotranspiration (ETo) determined with computer program
(CROPWAT V.8.00) by climatic data under Belbeis region – El Sharkia Governorate using FAO
– Penman-Monteith equation by Ndulue & Ramanathan, 2021; Youssef *et al.*, 2023 and Mahmoud
et al., 2024 method (season 2022).

Month	April	May	June	July	August	Total
No. of days/month	16.00	31.00	30.00	31.00	-	
Crop coefficient	0.40	0.80	1.15	1.15	-	
ЕТо-100%	4.82	5.92	6.62	6.29	-	
ЕТс-100%	1.93	4.74	7.61	7.23	_	
W.R (m ³ /fed./Day)	8.10	19.89	31.97	30.38	_	
W.R (m ³ / fed. Month)	129.56	616.63	959.24	941.80	_	2647
ET0-75%	3.62	4.44	4.97	4.72	_	
ETc-75%	1.45	3 55	5 71	5.43	_	
W.R (m ³ /fed./Dav)	6.07	14 92	23.98	22.79	_	
WR (m ³ / fed Month)	97.17	462 47	719.43	706 35		1985
ETa 50%	2.41	2.06	2 21	2 15		1705
E10-30 %	2.41	2.90	5.51	5.15	-	
ЕТс-50%	0.96	2.37	3.81	3.62	-	
W.R (m ³ /fed./Day)	4.05	9.95	15.99	15.19	-	
W.R (m ³ / fed. Month)	64.78	308.31	479.62	470.90	-	1324

Table 2. The rate of reference crop evapotranspiration (ETo) determined with computer program
(CROPWAT V.8.00) by climatic data under Belbeis region – El Sharkia Governorate using FAO
– Penman-Monteith equation by Ndulue & Ramanathan, 2021; Youssef *et al.*, 2023 and Mahmoud
et al., 2024 method (season 2023).

Month	April	May	June	July	August	Total
No. of days/month	16.00	31.00	30.00	31.00	-	
Crop coefficient	0.40	0.80	1.15	1.15	-	
ЕТо-100%	4.91	5.84	6.58	6.28	-	
ЕТс-100%	1.96	4.67	7.57	7.22	-	
W.R (m ³ /fed./Day)	8.25	19.62	31.78	30.33	-	
W.R (m ³ / fed. Month)	131.98	608.29	953.44	940.30	-	2634
ЕТо-75%	3.68	4.38	4.94	4.71	-	
ETc-75%	1.47	3.50	5.68	5.42	-	
W.R (m ³ /fed./Day)	6.19	14.72	23.84	22.75	-	
W.R (m ³ / fed. Month)	98.99	456.22	715.08	705.23	-	1976
ЕТо-50%	2.46	2.92	3.29	3.14	-	
ЕТс-50%	0.98	2.34	3.78	3.61	-	
W.R (m ³ /fed./Day)	4.12	9.81	15.89	15.17	-	
W.R (m ³ / fed. Month)	65.99	304.15	476.72	470.15	-	1317

Statistical Analysis

Five replicates, each measuring 10.5 m^2 (3X3.5), were used in the experimental setup, which was a split plot arrangement of a complete randomized block design (factorial experiment-split plot design). Three citric acid concentrations (0, 100, 200, 300, and 400 ppm) were included in the sub-plot, whereas the main plot had 100, 75, and 50% ETc. According to Snedecor and Cochran (1980), the analysis of variance approach was used to statistically examine the collected data. Duncan's range test was used to distinguish between the mean differences (Duncan, 1955.

Results

Growth vigor parameters (Plant height, stem diameter, numbers of leaves per plant, dry weight of leaves per plant, leaf flag fresh weight and leaf flag dry weight

Plant height, stem diameter, number of leaves per plant, dry weight of leaves per plant, leaf flag fresh weight, and leaf flag dry weight were all significantly impacted by water irrigation levels and citric acid concentrations in both seasons, according to the findings in Table (3). ETc for water stress in the first season, 50% water irrigation reduced plant height, leaf count, and leaf flag fresh weight by 229.07 cm, 14.75, and 12.61 g, respectively, in comparison to 100% ETc water irrigation. Citrus acid 300 and 400 ppm spraying also produced the highest results, reaching 237.24 cm, 14.88, and 13.02 g for 300 ppm and 238.13 cm, 14.89, and 13.07 g for 400 ppm under plant height, number of leaves per plant, and leaf flag fresh weight, respectively, in comparison to citric acid ppm. Furthermore, the heights values of 247.40 cm, 15.08, and 13.85 g for citric acid 300 ppm and 248.22 cm, 15.08, and 13.85 g for citric acid 400 ppm were obtained by spraying them with 100% ETc water irrigation. Additionally, under plant height, number of leaves per plant, and leaf flag fresh weight, citric acid 300 and 400 ppm with ETc 50% of water irrigation achieved 221.31 cm, 14.85, and 11.86 g for citric acid 300 ppm and 223.45 cm, 14.64, and 12.01 g for citric acid 400 ppm. With 100% ETc of water irrigation, those results were statistically higher than citric acid 0 ppm. In terms of plant height, the number of leaves per plant, and the fresh weight of the leaf flags, the second season follows the same pattern as the first. Additionally, in both seasons, the stem diameter, dry weight of leaves per plant, and dry weight of leaf flags show the same tendency with regard to plant height.

Yield parameters (ear length, ear diameter, number of grains per ear, grain weight per ear, 100-grains weight and ear weight per plant) The information in Table (4) demonstrated that, in both seasons, ear length, ear diameter, number of grains per ear, grain weight per ear, 100-grains weight, and

ear weight per plant were significantly impacted by water irrigation levels and citric acid concentrations. ETc water stress in comparison to 100% ETc water irrigation in the first season, 50% water irrigation reduced the number of grains per ear and the ear weight per plant, which were 407.97 and 191.07 g, respectively. Furthermore, when compared to citric acid ppm, the greatest values were obtained by spraying 300 and 400 ppm of citric acid, reaching 460.06 and 248.14 g for 300 ppm and 461.48 and 249.97 g for 400 ppm under number of grains per ear and ear weight per plant, respectively. Additionally, spraying 300 and 400 ppm of citric acid along with 100% ETc water irrigation increased the heights by 482.28 and 273.48 g for 300 ppm and 481.98 and 273.63 g for 400 ppm, respectively. Additionally, under the number of grains per ear and ear weight per plant, respectively, citric acid 300 and 400 ppm with ETc 50% of water irrigation reached 429.69 and 214.82 g and 434.12 and 220.05 g, respectively. With 100% ETc of water irrigation, those results were statistically higher than citric acid 0 ppm. In terms of ear weight per plant and quantity of grains per ear, the second season follows the same pattern as the first. Additionally, in both seasons, the trend for the number of grains per ear and ear weight per plant is the same for ear length, ear diameter, grain weight per ear, and 100grains weight.

Yield (grain, ear and straw yield ton per feddan)

The information in Table (5) demonstrated that the amount of water used for irrigation and the concentration of citric acid significantly impacted the amount of grain, ear, and straw produced per feddan over both seasons. ETc water stress in comparison to 100% ETc water irrigation in the first season, 50% water irrigation reduced the production of grain, ear, and straw per feddan, which were 3.29, 0.43, and 4.14 tons per feddan, respectively. Furthermore, spraying 300 and 400 ppm of citric acid had the maximum results, reaching 4.12, 0.50, and 4.50 tons per feddan for 300 ppm of citric acid, respectively. Citric acid 400 ppm under grain, ear, and straw yields ton per feddan at 4.14, 0.50, and 4.51 tons, respectively, in comparison to citric acid 0 ppm. Additionally, the heights values of 4.44, 0.52, and 4.62 tons per feddan g for citric acid 300 ppm and 4.45, 0.53, and 4.63 tons per feddan for citric acid 400 ppm were achieved by spraying the acid with 100% ETc of water irrigation. Additionally, under grain, ear, and straw yield tons per feddan, the citric acid 300 and 400 ppm with ETc 50% of water irrigation were 3.64, 0.46, and 4.31 tons per feddan for the 300 ppm and 3.70, 0.47, and 4.34 tons per feddan for the 400 ppm. With 100% ETc of water irrigation, those results were statistically higher than citric acid 0 ppm. In terms of under grain, ear, and straw yield tons per feddan, the second season follows the same pattern as the first.

Treatments	Plant height	Stem	Number	Drv weight	leaf flag	leaf flag		
	(cm)	diameter	of leaves	of leaves per plant	fresh weight	dry weight		
	. ,	(cm)	per plant	(g)	(g)	(g)		
First season (2022)								
ETc-100% (control)	229.07A	2.58A	14.75A	74.03A	12.61A	3.32A		
ETc-75%	224.44B	2.51A	14.65A	73.49A	12.20B	3.18B		
ETc-50%	206.86C	2.27B	14.38A	71.80B	11.14C	2.63C		
C.A.0-ppm	195.93D	2.13D	14.22D	70.78D	10.59D	2.32D		
C.A.100-ppm	206.67C	2.28C	14.36C	71.81C	11.17C	2.66C		
C.A.200-ppm	222.65B	2.48B	14.63B	73.41B	12.09B	3.10B		
C.A.300-ppm	237.24A	2.68A	14.88A	74.72A	13.02A	3.56A		
C.A.400-ppm	238.13A	2.69A	14.89A	74.81A	13.07A	3.58A		
ETc-100% X C.A.0-ppm	200.74f	2.21g	14.31d	71.41e	10.94f	2.48h		
ETc-100% X C.A.10-ppm	215.13d	2.40e	14.48d	72.73d	11.66e	2.91f		
ETc-100% X C.A.200-ppm	233.88b	2.61c	14.82b	74.43b	12.77c	3.41c		
ETc-100% X C.A.300-ppm	247.40a	2.83a	15.08a	75.76a	13.85a	3.90a		
ETc-100% X C.A.400-ppm	248.22a	2.84a	15.08a	75.80a	13.85a	3.92a		
ETc-75% X C.A.0-ppm	196.33f	2.15g	14.25e	70.83f	10.66f	2.39h		
ЕТс-75% Х С.А.100-ррт	211.89d	2.33f	14.38d	72.16d	11.33e	2.80f		
ETc-75% X C.A.200-ppm	228.22c	2.57c	14.72c	74.02b	12.33d	3.23d		
ETc-75% X C.A.300-ppm	243.02a	2.77b	14.97a	75.24a	13.36b	3.75b		
ETc-75% X C.A.400-ppm	242.71a	2.74b	14.95a	75.22a	13.33b	3.72b		
ETc-50% X C.A.0-ppm	190.71g	2.03h	14.11f	70.11f	10.16f	2.10j		
ETc-50% X C.A.100-ppm	192.99g	2.10g	14.21e	70.54f	10.53f	2.26i		
ETc-50% X C.A.200-ppm	205.84e	2.26g	14.34d	71.79e	11.16e	2.66g		
ETc-50% X C.A.300-ppm	221.31c	2.45d	14.58c	73.15c	11.86e	3.02f		
ETc-50% X C.A.400-ppm	223.45c	2.49d	14.64c	73.41c	12.01d	3.11e		
		Second	season (2023)					
ETc-100% (control)	230.86A	2.56A	14.77A	74.05A	12.67A	3.32A		
ETc-75%	225.93B	2.51A	14.68A	73.53B	12.32B	3.19B		
ETc-50%	208.89C	2.25B	14.41A	71.94C	11.15C	2.58C		
C.A.0-ppm	199.78D	2.12D	14.27D	70.82D	10.54D	2.22D		
C.A.100-ppm	209.20C	2.25C	14.41C	71.88C	11.10C	2.59C		
C.A.200-ppm	225.21B	2.47B	14.67B	73.54B	12.30B	3.14B		
C.A.300-ppm	237.09A	2.68A	14.88A	74.75A	13.10A	3.59A		
С.А.400-ррт	238.18A	2.69A	14.89A	74.86A	13.19A	3.62A		
ETc-100% X C.A.0-ppm	206.73g	2.20g	14.37f	71.41e	10.92f	2.36i		
ETc-100% X C.A.10-ppm	217.86e	2.33f	14.53e	72.74d	11.64e	2.86g		
ETc-100% X C.A.200-ppm	235.00c	2.61c	14.82b	74.48b	13.07c	3.49d		
ЕТс-100% Х С.А.300-ррт	247.04a	2.83a	15.07a	75.79a	13.83a	3.94a		
ЕТс-100% Х С.А.400-ррт	247.65a	2.83a	15.08a	75.82a	13.87a	3.95a		
ЕТс-75% Х С.А.0-ррт	200.39h	2.15h	14.29g	70.82f	10.63f	2.25i		
ETc-75% X C.A.100-ppm	212.54f	2.30f	14.49e	72.26d	11.33e	2.74g		
ETc-75% X C.A.200-ppm	231.24c	2.55d	14.76c	74.16b	12.68d	3.37e		
ETc-75% X C.A.300-ppm	243.06b	2.77b	14.95a	75.22a	13.47b	3.81b		
ETc-75% X C.A.400-npm	242.42h	2.77h	14.94a	75.18a	13.49b	3.77c		
ETc-50% X C.A.0-nnm	192.24i	2.02i	14.14i	70.25f	10.06f	2.04k		
ЕТс-50% Х С А 100-прт	197 21i	2 10h	14.21h	70.65f	10 31f	2.0.1K		
ЕТс-50% X С A 200-при	209 37g	2.10h	14.446	71.98e	11 14	2.17J		
ЕТс-50% Х С А 300-при	207.57g	2.275 2.44e	14 62d	73.23c	12 00d	3 03f		
ETc-50% X C.A.400-ppm	221.15d 224.46d	2.44c	14.66d	73.57c	12.00d	3.14f		

Table 3. Effect of water stress and foliar appl	ication with citric	acid concentrations on	plant growth	parameters of
maize plants (2022-2023 seasons).				

ETc = evapotranspiration and C.A.= Citric acid.

Table 4. Effect of water stress and foliar application with citric acid concentrations on ear growth parameters of maize plants (2022-2023 seasons).

Treatments	Ear length (cm)	Ear diameter (cm)	Number of grains per Ear	Grain weight per Ear (g)	100-grains weight (g)	Ear weight per plant (g)		
First season (2022)								
ETc-100% (control)	18.51A	4.35A	446.86A	194.93A	36.11A	233.97A		
ЕТс-75%	17.71B	4.19B	436.50B	186.62B	34.70B	221.92B		
ETc-50%	15.01C	3.68C	407.97C	162.44C	29.79C	191.07C		
C.A.0-ppm	13.27D	3.34D	390.01D	146.71D	26.93D	172.85D		
C.A.100-ppm	15.14C	3.71C	407.98C	163.29C	29.55C	190.28C		
C.A.200-ppm	17.55B	4.17B	432.69B	183.67B	34.54B	217.02B		
C.A.300-ppm	19.65A	4.55A	460.06A	206.14A	38.23A	248.14A		
С.А.400-ррт	19.78A	4.58A	461.48A	206.84A	38.41A	249.97A		
ETc-100% X C.A.0-ppm	14.08h	3.54i	398.03h	155.71g	28.28f	181.48g		
ETc-100% X C.A.10-ppm	16.57f	3.95f	422.76f	175.61e	31.81e	205.08e		
ETc-100% X C.A.200-ppm	19.03c	4.46c	449.24c	197.71c	37.58b	236.19c		
ETc-100% X C.A.300-ppm	21.37a	4.90a	482.28a	222.72a	41.38a	273.48a		
ETc-100% X C.A.400-ppm	21.49a	4.90a	481.98a	222.91a	41.48a	273.63a		
ETc-75% X C.A.0-ppm	13.52i	3.44j	390.65h	148.26h	27.22f	174.36h		
ETc-75% X C.A.100-ppm	15.93g	3.86g	414.70g	168.80f	30.43e	196.51f		
ETc-75% X C.A.200-ppm	18.55d	4.30d	440.61c	193.13c	36.27c	226.38d		
ЕТс-75% Х С.А.300-ррт	20.36b	4.67b	468.20b	212.57b	40.00a	256.11b		
ЕТс-75% Х С.А.400-ррт	20.21b	4.67b	468.33b	210.34b	39.56a	256.24b		
ЕТс-50% Х С.А.0-ррт	12.23k	3.061	381.34i	136.16i	25.27g	162.73h		
ЕТс-50% Х С.А.100-ррт	12.92j	3.33k	386.49h	145.47h	26.42f	169.24h		
ETc-50% X C.A.200-ppm	15.06g	3.75h	408.22h	160.16f	29.76e	188.49g		
ETc-50% X C.A.300-ppm	17.22e	4.08e	429.69e	183.13d	33.33d	214.82d		
ЕТс-50% Х С.А.400-ррт	17.63e	4.17e	434.12d	187.27d	34.19d	220.05d		
		Second sea	son (2023)					
ETc-100% (control)	18.62A	4.32A	445.31A	194.84A	36.63A	240.47A		
ETc-75%	17.88B	4.14B	435.21B	186.51B	35.21B	232.57B		
ETc-50%	15.05C	3.61C	408.86C	161.21C	30.24C	199.73C		
C.A.0-ppm	13.41D	3.28D	391.92D	147.26D	27.37D	177.77D		
С.А.100-ррт	15.08C	3.58C	410.57C	161.20C	30.51C	198.88C		
C.A.200-ppm	17.66B	4.10B	430.79B	183.12B	35.13B	230.27B		
С.А.300-ррт	19.78A	4.57A	457.57A	205.45A	38.46A	256.13A		
C.A.400-ppm	19.99A	4.59A	458.11A	207.23A	38.67A	258.24A		
ETc-100% X C.A.0-ppm	14.18h	3.47i	402.07f	158.12e	29.40f	187.99i		
ЕТс-100% Х С.А.10-ррт	16.43f	3.82f	424.71d	173.69e	32.88e	215.28f		
ETc-100% X C.A.200-ppm	19.38c	4.47c	443.32c	197.23c	38.02c	249.13c		
ETc-100% X C.A.300-ppm	21.50a	4.91a	477.91a	221.68a	41.44a	274.40a		
ETc-100% X C.A.400-ppm	21.62a	4.93a	478.54a	223.50a	41.43a	275.57a		
ЕТс-75% Х С.А.0-ррт	13.77i	3.34j	392.26f	146.27f	27.42g	181.85i		
ЕТс-75% Х С.А.100-ррт	15.74g	3.66g	417.80e	167.56e	31.98e	208.31g		
ЕТс-75% Х С.А.200-ррт	18.76d	4.30d	437.50d	188.99d	36.74d	244.21c		
ЕТс-75% Х С.А.300-ррт	20.58b	4.71b	465.48b	215.09b	39.99b	265.23b		
ЕТс-75% Х С.А.400-ррт	20.54b	4.69b	463.04b	214.64b	39.93b	263.26b		
ЕТс-50% Х С.А.0-ррт	12.29k	3.041	381.44h	137.39g	25.30i	163.47k		
ЕТс-50% Х С.А.100-ррт	13.07j	3.26k	389.21g	142.36f	26.67h	173.06j		
ЕТс-50% Х С.А.200-ррт	14.83h	3.52h	411.56e	163.14e	30.64e	197.48h		
ETc-50% X C.A.300-ppm	17.27e	4.07e	429.33d	179.59d	33.94e	228.75e		
ЕТс-50% Х С.А.400-ррт	17.80e	4.17e	432.76d	183.55d	34.66e	235.89d		

ETc = evapotranspiration and C.A. = Citric acid.

Mean followed by the same letter\s within each column are not significantly different from each other at 0.5% level.

plants (2022-2023 seaso	ns).							
Treatments	Grain yield	Ear yield (ton per feddan)	Straw yield (ton per feddan)					
First season (2022)								
ETc-100% (control)	3.92A	0.48A	4.40A					
ETc-75%	3.79B	0.47A	4.34B					
ETc-50%	3.29C	0.43B	4.14C					
C.A.0-ppm	3.05D	0.41D	4.03D					
С.А.100-ррт	3.32C	0.43C	4.12C					
С.А.200-ррт	3.70B	0.47B	4.33B					
C.A.300-ppm	4.12A	0.50A	4.50A					
C.A.400-ppm	4.14A	0.50A	4.51A					
ETc-100% X C.A.0-ppm	3.22j	0.43a	4.07j					
ETc-100% X C.A.10-ppm	3.53g	0.45a	4.22g					
ETc-100% X C.A.200-ppm	3.96c	0.49a	4.45c					
ETc-100% X C.A.300-ppm	4.44a	0.52a	4.62a					
ETc-100% X C.A.400-ppm	4.45a	0.53a	4.63a					
ETc-75% X C.A.0-ppm	3.11k	0.41a	4.03j					
ETc-75% X C.A.100-ppm	3.43h	0.44a	4.17h					
ETc-75% X C.A.200-ppm	3.85d	0.48a	4.40d					
ETc-75% X C.A.300-ppm	4.29b	0.51a	4.56b					
ETc-75% X C.A.400-ppm	4.27b	0.51a	4.56b					
ETc-50% X C.A.0-ppm	2.83m	0.40a	3.98j					
ETc-50% X C.A.100-ppm	3.001	0.41a	3.97j					
ETc-50% X C.A.200-ppm	3.30i	0.44a	4.12i					
ETc-50% X C.A.300-ppm	3.64f	0.46a	4.31f					
ETc-50% X C.A.400-ppm	3.70e	0.47a	4.34e					
	Second seasor	n (2023)						
ETc-100% (control)	3.87A	0.49A	4.38A					
ETc-75%	3.71B	0.48A	4.32B					

Table 5. Effect of water stress and foliar	application with citric acid concentrations on	yield growth parameters of maize
plants (2022-2023 seasons).		

ЕТс-50% Х С.А.400-ррт	3.70e	0.47a	4.34e				
Second season (2023)							
ETc-100% (control)	3.87A	0.49A	4.38A				
ETc-75%	3.71B	0.48A	4.32B				
ETc-50%	3.26C	0.44B	4.13C				
C.A.0-ppm	3.00D	0.42D	4.01D				
C.A.100-ppm	3.28C	0.44C	4.13C				
C.A.200-ppm	3.67B	0.47B	4.30B				
C.A.300-ppm	4.05A	0.50A	4.47A				
C.A.400-ppm	4.07A	0.51A	4.48A				
ЕТс-100% Х С.А.0-ррт	3.14j	0.43a	4.08g				
ETc-100% X C.A.10-ppm	3.47g	0.46a	4.22f				
ETc-100% X C.A.200-ppm	3.94c	0.49a	4.41c				
ЕТс-100% Х С.А.300-ррт	4.39a	0.53a	4.59a				
ETc-100% X C.A.400-ppm	4.41a	0.53a	4.60a				
ETc-75% X C.A.0-ppm	3.03k	0.42a	4.03g				
ETc-75% X C.A.100-ppm	3.41h	0.45a	4.18f				
ETc-75% X C.A.200-ppm	3.78d	0.48a	4.36d				
ETc-75% X C.A.300-ppm	4.16b	0.52a	4.53b				
ETc-75% X C.A.400-ppm	4.16b	0.52a	4.53b				
ETc-50% X C.A.0-ppm	2.84m	0.40a	3.92h				
ETc-50% X C.A.100-ppm	2.951	0.42a	3.99g				
ЕТс-50% Х С.А.200-ррт	3.29i	0.44a	4.14f				
ЕТс-50% Х С.А.300-ррт	3.59f	0.47a	4.28e				
ЕТс-50% Х С.А.400-ррт	3.64e	0.47a	4.31e				

ETc = evapotranspiration and C.A.= Citric acid.

Mean followed by the same letter\s within each column are not significantly different from each other at 0.5% level.

Pigments and proline leaf contents

With reference to Table (6), ETC 50% had an impact on pigments and proline leaf contents, reaching 131.191 and 73.86 mg/100g f.w., respectively, while ETc 100% had an impact on chlorophyll a and b, reaching 151.67 and 83.79 mg/100g f w Furthermore, the administration of 300 and 400 ppm of citric acid impacted the levels of chlorophyll a and b, reaching 159.38 and 86.54 mg/100g f.w. for 300 ppm and 160.23 and 87.04 mg/100g f.w. for 400 ppm under chlorophyll a and b, respectively. It is evident that the height values for chlorophyll a and b were 169.31 and 91.88 for citric acid 300 ppm and 169.13 and 92.13 mg/100g f.w. for citric acid 400 ppm under chlorophyll a and b, respectively, when the acid was sprayed with 100% ETc of irrigation water. Furthermore, in comparison to (control) spraying citric acid 0 ppm with ETc 100% of irrigation water. which resulted in 126.34 and 71.90 mg/100g f.w. under chlorophyll a and b, respectively, the use of spraying citric acid 300 and 400 ppm with ETc 50% of irrigation water gained 143.84 and 79.96 mg/100g f.w. for citric acid 300 and 147.22 and 81.29 mg/100g f.w. for citric acid 400. In both seasons, this was accurate. Conversely, proline leaf content rose as irrigation water level decreased from ETc 100% to ETc 50% of water irrigation. It's noteworthy to note that proline content rose as irrigation water quantity decreased. Compared to 84.57 μ g/moles of fresh leaf with 100% ETc in the first season, proline content reaches a high value with ETc 50%, reaching 146.92 μ g/moles of fresh leaf. Furthermore, when 300 and 400 ppm of citric acid are applied, proline quantities decrease to 63.84 and 61.71 µ g/moles of fresh leaf, respectively. Therefore, the lowest proline concentration values-32.69 and 31.81 µ g/moles of fresh leaf, respectively were obtained by spraying citric acid at 300 and 400 ppm with 100% ETc of irrigation water. In both seasons, this was the case. Additionally, in both seasons, the total carotenoids show the similar tendency toward proline leaf content.

Discussion

In this regard, the experimental study's current findings indicate how irrigation levels affect maize's vegetative growth and production characteristics. According to the data, the highest significant values of vegetative growth and yield characteristics were obtained with irrigation that used 100% ETc. The content of proline leaves was an outlier, exhibiting the opposite trend in the first and second seasons. Drought stress, which impacts plant growth by reducing the number of leaves and leaf area, leading to less photosynthesis, may be the cause of the detrimental effects of the lowest irrigation level (ETc 50%) on vegetative growth and yield characteristics (Silber, 2005). The outcomes are consistent with those published by Sultan et al., 2016; Karasu et al., 2015; Ertek and Kara, 2013; Bozkurt et al., 2006; Cakir, 2004. They showed that applying the most irrigation resulted in the highest values of vegetative growth and yield attributes. Furthermore, it is evident that foliar sprays of citric acid greatly enhanced vegetative growth and production characteristics, particularly when treated with 300 and 400 ppm of citric acid. Furthermore, in both seasons, the citric acid 0 ppm treatment had the lowest significant values in this regard. Citric acid's direct effects on controlling osmotic potential and the Krebs cycle may be the cause of the notable results of its foliar application. Additionally, it increases the uptake of water and nutrients and improves the synthesis of phytohormones under stress as a natural chelating agent (Miri et al., 2015). However, citric acid lowers pH, acidifies the environment, and stops ethylene from forming, which limits the activity of the synthetase enzyme (Eidyan et al., 2014). Additionally, using citric acid topically lowered the pH of the leaf extract, activating the leaf iron and production of chlorophyll. promoting the Furthermore, by lowering optical oxidation and preserving the integrity of photosynthetic membranes, citric acid stopped the deterioration of pigments under stress. A prior study found that applying citric acid to Thymus vulgaris L. increased the amount of carotenoid and total chlorophyll (Miri et al., 2015). Because citric acid may have stimulated the signaling pathways of secondary metabolism in plants, foliar application of the acid boosted the flavonoid content of plants (Salas-Pérez et al., 2018), therefore playing a useful part in raising the concentrations of these substances. Because citric acid has antioxidant qualities, it also reduced pH and acidified the medium, protecting cell membranes and cellular contents, including vitamin C. As a result, it stopped the synthesis of ethylene and the decrease of vitamin C by inhibiting ACC synthetase activity (Soroori et al., 2021a). Citric acid applied topically decreased MDA, H₂O₂, and O₂ levels while shielding cells from stress-related harm. The use of citric acid lessens this damage by eliminating free radicals, which are typically produced during plant metabolism and cause lipid oxidation, permeability loss, and cell death (Hu et al., 2016). Data from our study clearly demonstrate that applying 50% ETc in conjunction with foliar applications of 300 and 400 ppm of citric acid had the same significant affection as 100% ETc in conjunction with foliar applications of 0 ppm of citric acid (control) with regard to the effect of the interaction between irrigation levels and foliar applications of citric acid on the vegetative growth and yield characteristics of maize.

Treatments	Chlorophyll a (mg/100g F.W)	Chlorophyll b (mg/100g F.W)	Total Carotenoids	Proline (um/F.W.g)				
			(mg/100g F.W)	4				
First season (2022)								
ETc-100% (control)	151.67A	83.79A	15.56C	84.57C				
ETc-75%	147.66B	80.84B	16.17B	97.69B				
ETc-50%	131.91C	73.86C	18.11A	146.92A				
C.A.0-ppm	122.01D	68.85D	18.96A	173.04A				
С.А.100-ррт	130.88C	74.07C	18.06A	146.68B				
С.А.200-ррт	146.21B	80.98B	16.50B	103.37C				
С.А.300-ррт	159.38A	86.54A	14.79C	63.84D				
С.А.400-ррт	160.23A	87.04A	14.74C	61.71D				
ЕТс-100% Х С.А.0-ррт	126.34f	71.90d	18.42b	152.37d				
ЕТс-100% Х С.А.10-ррт	138.14e	78.03c	17.33c	124.82g				
ЕТс-100% Х С.А.200-ррт	155.43c	84.98c	15.53e	81.14i				
ЕТс-100% Х С.А.300-ррт	169.31a	91.88a	13.26g	32.69k				
ЕТс-100% Х С.А.400-ррт	169.13a	92.13a	13.25g	31.81k				
ЕТс-75% Х С.А.0-ррм	122.81f	69.04d	18.79b	168.27c				
ЕТс-75% Х С.А.100-ррт	134.01e	75.89d	17.67c	131.68f				
ЕТс-75% Х С.А.200-ррт	152.13c	83.84c	16.00d	87.42i				
ЕТс-75% Х С.А.300-ррт	165.00b	87.77b	14.09f	49.27j				
ЕТс-75% Х С.А.400-ррт	164.34b	87.69b	14.27f	51.81j				
ЕТс-50% Х С.А.0-ррт	116.89g	65.62e	19.68a	198.47a				
ЕТс-50% Х С.А.100-ррт	120.51f	68.30d	19.16a	183.54b				
ЕТс-50% Х С.А.200-ррт	131.08e	74.11d	17.97c	141.55e				
ЕТс-50% Х С.А.300-ррт	143.84d	79.96c	17.02c	109.55h				
ЕТс-50% Х С.А.400-ррт	147.22d	81.29c	16.71d	101.52h				
	Second se	ason (2023)						
ETc-100% (control)	149.95A	83.30A	15.40C	86.94C				
ETc-75%	146.14B	80.79B	16.00B	101.62B				
ETc-50%	130.16C	73.50C	17.82A	149.54A				
C.A.0-ppm	120.65D	68.94D	18.97A	173.73A				
C.A.100-ppm	128.67C	73.70C	17.91B	147.17B				
С.А.200-ррт	144.25B	80.25B	16.08C	112.87C				
С.А.300-ррт	157.73A	86.27A	14.60D	65.63D				
С.А.400-ррт	159.11A	86.82A	14.49D	64.08D				
ETc-100% X C.A.0-ppm	124.65f	71.98f	18.16b	155.18d				
ETc-100% X C.A.10-ppm	135.53e	76.96e	16.98d	129.72g				
ETc-100% X C.A.200-ppm	153.02c	84.38c	15.06e	91.29i				
ETc-100% X C.A.300-ppm	167.82a	91.26a	13.42g	29.13k				
ETc-100% X C.A.400-ppm	168.75a	91.90a	13.40g	29.37k				
ЕТс-75% Х С.А.0-ррт	121.32f	69.27f	18.90b	168.85c				
ЕТс-75% Х С.А.100-ррт	131.67e	75.84e	17.45c	139.04f				
ЕТс-75% Х С.А.200-ррт	150.42c	82.57d	15.40e	99.37i				
ETc-75% X C.A.300-ppm	163.92b	88.10b	14.14f	50.13j				
ETc-75% X C.A.400-ppm	163.35b	88.17b	14.13f	50.70j				
ETc-50% X C.A.0-ppm	115.98f	65.57g	19.84a	197.18a				
ETc-50% X C.A.100-ppm	118.81f	68.30f	19.32a	172.76b				
ETc-50% X C.A.200-ppm	129.32e	73.81e	17.78c	147.95e				
ETc-50% X C.A.300-ppm	141.46d	79.46d	16.24d	117.62h				
ЕТс-50% Х С.А.400-ррт	145.24d	80.38d	15.93e	112.18h				

Table 6. Effect of water stress and foliar application with citric acid concentrations on leaf pigments and proline of maize plants (2022-2023 seasons).

ETc = evapotranspiration and C.A.= Citric acid.

Mean followed by the same letter\s within each column are not significantly different from each other at 0.5% level.

Conclusion

In summary, the results clearly show that the highest values for most of parameters was always for a water supply level of 100% ETc and that when citric acid was used, the best results were in favor of 300 and 400 ppm without any statistical differences between the two concentrations. As for the interaction between the two factors, we find that the highest results were in favor of the interaction between the irrigation level of 100% ETc with spraying at 400 ppm, but we recommend using 300 ppm of citric acid with a water supply level of 75% ETc because it led to increased corn growth and increased its productivity higher than the comparison treatment (100% ETc with spraying at 0 ppm), which may save 25% of irrigation water while achieving a higher yield and quality than the control treatment.

Consent for publication

All authors declare their consent for publication.

Author contribution

The manuscript was edited and revised by all authors.

Conflicts of Interest

The author declares no conflict of interest.

References

- Bates, L.S., Walren, R.R., Tears, I. D. (1973). Rapid determination of proline for water stress studies. *Plant* and Soil, 39:205-207.
- Bozkurt, Y., Yazar, A., Gencel, B., Sezen, M.S. (2006). Optimum lateral spacing for drip-irrigated corn in the Mediterranean Region of Turkey. *Agricultural Water Management*, 85:113-120.
- Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. *Field Crops Research*, 89:1-16.
- Duncan, D.B. (1955). Multiple range and multiple "F" test. Biometrics, 11: 1- 42.
- Eidyan, B, Hadavi, E., Moalemi, N. (2014). Pre-harvest foliar application of iron sulfate and citric acid combined with urea fertigation affects growth and vase life of tuberose (*Polianthes tuberosa* L.) 'Por-Par'. *Horticulture, Environment, and Biotechnology*, 55 (1): 9–13.
- El-Yazal, M.A.S. (2019). The application of citric acid in combination with some micronutrients increases the growth, productivity and a few chemical constituents of
- Snedecor, G.W., Corchran, W.G. (1980). Statistical Methods. Oxford and J. B. H. Publishing Co. 7th Ed. lowa State University, Press, Am., Lowa, USA.
- Soroori, S, Danaee, E., Hemmati, K.H., Moghadam, A.L. (2021). Evaluation of nutritional value and shelf life of marigold with the application of spermidine, citric acid and proline. *Journal of Food Technology and Nutrition*, 18 (3): 89-102.

maize (Zea mays) plants. International Letters of Natural Sciences, 76:86-97.

- Ertek, A., Kara, B. (2013). Yield and quality of sweet corn under deficit irrigation. *Agricultural Water Management*, 129:138-144.
- FAOSTAT (2022). Food and Agriculture Organization. www.fao.org/faostat/ar/#data/QCL.
- Ghazi, Dina A. (2017). Impact of Drought Stress on Maize (Zea mays) Plant in Presence or Absence of Salicylic Acid Spraying. Journal Soil Science. and Agricultural Engineering, Mansoura University, 8 (6): 223–229.
- Hu, L., Zhang, Z., Xiang, Z., Yang, Z. (2016). Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (*Lolium arundinaceum*). *Frontiers in Plant Science*, 7, 179.
- Karasu, A., Kuscu, H., Oz, M., Bayram, G. (2015). The effect of different irrigation water levels on grain yield, yield components and some quality parameters of silage maize (*Zea mays indentata* Sturt.) in Marmara region of Turkey. *Notulae Botaniccae Horti Agrobotanici*, 43(1):138-145. (www.notulaebotanicae.ro).

Mahmoud, T.A., Youssef Ebtessam A., Abo Eid, Manal A.M. (2024). Surface and Sub-Surface Irrigation Techniques Effects on Water Use Efficiency of Valencia Orange Trees. *The Future Journal of Horticulture*, 1 (1): 26 – 37.

- Miri, M. S., Ahmadi, S., Moradi, P. (2015). Influence of salicylic acid and citric acid on the growth, biochemical characteristics and essential oil content of thyme (*Thymus vulgaris* L.). Journal of Medicinal Plants, 2: 141-1466.
- Mujahid, F., Shafaqat, A., Rizwan, M., Ali, Q., Abbas, F., Bukhari, A.H. (2017). Citric acid assisted phyto extraction of chromium by sunflower; morphophysiological and biochemical alterations in plants. *Ecotoxicology and Environmental Safety*, 145: 90-102.
- Ndulue, E., Ramanathan, S.R. (2021). Performance of the FAO Penman–Monteith equation under limiting conditions and fourteen reference evapotranspiration models in southern Manitoba. *Theoretical and Applied Climatology*, 143:1285–1298.
- Salas-Pérez, L., Monserrat, G.D.J., Preciado-Range, P., Fuentes, J.A.G., Garay, A.V.A., Castruita, M.Á.S. (2018). The application of citric acid increases the quality and antioxidant capacity of lentil sprouts. *Revista Mexicana de Ciencias Agrícolas*, 9 (20): 4301-4309.
- Silber, A. (2005). Fertigation frequency and nutrient uptake by plants: Benefits and constraints. Proceedings No. 571, International Fertiliser Society, York, UK, pp.36.
- Soroori, Sophia, Danaee. E. (2023). Effects of foliar application of citric acid on morphological and phytochemical traits of *Calendula officinalis* L. under drought stress conditions. *International Journal of Horticultural Science and Technology*, 10(3): 361-374.
- Sultan, M.S., Abdel-Moneam, M.A., EL-Galfy, A.E.M.K., El-Awady H.E. (2016). Combining Ability of Some Maize Inbred Lines and its Crosses Under Non-Stressed

and Water Stressed Conditions. *Journal Plant Production, Mansoura University*, 7(12):1431-1436.

- Von-Wettestein, D. (1957). Chlorophyll Lethal und Submikroskopischefromivechsel der Plastiden Exptl. *Cell Research*, 12: 427-433.
- Youssef, Ebtessam A., and Hozayen, A. M. A. (2019). The effect of drought stress condition combined with kaolin spraying application on growth and yield parameters of maize (*Zea mays*). *Plant Archives*, 19(1): 674-683.

Youssef, Ebtessam A., Abdelaal, H.K. (2023). Influence of water stress and ortho salicylic acid on sweet potato plants (*Ipomoea batatas* L.) under environment and climate changes. *Egyptian Journal of Chemistry*, 66(SI):99-106.

Youssef, Ebtessam A., Mahmoud, T.A., Abo Eid, Manal A.M. (2023). Effect of some irrigation systems on water stress levels of Washington navel orange trees. *Bulletin of the National Research Centre*, 47(163):1-12.