

Floristic composition and edaphic influences in the Gulf of Suez, Red Sea Coastal Desert: a comparative study of inland and coastal areas

Sara Hassanen, Elsayeda Gamal Eldin, Wafaa Kamel, Mohamed Saad Zaghloul and Yasmin M. Hassan*

Botany & Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.

*Corresponding Author: yasmin_ibrahim@science.suez.edu.eg

Abstract

This study provides a comparative analysis of plant species composition and distribution between the inland and coastline areas of the Gulf of Suez, Red Sea coastal desert, aiming to enhance understanding of desert plant communities and their relationship with edaphic factors. The study identified 119 plant taxa from 32 families, with the Asteraceae family being the most species-rich, representing 16.8% (20 species), followed by Amaranthaceae (13.4%, 16 species), and Fabaceae, Poaceae, Zygophyllaceae, and Brassicaceae (7.5% each). Coastal areas supported 93 species, while inland areas hosted 73 species. The life form spectrum in the Red Sea coastal desert showed the dominance of Chamaephytes (39.50%) and Therophytes (37.82%)with Phanerophytes (12.61%),Hemicryptophytes (6.72%), Cryptophytes (3.36%) and Parasites (0.84%). Inland areas had a higher proportion of Chamaephytes (46.58%) and Phanerophytes (15.07%), while the coastline had a more balanced distribution, with both Chamaephytes and Therophytes each making up 37.63%. In terms of plant assemblages, coastal regions exhibited seven distinct groupings, such as the Haloxylon salicornicum and Tamarix nilotica assemblages, while inland regions had five, including assemblages dominated by Zilla spinosa, Launaea spinosa, and Farsetia aegyptia. TWINSPAN analysis revealed significant ecological differences between the two regions. Canonical Correspondence Analysis (CCA) indicated that coastal species were primarily influenced by high salinity and ion concentrations, while inland species were more affected by factors like potassium, pH, and calcium carbonate. This study underscores the critical role of understanding these environmental gradients for sustainable management and conservation of Egypt's desert ecosystems.

Keywords: CCA; Conservations; Diversity; TWINSPAN; Vegetation

Received on 14/01/2025 and accepted on 20/02/2025

Introduction

The Eastern Desert of Egypt, covering 21% of the country's total area, is composed of high, rugged mountains running parallel to the coast. It features rugged igneous and limestone mountains, some over 2,000 meters high, and sedimentary plateaus. The Red Sea mountains influence rainfall differently depending on the geological formation: on Eocene limestone, it creates narrow, canyon-like wadis, whereas in Nubian sandstone regions, the flowing water forms broader wadis. The Eastern Desert is extensively dissected by valleys and ravines, with all external drainage systems being Eastward drainage is channeled through numerous independent wadis toward the Red Sea, while westward drainage toward the Nile Valley predominantly merges into a few major trunk channels. The presence of dense wadi networks within the Eastern Desert indicates that, despite the current arid conditions, Egypt likely experienced periods of increased rainfall (pluviation) in its geological history. (Zahran and Wills 2009).

The Eastern Desert of Egypt, divided into two main ecological zones by the Red Sea coastal mountains, highlights the distinct environmental and vegetation dynamics of the Red Sea coastal land and the inland desert. These zones are shaped by diverse topographical and soil features, including saline marshes, gravel plains, and wind-driven deposits, which foster unique plant communities. Vegetation in this area forms a mosaic influenced by seasonal growth cycles, especially the dominance of therophytes during winter and early spring, reflecting the ecological and botanical richness of the region (Zahran and Wills 2009).

Wadis act as natural drainage networks, playing a crucial role in supporting vegetation within the arid coastal desert. They depend on occasional rainfall and groundwater seepage to nurture a variety of plant species, even in the face of challenges like erosion and grazing. Vegetation distribution within wadis is largely determined by soil texture and water flow, creating distinct groupings along the curves of watercourses. Additionally, the floristic composition of the coastal desert is shaped by both environmental conditions and human activities, such as overgrazing and deforestation, highlighting the need to understand these dynamics for successful conservation strategies (El Amier *et al.*, 2015).

The vegetation of the Eastern Desert has been extensively examined by several researchers, including Hassan (1987), Dahmash (2001), Boulos (2008), Abd El-Ghani et al. (2014, 2017), and Salama et al. (2018). However, comparative studies addressing the differences between inland and coastal vegetation are relatively limited. Key studies in this area include those by Zahran and Wills (2009) and EL-Amier et al. (2016). Zahran and Wills (2009) documented significant variations in plant communities between the inland and coastal deserts of the Red Sea, illustrating how differing environmental

conditions impact vegetation distribution. Similarly, EL-Amier et al. (2015) conducted a comparative analysis of vegetation along the Deltaic Mediterranean coastal desert and the Cairo-Suez Desert Road, focusing on the distinct plant species found in these regions. This study aims to extend these investigations by examining the floristic composition of the primary vegetation groups in representative areas of the Gulf of Suez, covering both the inland and coastal deserts of the Red Sea. Additionally, the study seeks to assess the relationship between these vegetation groups and their soil properties, providing insights into the environmental variables that influence plant distribution and diversity in these challenging ecosystems. This will contribute to understanding the historical and ongoing evolution of vegetation communities in the region.

Materials and Methods

Study area

The study area lies within the Gulf of Suez in the northern part of the Red Sea coastal desert of Egypt, encompassing both coastal and inland desert regions and spanning approximately 3,548 km². The area is characterized by diverse geomorphological features, including extensive sandy shores, rugged mountainous terrains, wadis, and rocky plateaus. A total of 60 collection sites were studied, comprising 30 along the coastline and 30 in the inland desert. The coastline sites include Wadi El-Gamil, Wadi El-Ramliya, the end of Wadi Hagul, Ain Sokhna, Wadi Amlog, in front of Gabal Um Rosis, Wadi Ghweiba, Wadi Abu Dahab, in front of Gabal Masama, near Ras Abu Darag, and Wadi Malaha. The inland sites include Wadi El-Bada and Gabal Um Zeita (Map 1). These sites represent a variety of habitats influenced by environmental gradients such as soil type, water availability, and proximity to the sea, making the area a significant focus for studying vegetation distribution and its relationship with edaphic factors in arid ecosystems.

The study area experiences a **subtropical desert climate** characterized by arid and hot conditions. The monthly average temperatures fluctuate between seasons, with summer reaching a peak average of **35.3**°C and winter dropping to a low average of **15.3**°C. Rainfall is most abundant in the winter months, averaging **5 mm**, whereas spring and summer receive minimal precipitation. According to the **Köppen-Geiger climate classification (BWh)** and the **Holdridge life zones bioclimatic system**, this region falls within an arid desert climate category (<u>http://www.suez.climatemps.com</u>; accessed on 31/8/2023).

Map 1. Location for the collection sites in the study area along the Gulf of Suez, Red Sea coast. **Coastal sites (1–30)** include Wadi El-Gamil (1 & 2, 12 & 13), Wadi El-Ramliya (3 & 4), areas between Wadi Hagul and Wadi El-Ramliya (14), Wadi Hagul (6, 7, 15, 16, 22, 23), Ain Shokna (8, 17), Wadi Amlog (9, 19), Wadi El-Bada (10), in front of Gabal Moghra Bahria (11), in front of Gabal Um Rosis (18, 20), between Gabal El-Akheider and Wadi Ghweiba (21), Wadi Abu Dahab (24), in front of Gabal Masama (25), near Ras Abu Darag (26 & 27), Ras Abu Darag (28 & 29), and Wadi Malaha (30); **Inland sites (31–60)** include Wadi Hemra (31), Cairo-Suez Road (32 & 33), Wadi Hagul (34–50), Wadi El-Bada (51–59), and in front of Gabal El-Ramliya (60).

As described by Zahran and Willis (2009), the desert landscape surrounding the Red Sea is characterized by diverse geomorphological features, including limestone plateaus and rugged igneous mountain ranges. Along the west coast of the Gulf of Suez, these coastal mountains include notable formations such as Gebel Ataqa (817 m), Gebel El-Galala El-Bahariya (977 m), and the Gebel Shayeb El-Banat group, which features peaks rising over 1,700 meters, including the highest point, Gebel Shayeb El-Banat (2,187 m). These mountain ranges significantly influence the hydrology and vegetation distribution of the region. Between these mountains and the coastline lies a gently sloping plain, known as the deep plain. This coastal plain, varying in width, is covered with sand and traversed by drainage systems (wadis). These wadis flow eastward, carrying water through their shallow channels into the Red Sea and the Gulf of Suez.

Materials

Plant Collection

Plant specimens were collected from the 60 sites studied using belt transect sampling. The fieldwork was carried out between 2022 and 2024 within the Gulf of Suez, Red Sea coastal desert. The GPS coordinates were obtained with a Megellan GPS 315 handheld device for the collected plant specimens.

Soil Samples Collection

Sixty soil samples were collected from three locations at each collection site in plastic bags. These samples were collected from a depth of 0-30 cm using a clean shovel to avoid contamination.

Methods

Morphological Examination

Detailed morphological and micromorphological descriptions were carried out for critical species needing accurate identification. These descriptions were based on previous work by Boulos (1999, 2000, 2002, 2005). Vegetative parts were examined under a binocular stereoscopic microscope and mounted on slides using a glycerin jelly-water medium. All specimens were preserved in the Suez Canal University Herbarium (SCU-I).

Identification of Plant Specimens

Plant specimens were identified using reference works by Boulos (1999, 2000, 2002, 2005) and Täckholm (1974). Comparisons were made with herbarium sheets from SCU-I and floras from neighboring countries (e.g., Zohary, 1966; Migahid, 1978). Recent valid names were verified using international databases (IPNI, POWO). The geographical distribution in Egypt and globally was referenced by Boulos (2009).

Soil Analysis

Physical Analysis of Soil

The pipette method, as stated by Tributh (1970), was used to determine the particle size distribution. The Walkley and Black method, as stated by Jackson (1967), was used to determine organic matter and organic carbon.

Soil Chemical Analysis

The conductivity meter model Jenway 3310 was used to test the saturated soil paste extract's electrical conductivity (EC) according to Richards (1954). The soil pH was measured in 1:2.5 soil water suspensions using a bench type Beckman glass electrode pH meter (Page et al. 1982). According to Page et al., (1982), the Ethylene diamine tetra acetic acid (EDTA) volumetric titration was used to extract calcium and magnesium from the saturated soil. and a flame photometer was used to measure potassium and sodium, while the bicarbonate was tested by titrating with sulfuric acid, and chloride was determined by titrating with silver nitrate. Finally, the total carbonates was calculated using Collin's calcimeter (Piper, 1950).

Quantitative Vegetation Analysis

The phytosociological data from the studied 60 sites and the collected 119 species were analyzed using the TWINSPAN (Two-way Indicator Species Analysis) technique in the PC-ORD program. Canonical Correspondence Analysis (CCA) was used to explore species/environment relationships and sort species and samples along environmental gradients in this study. It facilitated an understanding of how plant species distributions correlate with soil and other environmental variables across the Gulf of Suez inland and coastal regions.

Results

The field survey in the studied 60 sites revealed the identification of 119 species (108 dicots and 11 monocots), encompassing 9 subspecies. These species represent 32 families and 87 genera of vascular plants. The vegetation was categorized into three trees, 12 shrubs, 74 perennials, 2 biennials, and 43 annuals. The Asteraceae family was the most species-rich with 20 species (16.8%), followed by Amaranthaceae with 16 species (13.4%) then Fabaceae, Poaceae, Zygophyllaceae, and Brassicaceae (7.5%), respectively. Following these, Solanaceae included 6 species and 4 species in each of Boraginaceae and Apocynaceae. Families with fewer species included Tamaricaceae (3 species), Convolvulaceae (3 species), Cucurbitaceae (2 species), and Capparaceae (2 species). Moreover, 15 families were monogeneric including Caryophyllaceae, Ephedraceae, and Plumbaginaceae. These results highlight the taxonomic richness and diversity of the plant communities in the whole study area Table (1).

The floristic composition of the study area revealed distinct patterns of species distribution between the coastline and inland regions, with the Asteraceae family being the most species-rich including 15 and 17 species along the coastline inland sites; respectively. While, Amaranthaceae was in the

second position, with 14 and 7 species on the coastline and inland sites; respectively, indicating a species richness in the coastal habitats. The Poaceae family also shows significant variation, with 8 species found on the coastline and 4 on inland sites while Zygophyllaceae is another prominent family, with 9 species on the coastline and 8 inland showcasing its dominance in both coastal and inland sites. Brassicaceae included 4 species on the coastline and 2 inland but Solanaceae represented 6 species on the coastline and a sharp decline inland. On the other hand, the floristic composition of the study area reveals a clear division of plant families, with several species restricted either to the coastline or the inland. A total of 8 families were found exclusively in the sites along the coastline: Juncaceae, Malvaceae, Plumbaginaceae, Portulacaceae, Plantaginaceae, Primulaceae, Arecaceae, and Urticaceae. Conversely, 6 families were restricted to the inland region: Caryophyllaceae (Figure 1 or 2).

The species composition exhibited notable differences between the coastline and inland areas. The coastline contained 93 species, including *Lepidium didymum, Convolvulus hystrix, Euphorbia peplus, Rumex spinosus,* and *Forsskaolea tenacissima*. In contrast, the inland areas supported 73 species, such as Matthiola longipetala, Gymnocarpos decander, Ephedra alata, Euphorbia retusa, Lavandula coronopifolia, and Tricholaena teneriffae. Furthermore, 48 species were shared between both areas, including Bassia eriophora, Deverra tortuosa, Pulicaria incisa, Hyoscyamus boveanus, and Tribulus mollis.

The life form spectrum of the study area displayed notable variations. Chamaephytes were the most dominant life form, comprising 39.50% of the total, followed closely by therophytes, which made up 37.82%. They were followed by phanerophytes, which represented 12.61%, and hemicryptophytes and cryptophytes, which accounted for 6.72% and 3.36%, respectively. Parasites were the least represented, contributing only 0.84%.

In comparing the inland and coastline regions, there were notable differences in the distribution of life forms. In the inland area, chamaephytes were the most dominant life form, comprising 46.58% (34 out of 73 species), followed by Therophytes representing 26.03% (19 out of 73 species). Then phanerophytes contributed 15.07%, Hemicryptophytes made up 8.22%, cryptophytes 2.74% and parasites were the least represented with 1.37%. In contrast, the coastline area showed equal prevalence in Therophytes and Chamaephytes percentages 37.63%. Phanerophytes represented 12.90% while Hemicryptophytes made up 7.53% and cryptophytes comprised 4.30%. Parasites were absent from the coastline region (Figure 2, Table 1).

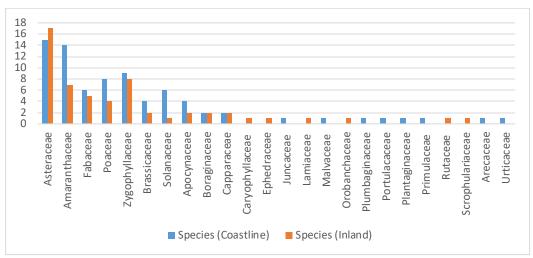
Table 1. List of recorded species in the study area, life forms, habitats, and geographical distribution. Note: Duration: Ann=annual, Bi=biennial, Per = perennial. Life form: Th=Therophytes, H= Hemicryptophytes, Ph= phanerophytes, Ch= chamaephytes, C= Cryptophytes, P=Parasites, (+ = recorded, - = not recorded)

Family	species	Habit	Life form	Coastal sites	Inland sites
Amaranthaceae	Amaranthus viridis L.	Ann	Th	+	-
	Anabasis articulata (Forssk.) Moq.	Per	Ch	-	+
	A. setifera Moq.			+	+
	Arthrocaulonmacrostachyum(Moric.) Piirainen & G. Kadereit	Per	Ch	+	-
	Atriplex humilis F.Muell	Per	Ch	-	+
	Bassia eriophora (Schrad.) Asch.	Ann	Th	+	+
	B. indica (Wight) A.J.Scott	Ann	Th	+	-
	Caroxylon imbricatum (Forssk.) Moq.	Per	Ph	+	-
	Chenopodium album L.	Ann	Th	+	-
	C. ficifolium Sm.	Ann	Th	+	-
	C. murale L.	Ann	Th	+	-
	Halopeplis perfoliata (Forssk.) Bunge ex UngSternb.	Ann	Th	+	-
	Haloxylon persicum Bunge	Per	Ph	+	+
	<i>H. salicornicum</i> (Moq.) Bunge ex Boiss.	Per	Ch	+	+
	H. scoparium pomel.	Per	Ch	+	-
	<i>Traganum nudatum</i> Delile	Per	Ch	+	+

Hassanen et al.

Apiaceae	Deverra tortuosa (Desf.) DC.	Per	Ch	+	+
-					
Apocynaceae	<i>Calotropis procera</i> (Aiton) W.T.Aiton.	Per	Ch	+	-
	Cynanchum acutum L. subsp. acutum	Per	Н	+	-
	Leptadeniap pyrotechnica (Forssk.)	Per	Ph		
	Decne.	<u> </u>		+	+
	Pergularia tomentosa L.	Per	Ch	+	+
Arecaceae	Phoenix dactylifera L.	Per	Ph	+	-
Asteraceae	Achillea fragrantissima (Forssk.) Sch.Bip.	Per	Ch	+	+
	Artemisia judaica L.	Per	Ch		+
	Brocchia cinerea (Delile) Vis.	Ann	Th	-	+
	Centaurea aegyptiaca L.	Bi	Th	-	+
	Echinops spinosus L.	Per	Н	+	+
	Erigeron bonariensis L.	Ann	Th	+	-
	<i>Ifloga spicata</i> (Forssk.) Sch.Bip. subsp. <i>spicata</i>	Ann	Th	-	+
	<i>Iphiona mucronata</i> (Forssk.) Asch. & Schweinf.	Per	Ch	+	+
	Launaea mucronata (Forssk.) Muschl. subsp. mucronata	Ann	Th	+	+
	L. nudicaulis (L.) Hook.f.	Per	Н	+	+
	<i>L.procumbens</i> (Roxb.) Ramayya & Rajagopal	Ann	Th	-	+
	L. spinosa (Forsk.) Sch.Bip.ex Kuntze	Per	Ch	+	+
	Nidorella aegyptiaca (L.) J.C.Manning & Goldblatt.	Ann	Th	+	+
	Pluchea dioscoridis (L.) DC.	Per	Ph	+	+
	Pulicaria incisa (Lam.) DC.	Per	Ch	+	+

	10				
	P. undulata (L.) C. A. Mey. subsp. undulata	Per	Ch	+	+
	Reichardia tingitana (L.) Roth	Ann	Th	+	-
	Senecio glaucus L. subsp. coronopifolius (Maire.) C. Alexander.	Ann	Th	+	+
	Sonchus oleraceus L.	Ann	Th	+	+
	<i>Urospermum picroides</i> (L.) F.W. Schmidt.	Ann	Th	+	_
Boragoniaceae	Heliotropium arbainense Fresen.	Per	Ch	-	+
	H.bacciferum Forssk. var. bacciferum	Per	Ch	+	-
	H. digynum (Forssk.) Christens	Per	Ch	-	+
	Trichodesma africanum (L.) Sm.	Ann	Th	+	-
Brassicaceae	Anastatica hierochuntica L.	Ann	Th	-	+
	<i>Coincya tournefortii</i> (Gouan) Alcaraz, T.E.Díaz, Rivas Mart. & Sánchez-	Ann	Th		
	Gómez			+	-
	Diplotaxis acris (Forssk.) Boiss.	Ann	Th	-	+
	<i>Eremobium aegyptiacum</i> (Spreng.) Asch. var. <i>aegyptiacum</i>	Bi	Th	-	+
	Farsetia aegyptia Turra, Farset.	Per	Ch	+	+
	Lepidium didymum L.	Ann	Th	+	-
	Matthiola longipetala (Vent.) DC.subsp. bicornis (Sm.) P.W. Ball.	Ann	Th	-	+
	<i>Matthiola longipetala</i> (Vent.) DC. subsp. <i>livida</i> (Delile.) Maire DC.	Ann	Th	_	+
	Zilla spinosa (L.) Prantl.	Per	Ch	+	+
Capparaceae	<i>Cleome amblyocarpa</i> Barratte & Murb.	Ann	Th	+	+
	C. droserifolia (Forssk.) Delile	Per	Ch	+	+


Hassanen et al.

			~	1	
Caryophyllaceae	Gymnocarpos decander Forssk.	Per	Ch	-	+
Convolvulaceae	Convolvulus hystrix Vahl.	Per	Ch	+	-
	<i>C.lanatus</i> Vahl.	Per	Ch	+	+
	Ipomoea pes-caprae (L.) R.Br.	Per	Н	+	-
Cucurbitaceae	Citrullus colocynthis (L.) Schrad.	Per	Н	+	+
	Cucumis melo L.	Ann	Th	+	-
Ephedraceae	Ephedra alata Decne.	Per	Ch	-	+
Euphorbiaceae	Euphorbia peplus L.	Ann	Th	+	-
	Euphorbia retusa (L.) Forssk.	Per	Ch	-	+
Fabaceae	Alhagi graecorum Boiss.	Per	Ch	+	-
	Astragalus spinosus (Forssk.) Muschl.	Per	Ch	+	-
	A. sieberi DC.	Per	Ch	-	+
	Crotalaria aegyptiaca Benth.	Per	Ch	+	+
	Melilotus indicus (L.) All.	Ann	Th	+	-
	<i>Retama raetam</i> (Forssk.) Webb & Berthel.	Per	Ph	-	+
	Taverniera aegyptiaca Boiss.	Per	Ch	+	-
	<i>Vachellia tortilis</i> subsp. <i>raddiana</i> (Savi) Kyal. & Boatwr.	Per	Ph	-	+
	<i>Vachellia tortilis</i> (Forssk.) Galasso & Banfi	Per	Ph	+	+
Juncaceae	Juncus rigidus Desf.	Per	С	+	-
Lamiaceae	Lavandula coronopifolia Poir.	Per	Ch	-	+
Malvaceae	Malva parviflora L.	Ann	Th	+	-
Nitrariaceae	Nitraria retusa (Forssk.) Asch.	Per	Ph	+	+
Orobanchaceae	<i>Cistanche tubulosa</i> (Schenk) Wight ex Hook.f var. <i>tubulosa</i>	Per	Р	_	+

Plumbaginaceae	Limonium pruinosum (L.) Chaz.	Per	Ch	+	-
Poaceae	Cenchrus biflorus Roxb.	Ann	Th	+	-
	<i>C. divisus</i> (J.F.Gmel.) Verloove, Govaerts & Buttler	Per	Ch	+	_
	Cynodon dactylon (L.) Pers.	Per	С	+	-
	<i>Diplachne fusca</i> (L.) P.Beauv. ex Roem. & Schult.	Per	Ch	+	-
	Imperata cylindrica (L.) Raeusch.	Per	С	+	+
	Lasiurus scindicus Henrard.	Per	Н	+	+
	Panicum turgidum Forssk.	Per	Н	+	+
	<i>Phragmites australis</i> (L.) (Cav.) Trin. ex. Steud.	Per	С	+	+
	Tricholaena teneriffae (L.f.) Link	Per	Н	-	+
Polygonaceae	Rumex spinosus L.	Ann	Th	+	-
	R. vesicarius L.	Ann	Th	+	+
Portulacaceae	Portulaca oleracea L.	Ann	Th	+	-
Plantaginaceae	<i>Plantago ovata</i> Forssk.	Ann	Th	+	-
Primulaceae	<i>Lysimachia arvensis</i> (L.) U.Manns & Anderb.	Ann	Th	+	-
Resedaceae	<i>Caylusea hexagyna</i> (Forssk.) M.L.Green	Ann	Th	-	+
	Ochradenus baccatus Delile	Per	Ph	+	+
	Reseda pruinosa Delile	Ann	Th	+	-
Rutaceae	Haplophyllum tuberculatum (Forssk.) A. Juss.	Per	Ch	_	+
Scrophulariaceae	Kickxia aegyptiaca (L.) Nábělek	Per	Ch	-	+
Solanaceae	Lycium shawii Roem. & Schult.	Per	Ph	+	+

Hassanen et al.

	1	1 	-11		
	Hyoscyamus boveanus (Dunal.) Asch.& Schweinf.	Per	Ch	+	+
	<i>H. desertorum</i> (Asch. ex Boiss.) Täckh.	Ann	Th	+	-
	H. muticus L.	Per	Ch	+	-
	Solanum lycopersicum L.	Ann	Th	+	-
	S. nigrum L.	Ann	Th	+	-
Tamaricaceae	Tamarix aphylla (L.) H. Karst.	Per	Ph	+	-
	T. nilotica (Ehrenb.) Bunge.	Per	Ph	+	+
	T. tetragyna Ehrenb.	Per	Ph	+	+
Urticaceae	Forsskaolea tenacissima L.	Per	Ch	+	-
Zygophyllaceae	Tribulus mollis Ehrenb. ex Schweinf.	Ann	Th	+	+
	T. terrestris L.	Ann	Th	+	-
	Zygophyllum album L.	Per	Ch	+	+
	Z. arabicum (L.) Christenh. & Byng	Per	Ch	+	+
	Z. bruguieri (DC.) Christenh. & Byng	Per	Ch	+	+
	Z. coccineum L.	Per	Ch	+	+
	Z.decumbens Delile	Per	Ch	+	+
	Z.molle (Delile) Christenh. & Byng	Per	Ch	+	+
	Z. Simplex L.	Ann	Th	+	+
Total	119			93	73

Floristic Composition and Edaphic Influences in the Gulf of Suez

Fig. 1. The difference between families on the coastline and inland areas

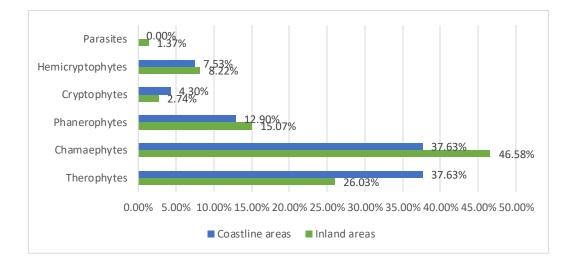


Fig. 2. The life difference between the coastline and inland areas

TWINSPAN analysis categorized the collection sites in the coastal areas into seven distinct assemblages: *Haloxylon salicornicum* assemblage, *Zygophyllum coccineum* assemblage, *Zygophyllum coccineum–Ochradenus baccatus–Bassia indica* assemblage, *Trichodesma africanum–Zygophyllum coccineum* assemblage, *Tamarix nilotica* assemblage, *Tamarix nilotica* assemblage, *and Tamarix aphylla* assemblage. The presence percentages of species composition for these assemblages are detailed in Table (2). The first assemblage was dominated by *Haloxylon salicornicum* with 100% presence and an average abundance of 2.5. It was followed by the codominant species *Ochradenus*

baccatus (75%, 2.6 average abundance) and the associated species Zygophyllum coccineum (50%, 3.0). In the second assemblage, Zygophyllum coccineum was the dominant species, with 100% presence and an average abundance of 3.16. Codominant species included Ochradenus baccatus (83.3%, 3.0), Zilla spinosa (83.3%, 3.8), and Calotropis procera (83.3%, 2.8). Associated species such as Leptadenia pyrotechnica (66.64%, 2.25), Convolvulus hystrix (49.98%, 3.33), and Hyoscyamus muticus (49.98%, 2.33) were also identified. The third assemblage was characterized by three dominant species: Zygophyllum coccineum (74.2%, 3.66), Ochradenus baccatus (74.2%, 2.66), and Bassia indica (74.2%, 3.0). Codominant species included Zilla spinosa and Tamarix nilotica each with 66.66% presence and average abundances of 3.0 and 3.5, respectively. The fourth assemblage had two dominant species: Trichodesma africanum and Zygophyllum coccineum both with 100% presence and average abundances of 3.0 and 4.0, respectively. The codominant species Tamarix nilotica exhibited 75% presence and an average abundance of 3.0, while Farsetia aegyptia was the associated species, with 50% presence and an average abundance of 4.0. The fifth assemblage was dominated by Tamarix nilotica with 100% presence and an average abundance of 3.28. The codominant species *Phargmites australis* had 71.42% presence and an average abundance of 3.0, while Nitraria retusa represented the associated species (57.12%, 2.0). In the sixth assemblage, Tamarix nilotica was again the dominant species, with 100% presence and an average abundance of 4.0. Codominant species included Phargmites australis (75%, 3.33) and Zygophyllum coccineum (75%, 3.66). Associated species were Bassia indica, Chenopodium murale, Portulaca oleracea, and Sonchus oleraceus all with 75% presence and average abundances of 3.0, 4.0, 2.0, and 4.0, respectively. Finally, the seventh assemblage was dominated by Tamarix aphylla with 100% presence and an average abundance of 2.0.

Table 2. The phytosociological table shows the presence percentage and average abundance for coastline sites' main assemblages resulting from TWINSPAN classification. Avg=Average abundance, P =Presence

Group		Ι	Ι			II	Ι	V	V	7	V	νI	V	ΊI	Spacios
Species	1	4	6	j		3	4		7	1	1	4		2	Species Abbreviations
species	Р	Avg	Р	Avg	Р	Avg	Р	Avg	Р	Avg	Р	Avg	Р	Avg	ADDIEVIATIONS
Achillea fragrantissima			33.2	2.00											Achi fra
Alhagi graecorum									42.84	3.00					Alha gra
Anabasis setifera	25	2.00							14.28	1.0					Anab seti
Arthrocaulon macrostachyum			16.6	1.00			25	3.00							Arth mac
Astragalus spinosus											25	2.00	50	2.00	Astr spi
Astragalus sieberi									14.28	1.0					Astr sie
Bassia eriophora											25	2.00			Bass eri
Bassia indica					100	3.00					50	3.00			Bass ind
Calotropis procera			83.3	2.8	25	1.00	14.28	2.00							Calo pro
Caroxylon imbricatum			16.6	2.00											Caro imb
Cenchrus biflorus											25	2.00			Cenc bif
Cenchrus divisus							25	2.00							Cenc div
Chenopodium album											25	2.00			Chen alb
Chenopodium ficifolium											25	2.00			Chen fic
Chenopodium murale							109				50	4.00			Chen mur

Citrullus colocynthis			33.2	2.00									Citr col
Cleome amblyocarpa			33.2	3.00									Cleo amb
Cleome droserifolia									14.28	1.00			Cleo dro
Coincya tournefortii							25	2.00					Coin tou
Convolvulus hystrix			66.64	2.25									Conv hys
Convolvulus lanatus									14.28	1.00			Conv lan
Crotalaria aegyptiaca	25	2.00	16.6	3.00									Crot aeg
Cucumis melo					33.3	1.00							Cucu mel
Cynanchum acutum					33.3	3.00			14.28	1.0	25	2.00	Cyna acu
Cynodon dactylon							25	3.00			25	2.00	Cyno dac
Deverra tortuosa									14.28	1.0			Deve tor
Diplachne fusca.							25	1.00					Dipl acr
Echinops spinosus	25	3.00							28.56	2.0			Echi spi
Erigeron bonariensis											25	2.00	Erig bon
Euphorbia peplus											25	2.00	Euph pep
Farsetia aegyptia	25	2.00	16.6	3.00			50	4.00					Fars aeg
Halopeplis perfoliata									14.28	2.00			Halo per
Haloxylon persicum											25	4.00	Halo sal
Haloxylon	100	2.5	33.2	2.5			25	2.00	14.28	1.0			Halo sco
salicornicum	100	2.00											Holon nor
Haloxylon scoparium	100	2.00				• • •							 Halop per
Heliotropium bacciferum					33.3	2.00							Heli bac

Hyoscyamus boveanus			16.6	3.00											Hyos bov
Hyoscyamus			33.2	3.00											Hyos des
desertorum															
Hyoscyamus muticus			49.98	3.33											Hyos mut
Imperata cylindrica													50	4.00	Impe cyl
Iphiona mucronata	25	3.00													Iphi muc
Ipomoea pes-caprae			16.6	1.00											Ipom pes
Juncus rigidus									14.28	4.00					Junu rig
Lasiurus scindicus			49.81	2.5	33.3	2.00									Lasi sci
Launaea nudicaulis			16.6	2.00											Laun muc
Launaea spinosa	25	3.00													Laun pro
Launaea mucronata									14.28	1.0			25	2.00	Laun spi
Lepidium didymum											25	2.00			Lepi did
Leptadenia pyrotechnica	25	3.00	49.8	2.3	33.3	2.00	25	1.00	28.56	3.0					Lept pyr
Limonium pruinosum													50	2.00	Limo pru
Lycium shawii	50	3.00													Lyci sha
Lysimachia arvensis											25	2.00			Lysi arv
Malva parviflora											25	3.00			Malv par
Melilotus indicus													50	4.00	Meli ind
Nitraria retusa							33.3	3.00	57.12	2.0					Nitr ret
Ochradenus baccatus	75	2.6	83.3	3.00	100	2.66	50	1.5	14.28	1.0			50	3.00	Ochr bac
Panicum turgidum			16.6	1.00	33.3	2.00									Pani tur

Pergularia tomentosa			16.6	3.00											Perg tom
Phoenix dactylifera									14.28	2.00					Phoe dac
Phragmites australis	25	2.00							71.42	3.00	75	3.33	50	3.00	Phra aus
Plantago ovata			16.6	1.00											Plat ova
Pluchea dioscoridis							25	2.00					50	2.00	Pluc dio
Portulaca oleracea											50	2.00			Port ole
Pulicaria incisa							25	2.00					50	2.00	Puli inc
Pulicaria undulata									14.28	2.00					Puli und
Reichardia tingitana							25	2.00							Reic tin
Reseda pruinosa							25	2.00							Rese pru
Rumex spinosus													25	2.00	Rume spi
Rumex vesicarius							25	2.00					50	3.00	Rume ves
Senecio glaucus													50	1.00	Sene gla
Solanum lycopersicum											25	3.00			Sola lyc
Solanum nigrum											25	2.00			Sola nig
Sonchus oleraceus											50	2.00	50	2.00	Sonc ole
Tamarix aphylla	25	4.00							14.28	2.0			100	2.00	Tam aph
Tamarix nilotica			33.2	2.5	66.6	3.5	75	3.00	100	3.28	100	4.00	50	1.00	Tam nil
Tamarix tetragyna											75	2.00			Tam tet
Taverniera aegyptiaca			16.6	1.00	33.3	2.00			14.28	2.0					Tave aeg
Traganum nudatum	25	4.00							14.28	1.0			50	1.00	Trag nud
Tribulus mollis			16.6	2.00											Trib mol

Tribulus terrestris							25	1.00							Trib ter
Trichodesma			16.4	2.00			100	3.00							Tric afr
africanum															
Urospermum											25	1.00			Uros pic
picroides															
Vachellia tortilis	25	1.00	16.6	1.00	33.3	1.00									Vac t rad
subsp. raddiana															
Zilla spinosa	25	4.00	83.3	3.8	66.6	3.00	25	3.00	14.28	2.0	25	2.00	50	2.00	Zill spi
Zygophyllum	50	2.00	100	3.16	100	3.66	100	4.00	42.84	3.0	75	3.66			Zyg ara
coccineum															
Zygophyllum			16.6	1.00			25	3.00	28.54	2.00					Zyg coc
arabicum															
Zygophyllum					33.3	2.00									Zyg bru
bruguieri															
Zygophyllum album											25	2.00			Zyg alb
Zygophyllum	25	2.00													Zyg dec
decumbens															-
Zygophyllum molle	25	1.00							14.28	2.0					Zyg mol
Zygophyllum simplex	25	1.00			33.3	2.00	25	2.00	14.28	2.0					Zyg Sim

TWINSPAN analysis categorized the inland collection sites into five distinct assemblages: Tamarix nilotica assemblage. Zilla spinosa assemblage. Launaea spinosa assemblage, Zygophyllum coccineum–Farsetia aegyptia assemblage, and a complex assemblage including Anabasis articulata, Anastatica hierochuntica, Matthiola longipetala, Gymnocarpos decander, Lycium shawii, Melilotus indicus, Imperata cylindrica, and Zygophyllum mole. The species composition and their percentages of presence within these assemblages are presented in Table (3). The first assemblage was dominated by Tamarix nilotica, with a 75% presence and an average abundance of 2.00. Codominant species included Traganum nudatum, Convolvulus lanatus, Zilla spinosa, Haloxylon salicornicum, and Rumex vesicarius, each with 50% presence and average abundances of 2.00 and 1.00. The second assemblage was characterized by Zilla spinosa as the dominant species, with 100% presence and an average abundance of 2.76. Codominant species were Ochradenus baccatus (92.28%, 3.00) and Zygophyllum coccineum (84.59%, 2.90), while associated species included Haloxylon salicornicum (53.13%, 1.85) and Tamarix nilotica (46.14%, 2.50). In the third assemblage, Launaea spinosa was the dominant species, with 87.5% presence and an average abundance of 2.71. Codominant species included Zygophyllum decumbens, Iphiona mucronata, and Zilla spinosa, each with 75% presence and average abundances of 1.83, 2.50, and 2.60, respectively. The associated species Ochradenus baccatus exhibited 62.5% presence and an average abundance of 2.20. The fourth assemblage was dominated by Farsetia aegyptia and Zygophyllum coccineum, both with 100% presence and average abundances of 3.75. Codominant species included Haloxylon salicornicum, Anabasis setifera, Lycium shawii, and Tamarix tetragyna, each with 75% presence and average abundances of 3.00, 3.60, 2.30, and 1.33, respectively. Associated species such as Zygophyllum mole, Ochradenus baccatus, Vachellia tortilis subsp. raddiana, Portulaca oleracea, and Sonchus oleraceus exhibited 50% presence and average abundances ranging from 2.00 to 2.50. The fifth assemblage was dominated by a diverse group of species including Zygophyllum simplex, Anabasis articulata, Anastatica hierochuntica, Matthiola longipetala, Gymnocarpos decander, Lycium shawii, Zygophyllum mole, Melilotus indicus, and Imperata cylindrica, all with 100% presence and average abundances of 1.00 to 4.00.

This study analyzed sixteen physical and chemical environmental factors, which were categorized into two main groups. The first group encompassed the physical characteristics of soil, including soil texture (determined by the pipette method), soil moisture content, organic carbon, and organic matter content. The second group focused on the chemical properties of soil, including acidity (pH), electrical conductivity (EC), cations, anions, and total carbonate, expressed as a percentage of weight. The ranges and mean values of these environmental variables across the sites corresponding to each

assemblage provide insight into the extent of variation within the coastline areas of the study area. Notable differences were observed among the physical and chemical attributes of the seven assemblages (Table 4). The second assemblage exhibited the highest percentages of sand (98.1%), silt (30.5%), calcium carbonate (CaCO₃, 26%) and pH (8.61). In contrast, assemblage seven recorded the highest values for clay content (28.2%), electrical conductivity (1410 dS/m), potassium (18.7 mEq/L), and soil moisture content (12.1%). Assemblage five displayed the maximum concentrations of sodium (Na⁺, 858 mEq/L), magnesium (Mg²⁺, 180 mEq/L), calcium (Ca²⁺, 470 mEq/L), chloride (Cl⁻, 1196 mEq/L), and bicarbonate (HCO₃⁻, 81 mEq/L). Meanwhile, the highest levels of sulfate (SO4²⁻, 329 mEq/L) were observed in assemblage six. Significant differences were observed among the physical and chemical attributes of the five assemblages associated with plant species collected from the inland areas (Table 5). The third assemblage showed the highest percentages of sand (92.5%), organic matter (0.7%), organic carbon (0.43%), and magnesium (Mg²⁺, 20.8 mEq/L). Conversely, assemblage two recorded the maximum values for soil moisture content (11.5%), potassium (K⁺, 0.4 mEq/L), sodium (Na+, 58.4 mEq/L), calcium (Ca2+, 40 mEq/L), chloride (Cl-, 41.8 mEq/L), sulfate (SO_{4²⁻}, 34.3 mEq/L), and calcium carbonate (CaCO₃, 34.3%). Meanwhile, the fourth assemblage exhibited the highest levels of clay (84.8%), pH (9.24), electrical conductivity (EC, 7.66 dS/m), and bicarbonate (HCO₃⁻, 18 mEq/L).

The Canonical Correspondence Analysis (CCA) ordination classified the 93 plant species collected from the coastline sites into four distinct sections (Figure 4). The first section (I) comprised species positively influenced by electrical conductivity (EC), sodium (Na⁺), magnesium (Mg²⁺), potassium (K⁺), calcium (Ca²⁺), chloride (Cl⁻), bicarbonate (HCO₃⁻), sulfate (SO₄²⁻), and silt. This group included Bassia eriophora, Halopeplis perfoliata, Reichardia tingitana, Limonium pruinosum, Phragmites australis, Tamarix nilotica, Zygophyllum coccineum, and Zygophyllum simplex. But, the third section (III) was represented by species such as *Cleome amplyocarpa*, *Achillea* fragrantissima, Cucumis melo, Plantago ovata, and Tribulus mollis, which were negatively influenced by the same mentioned factors. The fourth section (IV) included species such as Chenopodium album, Sonchus oleraceus, Melilotus indicus, and Malva parviflora, which were positively associated with soil moisture. Conversely, the second section (II) comprised species such as Zygophyllum album, Haloxylon salicornicum and Convolvulus lanatus which were negatively affected by soil moisture.

Table 3. Phytosociological table showing presence percentage and average abundance for inland sites main assemblages resulted from TWINSPAN classification. Avg=Average abundance; P =Presence

Group		Ι	Ι	[Ι	Π]	[V	,	V	Species
Species		4	1.	3	1	8		4		1	Abbreviations
species	Р	Avg	Р	Avg	Р	Avg	Р	Avg	Р	Avg	Abbicviations
Achillea fragrantissima			15.38	1.5	12.5	1.00					Achi fra
Anabasis articulata									100	2.00	Anab art
Anabasis setifera							75	3.6			Anab seti
Anastatica hierochuntica					37.5	1.5			100	2.00	Anas hie
Artemisia judaica			7.69	1.00							Arte jud
Astragalus sieberi					12.5	2.00					Astr sie
Atriplex humilis	25	1.00									Atri hum
Bassia eriophora					12.5	2.00					Bass eri
Brocchia cinerea					12.5	2.00					Broc cin
Caylusea hexagyna							25	3.00			Cayl hex
Centaurea aegyptiaca	25	2.00									Cent aeg
Cistanche tubulosa					12.5	2.00					Cist tub

Citrullus colocynthis	25	3.00									Citr col
Cleome amblyocarpa	25	2.00									Cleo amb
Cleome droserifolia					12.5	2.00					Cleo dro
Convolvulus lanatus	50	2.00									Conv lan
Crotalaria aegyptiaca			30.76	2.25	25	2.5					Crot aeg
Deverra tortuosa			15.38	2.00	12.5	4.00					Deve tor
Diplotaxis acris	25	2.00									Dipl fus
Echinops spinosus			15.38	2.5	37.5	2.6	25	3.00			Echi spi
Ephedra alata			7.69	1.00							Ephe ala
Eremobium aegyptiacum							25	2.00			Erem aeg
Euphorbia retusa	25	2.00									Euph ret
Farsetia aegyptia			7.69	2.00	12.5	2.00	100	3.25			Fars aeg
Gymnocarpos decander			7.69	2.00					100	2.00	Gymn dec
Haloxylon persicum			7.69	1.00							Halo sal
Haloxylon salicornicum	50	2.00	53.73	1.85			75	3.00			Halo sco
Haplophyllum tuberculatum			7.69	2.00							Hapl tub
Heliotropium arbainense			23.07	2.00	37.5	3.00					Heli arb

Heliotropium digynum					12.5	2.00					Heli dig
Hyoscyamus boveanus	25	2.00									Hyos bov
Ifloga spicata					12.5	2.00					Iflo spi
Imperata cylindrica							25	2.00			Impe cyl
Iphiona mucronata			46.14	3.6	75	2.5					Iphi muc
Kickxia aegyptiaca			7.69	1.00			25	2.00			Kick aeg
Launaea nudicaulis			7.69	2.00	12.5	1.00					Laun muc
Launaea procumbens	25	2.00									Laun nud
Launaea spinosa			15.38	2.00	87.5	2.71					Laun pro
Launaea mucronata	25	2.00									Laun spi
Lavandula coronopifolia.			7.69	1.00	37.5	2.00					Lava cor
Leptadenia pyrotechnica									25	3.00	Lept pyr
Limonium pruinosum											Limo pru
Lycium shawii			23.07	1.66	25	2.00	75	2.3	100	2.00	Lyci sha
Matthiola longipetala									100	2.00	Matt l bi
Matthiola longipetala									100	2.00	Matt l liv
Nidorella aegyptiaca					12.5	2.00					Nido aeg

Nitraria retusa					12.5	2.00					Nitr ret
Ochradenus baccatus	25	2.00	92.28	3.00	62.5	2.2	50	2.5			Ochr bac
Panicum turgidum			13.07	2.3	25	2.00	25	2.00			Pani tur
Pergularia tomentosa			7.69	3.00							Perg tom
Phragmites australis			15.38	2.5	25	3.00	25	2.00			Phra aus
Pluchea dioscoridis			15.38	2.00							Pluc dio
Pulicaria incisa	25	1.00									Puli inc
Pulicaria undulata			30.76	1.75							Puli und
Retama raetam					12.5	2.00					Reta rae
Rumex vesicarius	50	1.00			37.5	1.5			100	1.00	Rume ves
Senecio glaucus	25	2.00									Sene gla
Sonchus oleraceus					12.5	1.00					Sonc ole
Tamarix nilotica	75	2.00	46.14	2.5	12.5	2.00					Tam nil
Tamarix tetragyna	25	2.00	7.69	4.00							Tam tet
Traganum nudatum	50	2.00									Trag nud
Tribulus mollis					12.5	1.00					Trib mol
Tricholaena teneriffae									100	2.00	Tric ten

Hassanen e	et a	al.
------------	------	-----

Vachellia tortilis subsp. raddiana			15.38	2.5	25	1.00	50	2.00			Vac t rad
Vachellia tortilis subsp. tortilis			7.69	2.00							Vac t tor
Zilla spinosa	50	2.00	100	2.76	75	2.6	25	3.00			Zill spi
Zygophyllum coccineum	25	2.00	84.59	2.9			100	3.75	100	2.00	Zyg ara
Zygophyllum arabicum	25	2.00	30.76	1.5							Zyg coc
Zygophyllum bruguieri			7.69	2.00			25	1.00			Zyg bru
Zygophyllum album					12.5	2.00					Zyg alb
Zygophyllum decumbens	25	2.00	15.38	2.00	75	1.83					Zyg dec
Zygophyllum molle	25	2.00	7.69	1.00			50	2.5	100	2.00	Zyg mol
Zygophyllum simplex									100	1.00	Zyg Sim

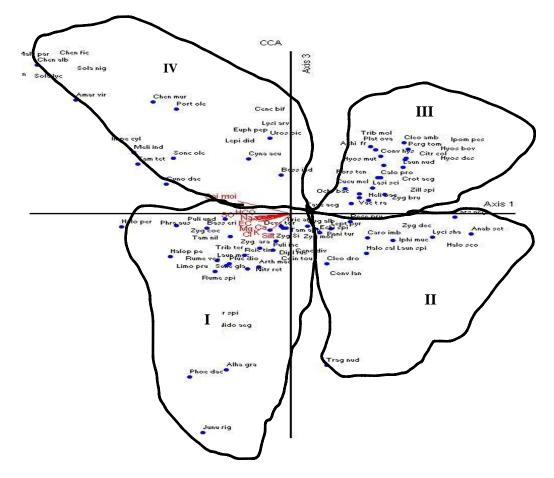

Assemblage			1				п				ш				IV				v				V1		vii				
No. of sites			4		-		6		-		3				4				,				4				3		
Soil texture (pipette)	Min	Max	Mean	Std Dev	Min	Max	Mean	Sol Dev	Min	Max	Mean	Std Dev	Min	Max Thynical	Mean	Std Dev	Min	Max	Mean	Sed Der	Min	Max	Mean	Sul Dev	Min	Max	Mean	Std	
Sand%	47.6	60	54.17	5.32	- 54	89.1	72.46	12.49	61	69.8	65	4.44	37.5	86.8	45	15.6	36.3	80.5	71.61	8.41	61.2	\$2.9	73.52	9	56.4	78	63,2	9.6	
Silt%	4.7	25	14.45	9.93	4.3	30.5	10,71	9.98	.7	12.1	8.73	2.91	7.5	22.5	12.97	6.55	7.3	21.6	14.47	4.8	9.3	18.4	11.8	4.4	15.4	20	17,7	3.3	
Clay%	9.7	20.5	15	4.68	6.5	15.5	8.73	3.64	9.8	11.9	11.1	1.13	12.5	11.1	17.15	4.27	3.1	17.8	10.8	5	7.5	30.4	14.67	5.47	10	28.2	19.1	12.1	
Organic matter%	0.22	0.51	0.36	0.16	8.05	0.49	0.24	0.19	0.39	1.11	0.667	0.34	0.42	1.11	0.75	0.29	0.05	1.18	0.31	0.40	0.10	0.42	0.32	0.14	в	12.5	0.51	0.1	
Organic carbon %	0.13	0.30	0.21	0.094	0.03	0,2	0.14	0.11	0.22	0.64	0.38	0.22	0.24	0.64	0.43	0.37	0.03	0.68	0.18	0.23	0.06	0.24	0.18	0.06	0.19	0.42	0.18	0.0	
Moisture content %	0.39	2.2	1.29	0.82	0.6	1.7	1.08	0.47	0.7	0,99	0.83	0.14	2.3	*	3,69	1.73	0,7	7.7	2.85	2.57	2.5	11.9	6.09	4.07	3.9	12.1	1	8.	
	-				-	-	-		-			C	hemica	l prope	rties	_	-	-			-	_			-			-	
pH	8.14	8.97	8.61	0.35	7.57	\$,61	8.1	0.37	7.57	7,82	7.66	0.13	7.33	8.12	7.62	0.45	7.11	8.42	7,91	0.45	7.65	8.47	8.1	0.54	0.8	8.49	7.68	1.1	
EC (ds/m)	1.3	38.7	10.32	7.11	1.06	13.4	5.08	4.5	10.5	43.2	23.63	\$7.72	12.5	76.2	46.3	34.0	4.87	151	53	\$5.69	8.14	11.1	40.8	23.9	.63	1410	94.2	122	
													Cation	OBEq	I.)														
Ca)-	4	80	43.8	33.1	2.8	87	21.76	19.25	56	151	94.33	50	26.7	240	159.3	111.4	26.4	470	126.5	158.6	18.3	178	72	72.9	18.9	335	110.5	106	
Mg ¹⁺	5.6	24	17.62	8.28	2.1	24	11.5	8.13	27	99	51.33	41.28	20	150	89	65.6	16.2	180	61.4	60.8	14.5	119	\$3.37	45.7	8,19	8.42	. 70	. 77	
Na*	3.3	78.4	42.12	32.4	4.4	52.5	17.7	20.3	20.7	181	90	82.3	77.9	378	233.4	162.7	5.8	858	338.4	35.8	51.3	#11	283,9	356.1	0.11	0.24	769	104	
ĸ	9,2	0,6	0.42	0.17	0.2	0.5	0.31	0.11	6.9	1	9,63	0.35	0.4	1	1.2	0.92	83	2	1.12	0.81	1.0	2	0,8	0.80	10.7	18.7	1.7	1.8	
	· ·						10 O				97 V	1	Anions	(mEq/	51		(· ·				645 - S	10 - 11 		· · · ·		
нсоз	2.2	10.8	6.95	3.78	1.6	7.9	3.01	2.25	2.6	45	9.86	22.36	8.6	71	36.45	30.46	4	81	24.9	27.8	11.2	- 54	25	19.62	6.87	8.49	34.3	43.	
a	6.2	10.5	61.5	40,97	5.1	90	29	31,53	13	240	136	92.48	68.6	496	297,9	318.9	29	1196	373.0	427.9	34.9	727	250.9	321.5	7.55	181	731.5	059	
SO4 ³	4.0	71.2	34.5	27.52	3.3	42.4	17.8	5.83	30	147	\$9.46	60,13	43.2	217	128.65	93.1	12	320	132.6	121.7	35.3	329	132	133.7	35	186	176.9	223	
CaCO3%	9,4	23,7	16.55	7.59	9,3	26	19.8	6.05	7,5	23.7	18.2	9.26	18.2	24.5	21.45	2.57		24.0	14.32	7.14	20.8	24,9	22.87	1.7	8.4	3	14,35	6	

Table 4. Minimum, maximum, mean, and standard deviation of environmental variables for the main assemblages of coastline plants resulted from TWINSPAN

Table 5. The minimum, maximum, mean, and standard deviation of environmental variables for the mainassemblages of inland site plants resulted from TWINSPAN

Assemblage			1				п				111				IV		v				
No. of sites			4				1.5				8				4		1				
Soil texture (pipette)	Min	Max	Mean	Std Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Sul Dev	Min	Max	Mean	Std Dev	Min	Max	Mean	Ste De	
2035/E0101/18					_				1	Physics	d propert	ties					_				
Sand?5	69	73.8	71.67	2.05	59.5	87	72.19	9.1	50	92.5	70.96	13	8.7	23.4	13.3	6.91	69	69	69		
Silt%	16.7	92	14.15	3.5	32	64.1	11.2	7.5	2.2	23.7	9,7	7.79	6.5	12.8	8.57	2.9	1.3	13	13		
Clay%6	6.7	11.9	8.64	2.01	1	19.5	8.8	5.5	2.5	30	9.86	8.83	47.3	\$4.5	65.65	15.36	18	15	15		
Organic matter%	0.05	0.17	0.13	0.05	0.05	0.66	0.29	0.19	0.05	0.7	0.35	0.22	0.14	0.61	0.33	0.20	0.05	0.05	0.05	*	
Organic carbon %	0.10	0.03	0.07	0.03	0.03	0.38	0.17	0.10	0.03	0.43	0.20	0.13	0.05	0.35	0.19	0.12	0.03	0.03	0.03		
Moisture content %	1.3	2	1.5	0.35	0.2	11.5	2.49	2.92	0.44	5	2.09	1.72	0.26	1.32	0.87	0.44	1.2	1.2	1.2	•	
									hemic	al prop	erties		<u>.</u>								
pH	7,73	9.09	8.10	0.63	7.53	9.05	8.17	0.42	7.19	8.09	7.92	0.09	8.37	9.24	8,7	0.37	7.77	7.77	7.77	-	
EC (ds/m)	4.79	6.9	5.89	0.97	1.71	8.54	4.84	2.24	2.82	10.5	5.18	2.33	2.42	7.66	5	2.39	4.7	4.7	4.7	-	
									Cation	s (mEq	/L)										
Ca ³⁺	18.2	32	23.3	6.1	9.5	40	19.26	8.16	15	38	25.75		12.5	21	17,55	3.6	29,4	29.4	29,4		
Mg ¹⁺	6	15.1	12.3	4.29	4.4	16	11.32	3.78	4	20.8	12.45	4.87	11	15	12.47	1.7	13.6	13.6	13.6		
Na*	9.5	40.6	25.5	13.04	3.8	58.4	18.24	18	4.9	55.4	14.47	16.73	7.1	45.7	24.7	18.78	3.6	3.6	3.6		
K	0.3	0.4	0,35	0.05	0.2	0.4	0.26	0.06	0.2	0.6	0.32	0.12	0.1	0,3	0.17	0.09	0,4	0.4	0.4		
									Auton	(mEq	L)										
HCO3	4.4	7.1	5.8	1.22	1.4	21	7.1	5.29	3	9.6	5.12	2.16	10.9	18	6.87	4.4	5	5	5		
ct	27.2	39	32.6	5.6	7	41.8	24.21	10.65	15	65	29.7	15.4	12	36.1	25.22	10.29	26	26	26		
SO41-	16.3	26.2	20.5	4.13	5.5	34.3	17.1	8.67	9	30.4	16.95	6.4	9,4	29.6	18.6	10.29	16	16	16		
CaCO3%	6.5	12	8.15	2.58	7.6	34.3	18.8	8.33	11.2	27.5	16	4.96	23.1	32.3	27.87	4.6	15.7	15.7	15.7	-	

The CCA ordination classified the 73 plant species collected from inland sites into four distinct sections (Figure 5). The first section (I) consisted of species positively influenced by electrical conductivity (EC), potassium (K⁺), chloride (Cl⁻), and silt. This group included *Tamarix nilotica, Zilla spinosa, Haloxylon persicum*, and *Convolvulus lanatus*. In contrast, the fourth section (IV) comprised species negatively affected by these same factors, such as *Vachellia tortilis* subsp. *raddiana, Lycium shawii, Imperata cylindrica,* and *Phragmites australis*. The second section (II) included species positively influenced by potassium (K⁺), pH, and calcium carbonate (CaCO₃), such as *Kickxia aegyptiaca, Haloxylon salicornicum, Zygophyllum molle,* and *Caylusea hexagyna*. Finally, the third section (III) was represented by species positively associated with organic matter and organic carbon, including *Achillea fragrantissima, Ifloga spicata,* and *Anastatica hierochuntica.*

Fig. 4. Ordination diagram (CCA) with coastline plant species as points and selected environmental variables (physical and chemical)

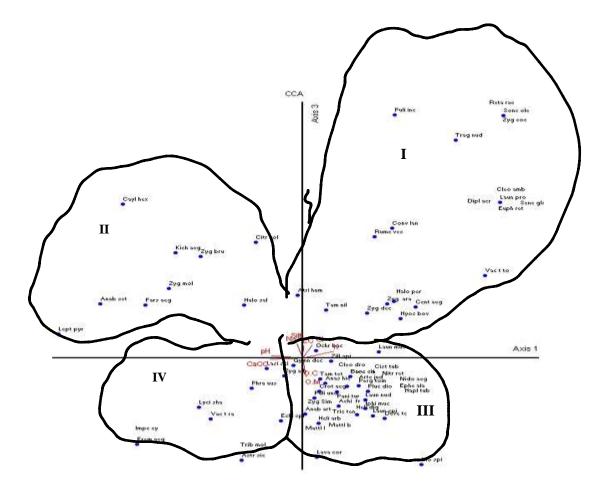


Fig. 5. Ordination diagram (CCA) with coastline plant species as points and selected environmental variables (physical and chemical)

Discussion

The studied sites represent the coastal and inland regions of the Eastern Desert, notable for their diverse wild plant species at both specific and generic levels. A total of 119 species were identified, distributed among 87 genera and 32 families. The Asteraceae family was the most diverse, representing (16.8%), followed by Amaranthaceae (13.4%), and then Zygophyllaceae. The prevalence of these families highlights the region's adaptation to extreme aridity and salinity. These conditions favor xerophytic plants with high salt tolerance, as noted by Aronson and Whitehead (1989). Additionally, Judd and Ferguson (1999) emphasized the adaptation of Amaranthaceae to semi-arid climates and saline habitats. The Zygophyllaceae family, in particular, is widely distributed in arid and semi-arid zones across both the Old and New Worlds, especially in seasonally dry desert environments (Abd El-Aal *et al.*, 2019).

The notable presence of Asteraceae, Amaranthaceae, Poaceae, Zygophyllaceae, Brassicaceae and Solanaceae in both inland and coastal sites highlighted their strong adaptation to saline habitats. However, the inland regions consistently exhibit a lower number of species within these families compared to the coastline. This pattern is likely due to the higher salinity levels found along the coastline, as shown in Table 4.

The families Juncaceae, Malvaceae, Plumbaginaceae, and Arecaceae were exclusively found along the coastline with no presence in the inland regions. This distinctive distribution underscores their strong adaptation to saline environments as these families are recognized for their exceptional salt tolerance as highlighted by Garcia-Caparros *et al.* (2023). Their restriction to the coastline further emphasizes the critical role of salinity in shaping their habitat preferences reflecting the unique conditions that coastal areas provide.

The life span distribution between inland and coastline areas shows notable differences. In the inland regions, 73 species were recorded, with 17 species (23.29%) being annuals and 54 species (73.97%) perennials. In contrast, the coastline, with 93 species, had a higher proportion of annuals, with 35 species (37.63%) compared to 58 species (62.37%) perennials. The higher proportion of annuals along the coastline can be linked to the increased rainfall and soil moisture in these sites, as shown in Table (4). However, it's important to highlight that both the inland and coastal regions are predominantly dominated by perennials. This suggests that, while the coastline experiences higher moisture levels, the overall rainfall is not sufficient to drastically favor annuals. The continued dominance of perennials in both environments indicates that rainfall levels are low, supporting long-lived plant species that are adapted to these conditions. The dominance of perennials was agreed with Mohamed (2014), Abdelaal (2017) and Bedair *et al.* (2021).

The life form spectrum of the study area shows clear patterns of dominance, with Chamaephytes, Phanerophytes, and Hemicryptophytes being the most prevalent in both inland and coastal regions. Chamaephytes, particularly in the inland area (46.58%), thrive in the harsh, hot, and dry conditions with limited rainfall, which favor their survival. This dominance also reflects human influence and the lack of microhabitats that could support a larger proportion of perennials (Al Shaye et al., 2020). Phanerophytes and Hemicryptophytes are also present in both regions, with phanerophytes in smaller numbers and Hemicryptophytes (7.53% on the coastline and 8.22% inland) showing their ability to adapt to drought, salinity, sand accumulation, and grazing, as noted by Danin and Orshan (1990) and Danin (1996). These life forms are crucial for plant survival in such challenging environments.

The plant communities in both inland and coastal sites are influenced by physiographic features, climatic conditions, and human activities. These communities, with their unique species compositions and assemblages act as crucial bioindicators for evaluating the stability and conservation status of desert ecosystems (Abdelaal, 2017). This distinction is clearly observed through

TWINSPAN analysis, which highlights significant differences in the plant communities between inland and coastal regions. Coastal sites were grouped into seven distinct assemblages: Haloxylon salicornicum assemblage, Zygophyllum coccineum assemblage, Zygophyllum coccineum–Ochradenus baccatus–Bassia indica assemblage, Trichodesma africanum-Zygophyllum coccineum assemblage, Tamarix nilotica assemblage. Tamarix nilotica assemblage, and Tamarix aphylla assemblage. On the other hand, the inland sites were categorized into five assemblages: Tamarix nilotica assemblage, Zilla spinosa assemblage, Launaea spinosa assemblage, Zygophyllum coccineum-Farsetia aegyptia assemblage and the last assemblage including Anabasis articulata, Anastatica hierochuntica, Matthiola longipetala. So, the spatial distribution of these plant communities is closely linked to the heterogeneous topography, edaphic factors, and microhabitat conditions of the study area. Local variations in soil texture, salinity, and moisture play a significant role in shaping these assemblages, highlighting the impact of environmental heterogeneity on vegetation patterns in desert ecosystems (Abd El-Aal et al., 2015).

The dominance of Zygophllum coccineum and Zilla spinosa in these assemblages agreed with that of Abdelaal (2017) and Mashaly (1996). Zygophyllum coccineum dominated nearly all the assemblages of the coastline sites. Among these, Assemblage 2 exhibited the highest percentages of sand (98.1%), silt (30.5%), and calcium carbonate (CaCO₃, 26%). This observation aligns with the findings of El-Amier et al. (2016) who highlighted Zygophyllum coccineum's remarkable ability to thrive in a variety of soil types and habitats. The plant is widely distributed across the plans and limestone wadis of the Eastern Desert, demonstrating a notable tolerance for saline soils.

The inland plant assemblages are notably dominated by many species including *Launaea spinosa* and *Farsetia aegyptia* to the prevailing soil conditions. *Farsetia aegyptia* demonstrates a positive relationship with soil properties particularly clay and sand fractions, as well as calcium carbonate (CaCO₃) as highlighted by Abd El-Aal et al. (2015). This is consistent with the characteristics of assemblage 4 which is dominated by *Farsetia aegyptia* and associated with high clay content (84.8%) and elevated calcium carbonate levels (32.3%). These soil conditions provide an optimal habitat for *Farsetia aegyptia*, further emphasizing its adaptability to such specific edaphic environments.

Meanwhile, *Launaea spinosa* represents a more advanced stage of ecological succession within the inland wadi environments (Wadi Hagul). Its presence is indicative of deeper floor deposits enriched with coarse rock detritus and a higher proportion of salt deposits, reflecting the unique edaphic conditions of these inland sites (Zahran and Wills 2009). These conditions align with the highest level of electrical conductivity (EC, 10.5 dS/m) in third assemblage which was dominated by *Launaea spinosa*.

Tamarix nilotica, Phragmites australis and *Zilla spinosa* were found in most of the assemblages in both inland and coastline areas. *Zilla spinosa* is highly tolerant of drought even during extremely hot months. It responds to heat or water

stress by increasing its soluble sugar content thus creating significant osmotic potential (Salama et al., 2016). While *Tamarix nilotica* and *Phragmites australis* are known for their tolerance to salt and drought (Abd El-Ghani et al., 2014). These species share key characteristics, such as their ability to withstand extreme environmental stressors, which are the defining traits that combine both the inland and coastline assemblages. Their resilience to drought, salinity, and heat stress allows them to thrive in the challenging conditions found in both regions, contributing to their presence across various assemblages.

The coastal regions showed the presence of several introduced and invasive species. These species were *Chenopodium album*, *Chenopodium ficifolium*, *Chenopodium murale*, *Cenchrus biflorus*, *Malva parviflora*, *Melilotus indicus*, *Lysimachia arvensis*, and *Portulaca oleracea*, all of which are entirely absent from inland sites. Additionally, the presence of alien species *Solanum lycopersicum* and *Cucumis melo* which have escaped from cultivation, despite not being part of Egypt's wild flora. Their presence highlights the significant impact of human activities on local ecosystems. The introduction of these species poses a serious ecological threat by outcompeting native flora, altering natural habitats, and diminishing the genetic diversity of indigenous plants. Their proliferation is particularly concerning in arid environments, where biodiversity and natural resources are already vulnerable. This distribution pattern reflects intense human intervention along the coastline, where proximity to water sources facilitates the establishment of these species, whereas the drier inland regions experience lower levels of human-mediated introduction.

The Canonical Correspondence Analysis (CCA) of the plant species from the coastline and inland areas reveals distinct differences in the environmental factors influencing species distribution in these two habitats. In the coastline areas, species distribution was primarily influenced by high electrical conductivity (EC). sodium (Na⁺), magnesium (Mg²⁺), potassium (K⁺), and chloride (Cl⁻), reflecting the saline and coastal conditions. Species such as Bassia eriophora, Halopeplis perfoliata, and Phragmites australis were positively associated with these factors, indicating their adaptation to saline environments. In contrast, species like Cleome amblyocarpa and Achillea fragrantissima were negatively influenced by these same factors, highlighting their preference for less saline conditions. On the other hand, the inland CCA showed that species distribution was more strongly influenced by factors such as potassium, pH, calcium carbonate (CaCO₃), and organic content which agrees with the findings of Mashaly (1996) Species like Tamarix nilotica and Zygophyllum molle thrived in areas with higher potassium and CaCO3 while species such as Vachellia tortilis and Lycium shawii were negatively affected by these same factors. The inland sites also showed a notable association between species and organic matter with plants like Achillea fragrantissima and Ifloga spicata thriving in areas rich in organic carbon. Overall, while both the coastline and inland areas exhibited distinct environmental gradients influencing plant species the coastline was more dominated by salinity and ion

concentration whereas inland species were more influenced by factors like soil pH, calcium carbonate, and organic matter content.

Conclusion

The comparison between plant species in the inland and coastal areas of the Red Sea coastal desert shows how plants adapt to their unique environments. Coastal plants are built to handle high salinity and fluctuating moisture levels, thriving in mineral-rich soils affected by seawater. Inland plants, on the other hand, deal with extreme dryness and poor soil quality, developing ways to cope with drought, shifting pH levels, and limited organic material. Despite these differences, both ecosystems share resilience, demonstrating how desert plants can survive tough conditions. However, the presence of invasive species in coastal areas adds complexity, showing the impact of human activity on these fragile environments. Ultimately, factors like salinity, soil composition, and moisture availability shape plant communities, highlighting the importance of understanding these elements to protect and conserve desert ecosystems.

References

- Abdelaal M, El-Shora HM & Kadhim OJ (2015). Community associates of the medicinal *Farsetia aegyptia* Turra and its soil correlates in the north-eastern desert of Egypt. *Mansoura Journal of Biology*, 40(8), 53–66.
- Abd El-Aal M, Mashaly IA, Soliman MI, Rizk RM & Elmorsy MF (2019). Vegetation ecology associated with some species of family Zygophyllaceae in different biogeographic regions of Egyptian desert. *Catrina*, 19(1), 1–13. https://doi.org/10.21608/cat.2018.6083.1008
- Abd El-Ghani M, Salama F & Aleem M (2014). Flora and vegetation of the Eastern Desert of Egypt. Lambert Academic Publishing.
- Abd El-Ghani M, Bornkamm R, Nadia ES & Turky H (2015). Heterogeneity of soil and vegetation in the urban habitats of new industrial cities in the desert landscape of Egypt. *Notulae Scientia Biologicae*, 7(1), 26–36. https://doi.org/10.15835/nsb.v7i1.9326
- Abd El-Ghani M, Salama F, Salem B, El-Hadidy A & Abdel-Aleem M (2017). Phytogeography of the Eastern Desert flora of Egypt. *Wulfenia*, 24(1), 97–120.
- Abdelaal M (2017). Current status of the floristic composition in Wadi Hagul, northwest Suez Gulf, Egypt. *Rendiconti Lincei*, 28, 81–92. <u>https://doi.org/10.1007/s12210-016-0577-8</u>
- Al Shaye NA, Masrahi YS & Thomas J (2020). Ecological significance of floristic composition and life forms of Riyadh region, Central Saudi Arabia. *Saudi Journal of Biological Sciences*, 27(1), 35–40. https://doi.org/10.1016/j.sjbs.2019.04.009
- Bedair R, Ibrahim AA, Alyamani AA, Aloufi S & Ramadan S (2021). Impacts of anthropogenic disturbance on vegetation dynamics: A case study of Wadi

Hagul, Eastern Desert, Egypt. *Plants, 10*(9), 1906. https://doi.org/10.3390/plants10091906

- Boulos L (1999). *Flora of Egypt, Vol. 1: Azollaceae–Oxalidaceae*. Al-Hadara Publishing, Cairo, Egypt, 419 pp.
- Boulos L (2000). Flora of Egypt, Vol. 2: Geraniaceae–Boraginaceae. Al-Hadara Publishing, Cairo, Egypt, 352 pp.
- Boulos L (2002). Flora of Egypt, Vol. 3: Verbenaceae–Compositae. Al-Hadara Publishing, Cairo, Egypt, 373 pp.
- Boulos L (2005). Flora of Egypt, Vol. 4: Monocotyledons (Alismataceae–Orchidaceae). Al-Hadara Publishing, Cairo, Egypt, 617 pp.
- Boulos L (2008). Flora and vegetation of the deserts of Egypt. *Flora Mediterranea*, 18, 341–359.
- Boulos L (2009). Flora of Egypt Checklist Revised Annotated Edition. Al-Hadara Publishing, Cairo, Egypt, 410 pp.
- Dahmash AA (2001). Ecological and phytosociological studies on plant communities in the Eastern Desert of Egypt. (Ph.D. Thesis). Faculty of Science, Zagazig University, Egypt.
- Danin A (1996). Plant adaptations to environmental stresses in desert dunes. In *Plants* of *Desert Dunes* (pp. 133–152).
- Danin A & Orshan G (1990). The distribution of Raunkiaer life forms in Israel in relation to the environment. *Journal of Vegetation Science*, 1(1), 41–48.
- El-Amier YA, El-Shora HM & Hesham M (2016). Ecological study on *Zygophyllum coccineum* L. in coastal and inland desert of Egypt. *Journal of Agriculture and Ecology Research*, 6(4), 1–17. <u>https://doi.org/10.9734/JAERI/2016/22640</u>
- El-Amier YA, Zahran MA & Alghanoudi GA (2015). Vegetation ecology of coastal and inland parts of the deserts in Egypt. *Journal of Environmental Sciences*, 44(4), 659–675.
- El-Amier YA & Abdul-Kader OM (2015). Vegetation and species diversity in the northern sector of Eastern Desert, Egypt. *West African Journal of Applied Ecology*, 23(1), 75–95.
- Garcia-Caparros P, Al-Azzawi MJ & Flowers TJ (2023). Economic uses of salt-tolerant plants. *Plants, 12*(14), 2669. <u>https://doi.org/10.3390/plants12142669</u>
- Hassan LM (1987). *Studies on the flora of the Eastern Desert*. (Ph.D. Thesis). Faculty of Science, Cairo University, 515 pp.
- IPNI (2023). International Plant Names Index. Retrieved from <u>http://www.ipni.org</u> (accessed 5 April 2023). The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries, and Australian National Herbarium.
- Jackson ML (1967). Soil Chemical Analysis. Prentice-Hall, Inc., 498 pp.
- Johansen DA (1940). *Plant Microtechnique*. Tata McGraw-Hill Publishing Company Ltd., Bombay, New Delhi, 25 pp.
- Mashaly IA (1996). On the phytosociology of Wadi Hagul, Red Sea Coast, Egypt. Journal of Environmental Sciences, Mansoura University, 12, 31–54.
- Migahid AM (1978). *Flora of Saudi Arabia* (3rd ed.). University Libraries, King Saud University, Riyadh, Saudi Arabia.

- Mohamed AA (2014). A study on the plant diversity in Wadi Hagul, Eastern Desert, Egypt. Egyptian Journal of Agricultural Sciences, 65(1), 10–20.
- Page AL, Miller RH & Keeney DR (1982). Methods of soil analysis. Part 2. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA, 4(2), 167–179.
- POWO (2023). Plants of the World Online. Retrieved from <u>https://powo.science.kew.org/</u> (accessed 5 April 2023). The Royal Botanic Gardens, Kew.
- Richards LA (1954). *Diagnosis and Improvement of Saline Alkali Soils*. Agriculture Handbook 60, US Department of Agriculture, Washington DC.
- Salama FM, Gadallah MAEE, Sayed SAEM & Abd El-Aal AEM (2016). Adaptive mechanisms in *Zilla spinosa* and *Leptadenia pyrotechnica* plants to severe aridity in the Egyptian deserts. *Notulae Scientia Biologicae*, 8(4), 498–510. <u>https://doi.org/10.15835/nsb.8.4.9832</u>
- Salama FM, Abd El-Ghani MM, El-Tayeh NA, Galal HK, and El-Naggar S (2018). Vegetation analysis and species distribution in the lower tributaries of Wadi Qena in the Eastern Desert of Egypt. *Jordan Journal of Biological Sciences* 11(4): 407–418.
- Täckholm V (1974). *Student's Flora of Egypt.* 2nd Edition. Cairo University Press, Cairo, 888 pp.
- Tributh H (1970). Importance of extended clay-fractionation for the more precise characterization of soil minerals and their properties. Zeitschrift für Pflanzenernahrung, Düngung und Bodenkunde 126: 117-134.
- Zahran MA and Willis AJ (2009). *The Vegetation of Egypt*. Vol. 2. Springer Science & Business Media.
- Zohary M (1966) *Flora Palaestina*, Part 1, Text: Equisetaceae to Moringaceae. Israel Academy of Science and Humanities, Jerusalem, 346 pp.
- Zohary M (1972) *Flora Palaestina*, Part 2, Text: *Platanaceae to Umbelliferae*. Israel Academy of Science and Humanities, Jerusalem, 656 pp.
- https://books.google.com.eg/books?id=jzRwwAEACAAJ