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Abstract

The random variable X(,) = X — t|X < ¢, which is called the residual
life random variable, has gathered the attention of most researchers in re-
liability. The propertigs of mean residual life in continuous case have been
studied by several authors. But in discrete case, only in recent years, some
studies have been done. In this paper, we present the main results con-
cerning the statistical properties of the discrete mean residual life ordering,
such as, convolution, mixtures and convergence in distributions. Further-
more, two results concerning discrete renewal process in connection with
the orders in the paper are obtained.

1 Introduction

Discrete lifetimes usually arise through grouping or finite-precision measurement
of continuous time phenomena. They may also be found in natural choice where
failure may occur only due to incoming shocks. Parametric models for discrete
life distributions may be found in Bain (1991), Adams and Watson (1989) and
Xekalaki (1983). Nonparametric families of discrete life distributions have been
considered in the reliability literature mainly in connection with: shock models
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leading to various continuous-time ageing families, see, e.g., Barlow and Proschan
(1975), have studied inter-relations and closure properties of some non-parametric
ageing families of distributions having a finite support. Related partial orders have
been considered by Abouammoh (1990). Recently, Nanda and Sengupta (2005),
have discussed reversed hazard rate in discrete setup and obtained several inter-

esting results.

Let X be a non-negative random variable with probability mass function (p.m.f)

given by:

f(z) = P(X = 1), zeN=0,1,,

the cumulative distribution function:

F@)=3/G), Vo,

i=1

and the survival function:

[+ -]
F(z)=1-F(z)= Y_ f@i), VzE€N.
i=z+1 .
In particular, if f(0) = Pr(X = 0), or accounting random variable X has
a support on N, = 0,1,..., we may say that the discrete distribution is zero-
truncated. Recently, Paviova et al. (2006) defined discrete hazard rate and discrete

mean residual lifetime of F by:

___f@
)= @)+ Fay
Ve N,and P(X > z) >0, and

Mp(z)=E[X —z|X > 2] = -z-:-%—h.l;—(j—),

Yz € N.and F(z) > 0.

There is an abundance of literature on continuous life distributions used in

modeling failure data. However, very little has appeared in the literature for
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discrete failure models.

Discrete failure data arise in various common situations. Consider the following

examples:

1. A device can be monitored only once per time period and the observations
is taken as the number of time periods successfully completed prior to the
failure of the device.

2. A piece of equipment operates in cycles. In this case the random variable of
interest is the successful number of cycles before the failure. For instance,

the number of flashes in a car flasher prior to failure of the device.

3. In some situations the experimenter groups or finite precision measurement of

continuous time phenomena.

Shaked et al. (1995) stated that, discrete failure rates arise in several common
situations in reliability theory, where clock time is not the best scale on which
to describe lifetime, For example, in weapons reliability, the number of rounds
fixed until failure is more important than the age in failure. They also showed the
usefulness of these functions for modeling imperfect of discrete models repair and

- for characterizing ageing in the discrete setting. For more applications in reliabil-
ity and survival analysis, see,Ebrahimi (1986), and Padgett and Spurrier (1985).
More precise concepts of discrete reliability theory have been discussed by Salvia

- and Bollinger (1982). Roy and Gupta (1992) examined classification of discrete -
life distributions and they introduced the concepts of second rate of finite failure
to maintain analog with the continuous ageing class. Salvia (1996) presented some
results on discrete mean residual life.

Similar to continuous distributions, discrete distributions can also be classified
by the pi-operties of the failure rates, the mean residual lifetimes, and survival
functions of discrete distributions. Some commonly used classes of discrete dis-
tributions include the classes of discrete decreasiné failure rate (d-DFR), discrete
decreasing failure rate on average (d-DFRA), discrete new worse than used (d-
NWU), discrete increasing mean residual lifetime (d-IMRL), discrete harmonic
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new worse than used in expectation (d-HNWUE), and their dual ones including
the classes of discrete increasing failure rate (d-IFR), discrete increasing failure
rate on average (d-IFRA), discrete new better than used (d-NBU), discrete de-
creasing mean residual lifetime (d-DMRL) and discrete harmonic new better than
used in expectation (d-HNBUE). These classes of discrete distributions have been
used extensively in different fields of statistics and probability such as insurance,
finance, reliability, survival analysis, and others. See, for example, Cai and Will-
mot (2005), Willmot et al. (2005), Johnston et al. (2005), Hu et al. (2003),
Kijima (2003), Willmot and Cai (2001), Cai and Kalashnikov (2000), Willmot
and Lin (2000), Shaked et al. (1995), Shaked and Shanthikumar (1994), Fagiuoli
and Pellerey (1994), Barlow and Proschan (1975), and references therein.

2 Preliminaries

In this section, we present definitions, notations and basic facts used throughout
the paper. We use "increasing” in place of "non-decreasing” and ”decreasing” in
place of "non-increasing”. Let X and Y be two non-negative random variables
with F and G as their respective distribution functions. Let F(t) = 1 — F(t) and
G(t) = 1 - G(t). We will assume that F(0) = G(0) = 1 in all cases.

Before we introduce our contributed discrete definitions of partial ordering, we note
that, the continuous versions of these definitions have appeared in, e.g., Ahmed
(1988), and Shaked and Shanthikumar (2007).

Definition 1. The random variable X is said to have a smaller discrete mean
residual lifetime than that of Y, written X <4_mrr Y, if
FG@) ~ &G °

Note that, 1 is equivalent to saying

Vz € N. (1)

Yo F(i)
e G(O)'

The Egyptian Statistical Journal Vol.57, No.1, 2013




Preservation PmE' rties for Some Discrete Mean Residual Life Ordering 68
is increasing in x,Vz € N.

Definition 2. The random variable X has a smaller discrete hazard rate than
that of Y, written X,_grY, if,""b (‘:) , is increasing in x, Vz € N.

Definition 3. The distribution F is called discrete decreasing failure rate
(discrete increasing failure rate) or d-DFR (d-IFR), if it's failure rate, hp(z) =
mﬁ_’-}(—z; is non-increasing (non-decreasing) for z € N, and f(z) + F(z) > 0.

We notice that, the discrete decreasing failure rate life distribution govern,

1. In the grouped data case, the number of periods until failure of a device gov-
erned by a DFR life distribution.

2. The number of seasons a TV show is run before being canceled.

Thus the d-DFR life distributions are of great significance in spite of their
relative neglect in the reliability literature.

Definition 4. The distribution F is called discrete new better than used in

expectation (discrete new worse than used in expectation) or d-NBUE (d-NWUE), -
if

S FG) < F@S FG),  VaeN.
i=x j=0

Definition 5. The distribution F is called discrete decreasing mean residual life-
time or d-DMRL if, it's mean residual lifetime Mg(z) = E%#, is increasing in
x, Vz € N.

The follawing two definitions will be used in sequel:

Definition 6. A probability. vector Q = (a4, @g. ..., @) is said to be smaller than
the probability vector § = (B;, 5, --.. Ba), in the sense of the discrete likelihood
ratio order, denoted by a <4-rr B, if

B b

(s & a;
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Definition 7. A function g : R? = [0, c0) is said to be log-concave, if
g(zl' yl)g(z21 yz) - g(zlv yz)g(z2s yl) 2 os

wherever 7; < T3, < ¥a.

The remainder of this paper is organized as follows. In Section 3, we present the
main results concerning the statistical properties of the discrete mean residual life
ordering, such as convolution, mixtures and convergence in distributions. Section
4, contains two results concerning discrete renewal process in connection with the

orders in the paper.

3 The Main Results

In this section, we present preservation results for the discrete mean residual life
ordering. We point out that similar results hold for both the hazard rate ordering
and the likelihood ratio ordering. We begin by showing that the discrete mean

residual life ordering is preserved under weak limits in distributions.

Theorem 3.1. The discrete mean residual life ordering (<4—amrr) preserves the

weak convergence property.

Proof. Suppose F, and G, converge weakly to F and G and that F, <4-mre
Gn. Then, if y is a continuity point of both F and G, it follows that ug(y) < uc(y)-
Thus, pr(y) > ug(y) is possible only if y is a discontinuity point of either F and
G. Such discontinuity points are the most countable, so there exist continuity
points z, of F and G for which z, | yasn — 0o. Consequently, appealing to the

right-continuity property of distribution function

ur(y) = lim pr(zn) < pe(y) = lim ug(z.),

whence a contradiction.
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The following results, shows that the mean residual life ordering is preserved

under the convolution.

For next results, we shall use the notation e; and b; to replace F(i) and G(3),
respectively.

Theorem 3.2. Let X;,X;and Y be three non-negative discrete random vari-
ables, where Y is independent of both Xj, X3, alsd, let Y have a probability
mass function g. Then X; <4-mrL Xg. X, and g are log-concave imply that
X1+Y <a-mrL Xa2+Y.

Proof. We have to show that

T Lo 9t~ wast | 10 35" 9(s — 4)aza 2)
Ee Yo 90— hosn = LT3 95— Wbera”

or equivalently,

D a0 2ze0 9(8 — Wbzt D oarg I zg 9(8 — ¥)az4u
D w0 a0 9(t — u)b,.,..,_ 2o 2oz 9(t — 8) 2zt

Next, by the well known basic composition formula (karlin, 1986, p. 17), the
left side of (4) is equal to

2 0. (3)

:°=0 b:-Hu Z:;o Qz4uy

Z:.;o bz4u, Z:-o Gz+u

9z —1) 9(z1—w2)
9(za — ) 9(za—y2)

(4)

The conclusion now follows if, we note that, the first determinant is non-
negative since g is log-concave, and that the second determinant is non-negative

since X <4-mrL X2

Corollary 3.3. If X; <¢-mrr Y1 and X3 <4_mrr Y2, where X, is indepen-
dent of Y;, X3 is independent of Y3, then the following statements holds:

1. If X, and Y; have log-concave probability mass functions, then X;+.X2 <4-amrL
"n+Ys.

The Egyptian Statistical Journal Vol.57, No.1, 2013




71 M. A. Ibrahim and A.N. Ahmed

2. If X, and Y;. have log-concave probability mass functions, then X;+X3 <4-mne
Y1+ Y.

Proof. The following chain of inequalities establish (1):
X1+ X3 <4-mrL X1+ Y2 Sa-mrL Y1 +Ya.

The proof of (2), is similat.

Let X(6) be a non-negative discrete random variable having distribution func-
tion Fy and let 6;, be a random variable having distribution function G;(i = 1,2)
and support R*.

The following theorem shows that the d-MRL ordering is preserved under mix-

tures.

Theorem 3.4. Let {X(0),0 € R*} be a family of random variables indepen-
dent of ©; and ©,. If ©; <L r ©; and X(01) <ds-mrr X(02) wherever 6, < 0,
then X(©,) <a-mrL X(O2).

Proof. Let F; be the distribution function of X(6;) with i = 1,2, we know
that

Fi(x) = /o "~ Fo(z)dGi(6) (5)

In the right of (6), we shall prove that

k
(i, k) =) Filk - u)
u=0

is TP, in (i, k), we notice that,

k
®(i,k) = ) Fi(k-u)
u=0
E oo _
- Z; /o Fy(k — u)dGi(6)

oo k
[ 3 k- waerae
0 u=0

= / ” Gi(8) (6, k)db.
0
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By assumption, X(6;) <4-mrz X(92) wherever 6, < ;. we have (0, k) is
TP, in (0, k), while the assumption ©; <.z O implies that g;(f) is TP, in (i, 6).
Thus the assertion follows from the basic composition formula (see, Karlin, 1968).
Let a = (o, a3, ..., ay) be less o'rdered than 8 = (51, Ba,, Bn), in the sense of the
discrete likelihood ratio ordering. We shall compare the distribution function of

F(z) = oy Fi(z) + ... + anFu(z)
for a random variable X, and
G’(z) = ﬂlFl(z) + o ﬁnFn(.'L')

for a random variable Y. |

Theorem 3.5. Let X;,,X, be a collection of discrete random variables with

corresponding distribution functions Fj,, F, such that,

X1 <a-MRrL X2 <d-MRL --- <d-MRL Xn-

Also, let a = (1,03, ...,@n) and 8 = (By. B3, , Bn) be two probability vectors with

@ <d-MRL B then, X <4_mpL Y.

Proof We need to establish

Yoo Lo Bi8hes o Tioo Limo AiSiey (6)
Yoo Yoo Wilhys — Lo Loveg iy

Vo<z<y.

Multiplying by the denominators and canceling out equal terms shows that (7) is
equivalent to

giﬂaiidugdﬂstiﬁi%idﬂg@n (7)

J=0 im0 jm0 u=0
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or, when j > i we get
Z Z[ﬂ'QJ Z au+z Z a:vﬂ] + [raiaJ Z ‘4+=
i=0 j=0
Z au+y] < Z Z[ﬂia.? Z a’u+= Z dw]
i=0 j=0
+ [Biey Z iy )bl (8)
u=0 v=0
now, for each fixed pair (,j) with i < j, we have
ﬂl'a.i i ai+y i a'tit+z + ﬂjai i a'tiH-z Z a’i+w
v=0 u=0 v=0 u=0
— Bia; Z a:-""z E a'z'ﬂ - Bjo Z aiin+= Z aiﬂ(ﬁiaj
- ﬁJat)[Z a'u+v Z alyz— Z ai+, Z a{,...,] (9)
u=0 u=0

which is non-negative, because both terms are non-negative by assumption.

This completes the proof.

In any attempt to construct new discrete mean residual life ordered random

variables from known ones, the following theorem might be used:

Theorem 3.6. If X;,X,, and Y;,Y3, are two sequences of independent ran-
dom variables with X; <4-mrr Y: and X;, Y; have log-concave probability mass

functions for all i, then

ixi <d-MRL zn:Yi, n=12,....

i=l1 i=l
Proof. We shall prove the theorem by induction.
Clearly, the result is true for n = 1.

Assume that the result is true for p = n — 1, this means that

n-1

Zx <e-wrL Y. Y n=12.... (10)

i=l =1
Notice that each of the two sides of (11) has log-concave probability (see, e.g.,
Karlin. 1968, p. 128). Appearing to Corollary 3.3, the result follows.
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Remark. Similar results hold if, the discrete mean residual life ordering is re-
placed by the discrete hazard rate ordering in Theorem 3.2, Corollary 3.3, Theorem
3.4 and Theorem 3.5.

To demonstrate the usefulness of the above results in recognizing discrete mean

residual life ordered random variables, we consider the following:

Example 1. Let X, denote the convolution of n geometric distributions
with parameters p;, ps, ,pn, respectively. Assume without less of generality that
D1 > p2 > ... > p,. Since geometric probability mass functions are log-concave,

‘Theorem 3.5 implies that, X, <4_amrr Y, wherever p; > ¢;,i =1, ,n.

Example 2. Let X, be as described in Example 1. An application of Theorem
3.4 immediately yields
o0 o0
Z @i Xp, <d-MRL Z Bi X,
i=1 i=1

_for every two probability vector a and B such that a <4_pmrr B,
Another application of Theorem 3.4 is contained in:

Example 3. Let X, and Xg-as given in Example 1. For 0 < 6; < 6, <1 and

6, + 0, =1, we have
01Xp + 92Xq <d-MRL 92X, + 01Xq,

It is remarkable that, the above example can be generalized to higher dimensions

*

with obvious modifications in' @ and . Let

F(z +1)

be the conditional reliability of a unit of age t, then we have the following char-
acterization of d-MRL distributions: ’
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Theorem 3.7. F <4_ymrr F; for all ¢t > 0 if, and only if, F is d-DMRL.

Proof. Observe that F <4_ygry F; for all t > 0 if, and only if

F(z) ~ F(z) °

but the latter is equivalent to €(t + z) < e(z) that is €(t) is decreasing. This

completes the proof.

4 Discrete Renewal Process Applications

Let (NF(t),t > 0) and (Ng(t),t > 0) denote two renewal processes having inter-

arrival distributions F and G, respectively.
Theorem 4.1. If F <4_ppr G then Np(t) <4 v Ng(t).

Proof. The Theorem follows by mincing the elegant proofs of and Theorem

9.6.4 and Lemma 9.6.5 of Ross (1983), and the fact that:

Np(t)+1
E[ Z X.] = E[X1|X1>t]
i=1 ’
Np(t)+1
> EmIvi>t=E[ ) Y

i=1
where X; and Y; are two sequences of independent identically distributed random

variables having F and G as Their respective distributions.

A version of the arguments used to prove Corollary 3.16 and Theorem 3.17 in
Chapter 6 of Barlow and Proschan (1975) can be used to show that the following

are valid:

Corollary 4.2. Let F <4_yg. G and 0 < h(1) < h(2) < ..., then

D h(n) Finy(8) £ Y h(n) Guy(®).
n=]

n=]
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Theorem 4.3. If F <4_umpy, G, c(k) is convex increasing and c(0) = 0 then
o0 ’ oo
D_ (k) p(Np(t) = k) < Y c(k) p(Ne(t) = k).
k=1 . k=1
For an application of Theorem 4.3 in minimizing the expected shortage in spare
part one may consult Barlow and Proschan (1975).
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