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Abstract

This article deals with the Bayesian and non-Bayesian estimation of reliability
of an s-out-of-k system with identical component strengths which are subjected to a
common stress. Assuming that both stress and strength are assumed to have an
exponentiated Pareto distribution with known and unequal shape parameters(44,4,).
Five non-Bayesian methods of estimation will be used which are maximum
* likelihood, moments, percentile, least squares and weighted least squares. The
Bayesian estimation will be studied under squared error and LINEX loss functions
using Lindley’s approximation. Based on a Moute Carlo simulation study,
comparisons ar¢ made between the different estimators of system reliability by
obtaining their absolute biases and mean squared errors. Companson study revealed
that the maximum likelihood estimator works the best among the competitors.

Key words: stress—strength model; reliability; exponentiated Pareto; maximum
likelihood estimator; moments estimator; percentile estimator; least squares estimator;
weighted least squares estimator; Bayes estimator; noninformative type prior;
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1. Introduction

The stress-strength model is used in many applications of physics and
engineering such as, strength failure and the system collapse. This model is of special
importance in reliability literature. In the statistical approach to the stress-strength
model. most of the considerations depend on the assumption that the component
strengths are independently and identically distributed (iid) and are subjected to a
cCOMIMON Stress.

Consider a system made up of k identical components. The strengths of these
components Y, ..., Y, are iid random distributed variables. Assume that these
strengths have an exponentiated (EP) distribution that suggested by Gupta et al.
(1998) with parameters (8,, 4,). This system is subjected to a common stress X which

i
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is independent random variable distributed as EP with parameters (02,43). Let
f(¥:61,21) be a common probability density function (pdf) of V;,...,Y; and
g(x; 6,, 112) be pdfOfX and written as

fGr63,4) = 0,441 ~ (1 +y)~11%71(1 + y)~Ra*D; 3 > 0,6, > 0,4, > 0,
and

g(x;02,43) = 024,[1 — (1 + x)~%21%71(1 + x)~%a*D); x > 0,0, > 0,1, > 0.
The corresponding cumulative distribution functions are given, respectively, by
FOp;6,4)=[1-Q1+y) ™M) y>0,6,>0,4 > o,}

G(x:62,2;) =[1—- (1 +x)4)%; x> 0,6, >0,2,>0. -h

The system operates satisfactorily if s or more of k components have strengths larger
than the stress X. Consequently, the system reliabilityR(s ), which is the probability
that the system does not fail, developed by Bhattacharyya and Johnson (1974) is given
by Resx) = Plat least s of the (Y}, ..., ¥;) exceed X],

Regiy = Zhs(}) [ [Fr@01¥'[1 = Fp ()] dGy (x), (12)
The particular cases s = 1and s = k correspond, respectively, to parallel and series
systems. :

The reliability of s-out-of-k system for EP distribution can be computed by
substituting equations (1.1) in equation (1.2) and takes the following form:

Resiy = 028 Z5.5(5) f°1[1 - z]%0=0 11 — [1 - 2]%)! (1 - 28)%-128-147 (1.3)
X '
where § = "

The problem of estimating system reliability was originally viewed as an
extension of the stress-strength model to a multi-component system. The estimation of
reliability of s-out-of-k stress-strength system has been discussed by many authors
such as, Bhattacharya and Johnson (1974), Draper and Guttman (1978), Pandey and
Upadhyay (1986), Pandey and Borhan Uddin (1991), Pandey et al. (1993) and
Srinivasa Rao and Kantam (2010). They considered the strengths are iid and are
subjected to a common stress. Hassan and Basheikh (2012) studied the Bayesian and
non-Bayesian estimation of reliability of an s-out-of-k system with non-identical
component strengths which are subjected to a common stress. They assumed that
both stress and strength have an exponentiated Pareto distribution.with common and
known shape parameter.

The main aim of this article is estimating the reliability in multi-component
stress-strength model of an s-out-of-k system. Assuming both stress and strength are
independently distributed as EP with known and unequal shape parameters(4,,1;).
This problem is studied when the strengths of the components are iid. Maximum
likelihood estimator (MLE), moment estimator (ME), percentile estimator (PCE),
least squares estimator (LSE) and weighted least squares estimator (WLSE) are
obtained. Also, the Bayes estimators under squared error and LINEX loss functions
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are discussed using Lindley’s approximation. Monte Carlo simulation is performed
for comparing different methods of estimation.

The rest of the article is organized as follows. In Section 2, different methods
of estimation of Rs, are discussed. In Section 3, numerical illustration is carried out
to illustrate theoretical results. In Section 4, simulation results are displayed. Finally,
conclusion is presented in Section 5.

2. Different Methods of Estimation of R s,

It is well known that the method of maximum likelihood estimation has
invariance property. When the method of estimation of unknown parameter is
changed from maximum likelihood to any other traditional method, this invariance
principle does not hold good to estimate the parametric function. However, such an
adoption of invariance property for other optimal estimators of the parameters to
estimate a parametric function is attempted in different situations by different authors
[see Srinivasa Rao and Kantam (2010)]. In this direction, in the following subsections
some methods of estimation for the reliability of an s-out-of-k system in stress—
strength model will be proposed by considering the estimators of the parameters of
stress, strength distributions.

2.1 Maximum likelihood estimator of R,

Let),Ys, ..., Yy, be a random sample of size m drawn from EP(6y, 4,), then
Yoy <Yz <..<¥m denote the order statistic of the observed sample. Let
X1,Xz,..,Xn be a random sample of size n drawn from EP(6;, 4,), then X1y < X(p) <
..< X(n) denote the order statistic of the observed sample. Then the likelihood
function is given by
L(6,,6,, 14, /12;2:2‘.) =[Te1 9(x;; 62, 4;) H}'L; f(}’ji 91:11)
= 0FAZ01"AT [Tt [1 - (1 + x)™2]% x

[Tyl + )" @D [T [1 - (1 + yy)~4)%1 x

MTJes(1 + yy)~atD) @.1)
Then the logarithm of the likelihood function is given by

InL(8:,82, 41,423 y,0) =n(in; +Ind) + m(ndy +1In 1) + (6, - 1) x
ThaInll - (A +x) "]+ (8, - 1) x

IRan[l=(1+y) ™) - R+ DI, In(2 +x) -

A+ DI, In(1 +y).
For simplicity; write In L(8,, 6, A1, A2; ¥.©tobelnl
The first derivatives of the log-likelihood function with respect to 8;and @, are given,
respectively, by
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S =p+Ifhll-(1+ y,)"'l] =0,
alnL 2.2)
28, = —' + 21.1 Infi-1+ xl)"'=]
Then the MLE’s of 6,and 6, denoted by 8y yyx) and ruLs), Tespectively, can be
obtained as the solutlon of equations (2.2) as

Bymup) = —W }

- n
Baoum) = I, In[1-(142)~42] " _
The ‘MLE of Ry, denoted by Rispmuz, is obtained by substitute 8.z and
az(MLg) in equa;tion (13).

23)

2.2 Moments estimator of Rsx)

Since the strengths of k& components Yj,...,Y follow EP (9;,4;) and the
stress X follows EP (6,, A;), then their population means are given by

= E(Y) = 0,B(6,1 —-1-) 1;2,>1,
= E(X) = 6,B(6,,1 ——) 1 > 1,

Here B(.,.) denotes the beta function. Accord.lng to the method of moments,
equating the samples means with the corresponding populations means. Then,

y=6B(0,1-5) - 1:4>1)
%= 0,B(63,1 —f;) -1;2,> 1.
The ME’s of 6,and 8, ,denoted by 81(ug) and G¢p,), respectively, can be obtained
by solving the non-linear equations (2.5) numerically.

The ME of R(, k) denoted by R(,,k)ug, is obtained by substitute 01@'5) and 92(,,,, in
equation (1.3).

2.9

)

2.3 Percentile estimator of R(s )

The percentile estimators can be obtained by equating the sample percentile
points with the population percentile points. In case of EP distribution it is possible to
‘use the same concept to obtain the estimators based on the percentiles, because of the
structure of its distribution function. '
According to Kao (1958,1959) several estimators of py; and p;;, where py;and py;
are the samples percentile, can be used as estimates for populations percentile
F(y(; 61, 41) and G(x(p; 62, 22).

In this work, the following formulas can be used

: i -
py=-=ij=12..m  ad py=—_;i=12..n
which are the expected values of F(¥(;)) and G(X(y) respectively.
Then the PCE’s of 8,and 8, can be obtained by minimizing the following equatlons

with respect to 8;and 8., respectively,
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L[in(pyy) — 63ln[1 - (1+ yU))""]]Z,} @6

ILaln(pzy) - 6,In1 — (1 + x)~*])%
Then the PCE’s of 8,and 8;, denoted by 8;(pcg) and By(pcz), respectively, can be
obtained as the solution of equations (2.6) as

P _ Ifes Ineay) Inf1-(1+y() 41
UPCE) = T T Onli-(ieygy MIE

Py — L1 In(pa0) Inf1-(14+xp)~32)
UPCE) = TR linf1-(14x ) 2]

The PCE of R(sx), denoted by R(sxypc. is obtained by substitute &) (pcr) and 8z¢pc)
in equation (1.3).

27

2.4 Least square and weighted least square estimators of R,

Least square estimators are obtained by minimizing the sum of squared errors
between the value and its expected value. This estimation method is very popular for
model fitting, especially in linear and non-linear regression.

According to Johnson et al. (1995),

. [
E(F(Yg)) ==L j=12..m, E(GU@) =55 i=12..n,
and

o Jmpn ity
V(F(Yy) = (m+0)i(m+2) V(e(Xw) = (m+1)i(n+2)
Using the expectations and the variances of F(Y(;)) and G(X(;), two variants of the
1ng (0 [0}

least squares methods can be used.

The LSE’s of 6,and6,, denoted by 83,5y andf; ;sg), respectively, can be obtained
by minimizing the following equations with respect to 8,and 8,
EJalF(Yyy) - E(F (Yo‘)))]"}

Zhal6(X) = E(GX@))I*.
The LSE of R(s,), denoted by R(su.sz, is obtained by substitute 8;sz) and 8,55
in equation (1.3).

2.8)

Also, the WLSE’s of 6;and 6;,denoted by 8;wysg) and 8,155, respectively, can
be obtained by minimizing the following equations with respect to 8, and 8,
Ity wylF (V) - E(”(Yw))lz.}

Thawal6(Xp) ~ E(GX ),

where,

2.9)

Wiy 1 =(m+1)’(m+z) Wor = d =(n+1)=(n+z)‘
YT VEeg))  fmejen 0 V2T Vo) i(n~i+1)

The WLSE of R(_;,k), denoted by R(s,k)WLSE’ is obtained by substitute §1(WLSE) and
82wsg) in equation (1.3).
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, In the following subsection the approximate Bayes estimators (BE’s) of R
are obtained. The approximate Bayes estimators under squared error loss function and

LINEX loss function by using Lindley’s approximation, denoted by BESL and
BELL, respectively, are discussed.

2.5 Bayes estimator of R(s )

Assume 8, and 8, are independent random variables. Following Afify (2010)
the noninformative type of prior for parameters 6, and 6, is considered. Therefore,
the joint prior density of (6,,6,) is
9(641,67) “al,al—z ;0<6, <o ,i=12
Combining the joint prior density of (6;,6;) and the likelihood function given in
equation (2.1) to obtain the joint posterior density of (6,,8,) as

_ §(01,02)L(61.62.A1,2;y,2)
(61,6, IZ'E) T o fo .9(91:92)1-(91:92.7-1-12}?_-5)491‘192'
(81, 21y, ) = {;; 0<g <o ,i=12 (2.10)

where,
t = 057200 [Tiy[1 — (1 + %)™ 219 2 [T, [1 ~ (1 + ) M]3,
ty=J5 Jo 03710 [Tafl — (1 + %) %)%~ x

Ml = (L +y)~4)%"1 dg, d6,.

Under squared error and LINEX loss functions, the BE’s of Risy) denoted by
R(S K)BES and R(S,k)BEL N r&spectively, defined as

o0
Risxyses = E(Ris |y, ©) = f: Jy Resnym(8y, 621y, %) d6,d6,,

Rexssn = —SIn[E(e™ by, )] = ~ZIn[fy’ f;” e~ nn(8y, 6,1y, %) d6,d6,),
this integrals cannot be obtained in a simple closed form. Alternatively, using the
approximation of Lindley (1980) to compute the approximate BE of R ).

Using Lindley’s approximation, the approximate BE's of Ry under squared error

and LINEX loss functions denoted by R(sx)ses: and Rsxyszis, respectively, take the

following forms

Risxysess = Resy + % [Us1711 + UzaTaz + Q30Us73; + Qoslst22],

Resiypau = — ;1;111[3'““""" + % WiiTas + WaatTpp + @1h
Q3oWat$y + QusWt2:11,

where all functions in equations (2.11) defined in appendix A and evaluated at the

. - m-1 - n-1
posterior mode 6, = T, -1y & T, Infi-(1+x)-%]
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3. Simulation Study

In this Section, Monte Carlo simulation is performed to observe the behavior
of the different methods of estimation of Ry for different sample sizes, different
parameter values and for different s-out-of-k systems. The performances of the
different estimators of Ry, are compared in terms of their absolute biases and mean
squared errors (MSE’s). The absolute biases and MSE's are computed for the
different estimators over 5000 replications for different case. The simulation
procedures are described through the following steps:

Step (1): A random samples V3, Y5, ..., ¥, and X3, X,,.., X, of sizes (m,n) = (10,10),
(10,30), (10,50), (30,10), (30,30), (30,50), (50,10), (50,30) and (50,50) are generated
from EP distributions.

Step (2): The parameters values are selected as (6;,02,21,4;) = (1.5,0.5,3,5) and
(0.5,1.5,5,3). The selected values for s-out-of-k systems are (1,3), (2,3), (3,3) and
(1,1). It is evident that, (1,3) reduce to parallel system, (3,3) reduce to series system
and (1,1) reduce to single component.

Step (3): The estimation of the parameters 8;and 0, are considered. The MLE’s and
PCE’s of 8;and 6, can be obtained from equations (2.3) and (2.7), respectively. The
ME's of 6;and 8, can be obtained by solving the non-linear equations (2.5). Also,
The LSE’s and WLSE’s of 6;and 8, can be obtained by minimizing equations (2.8)
and (2.9) with respect to 8,and 8, respectively.

Step (4): The MLE, ME, PCE, LSE and WLSE of R(sy) are computed by using the
estimates of 6;and 8, obtained in step (3).

Step (5): The approximate Bayes estimates of R(s) under squared error and LINEX
loss functions, at a=1, using Lindley’s approximation can be computed from
equations (2.11). )

Step (6): Repeat the pervious steps from (1) to (5) r times representing r different
samples, where r = 5000. Then, the absolute average bias and MSE of the estimates
of R¢s ) are computed.

4. Simulation Results

All simulated studies presented here are obtained via MathCAD (14). The results are
reported in Tables 1 and 2.
From Tables 1 and 2 many conclusions can be made on the performance of all
methods of estimation of Rsx)- These conclusions are summarized as follows:
1- The value of R(sy) increases as the value of 6; and A, increase and as the
value of 8, and A, decrease (see Tables 1 and 2).
2- Itis found that the Ry, are broadly in following order of descending value
Ru3) = Resy = Raay = Rz when (81,6;,24,4;) = (1.5,053,5) (see
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Table 1) and R(Lg) - R(L]_) - R(z,g) - R(3'3) at (8,,0,,44,2;) = (0.5,1.5,5,3)
(see Table 2).

For all the methods it is observed that when m = n and m, n increases the
MSE’s decrease. For fixedm, as n increases the MSE’s decrease. For fixedn,
as m increases the MSE’s decrease. Also, the biases decrease in almost all
values expects for some few cases.

For fixed value of k, as s increases the value of R(sx) decreases.

With respect to MSE’s, the MLE performs the best estimators for R in
almost all of the cases compared to other reliability estimators. The

‘performance of the BESL and BELL are quite close to the MLE.

As far as biases are concerned, it is observed that the MLE’s have the
minimum biases in almost all of the cases expect for few cases, the PCE’s

* have minimum biases.

9-

Regarding to series system &t (s,k) = (3,3) the BESL performs the best
estimators for Ry when (04,68, 44,43) = (1.5,0.5,3,5) for most different

'sample sizes in terms of MSE’s (see Table 1)

According to parallel system at (s,k) = (1,3) the BELL works the best
estimators for Resyy when (6y,6,4,,4;) = (0.5,1.5,5,3) * for all different
sample sizes with respect to MSE’s (see Table 2)

WLSE works better estimator for R(s ) than LSE in all cases

10- In almost all of the cases, the performance of ME is the worst estimators for

Rs ) as for as the MSE’s are concerned.

11-In the context of computational complexities, MLE, PCE, BESL and BELL

are easiest to compute. They do not involve any non-linear equation solving,
whereas the ME, LSE and WLSE involve solving non-linear equations and
they need to be calculated by some iterative processes.

S. Conclusion
In this article, different methods of estimation of reliability in multi-

component stress-strength systems are considered. Both stress and strength are
assumed to be independent and have an EP distribution. Estimation of system
reliability in an s-out-of-k system is studied when the component strengths are iid and
subjected to a common stress. In particular, the reliability estimation of series and
parallel systems are also studied. In addition, the estimation of reliability of single
component is also considered as special case. Comparison the performance of all
estimators, it is observed that the MLE performs the best among the competitors
relative to their absolute biases and MSE’s.
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Table 1: Results of simulation study of absolute bias and MSE of estimates of
reliability for 6,=1.5, 8,=0.5, 1,=3 , 1,=5 , a=1 and 5000 replications

Method of estimations
True

(s,k) | Ragey| (mm) | MLE | MME | PcE | LSE | wise | BESL | BELL
(10,10) | 0.00458 | 0.01988 | 0.00925 | 0.01757 | 0.01564 | 0.01162 | 001202
.00066 | 0.00401 | 0.00096 | 0.00954 | 0.00837 | 0.00091 | 0.00094

(10,30) [ 0.00204 | 0.01891 | 0.01041 | 0.00312 | 0.00365 | 0.00907 | 0.00939
00044 | 0.00267 | 0.00081 | 0.00086 | 0.00095 | 0.00062 | 0.00064

(10,50) | 0.00145 | 0.01929 | 0.01095 | 0.00242 | 0.00287 | 0.00848 | 0.00877
00039 | 0.00255 | 0.00079 | 0.00053 | 0.00051 | 0.00056 | 0.00057

(30,10) | 0.00431 | 0.00822 | 0.00344 | 0.01620 | 0.01423 | 0.00635 | 0.00652
00037 | 0.00181 | 0.00042 | 0.00854 | 0.00744 | 0.00041 | 0.00042

(30,30) | 0.00140 | 0.00721 | 0.00393 | 0.00212 | 0.00194 55 | 0.00365
(1.3) {0957 00017 | 0.00099 | 0.00025 | 0.00025 | 0.00022 | 0.00020 | 0.00020
(30,50) | 0.00082 | 0.00675 | 0.00449 | 0.00165 | 0.00154 | 0.00299 | 0.00307
00015 | 0.00077 | 0.00024 | 0.00020 | 0.00018 | 0.00016 | 0.00017

(50,10) | 0.00445 | 0.00668 | 0.00157 | 0.01813 | 0.0149 55 | 0.00568
,00033 | 0.00165 | 0.00033 | 0.00983 | 0.00801 | 0.00035 36

(50,30) | 0.00160 | 0.00603 | 0.00212 | 0.00222 | 0.00206 | 0.00284 | 0.00291
| 00014 | 0.00074 | 0.00017 | 0.00032 | 0.00032 | 0.00015 | 0.00015
(50,50) | 0.00101 | 0.00503 | 0.00266 | 0.00161 | 0.00145 | 0.00228 | 0.00233 |
.00011 | 0.00055 | 0.00015 | 0.00015 | 0.00014 [ 0.00012 | 0.00012 |

(10,10) | 0.00982 | 0.03888 | 0.02022 | 0.02502 | 0.02261 | 0.02447 | 0.0270
00456 | 0.01949 | 0.00606 | 001842 | 0.01598 | 0.00536 | 0.00575

(10,30) | 0.00339 | 0.04031 | 0.02412 | 0.00481 | 0.00621 | 0.01894 | 002099
,00314 | 0.01454 | 0.00514 | 0.00455 | 0.00446 | 0.00382 | 0.00404

(10,50) | 0.00188 | 0.04181 | 0.02580 | 0.00368 | 0.00502 | 0.01760 | 0.01954
0285 | 0.01389 | 0.00496 | 0.00385 | 0.00372 | 0.00348 | 0.00368

(30,10) | 0.01067 500 | 0.00691 | 0.02481 | 0.02191 | 0.01447 | 0.01568
00272 | 0.01072 | 0.00298 | 0.01490 | 0.01: 00281 | 0.00297 |

(30,30) | 0.003 01515 | 0.00907 | 0.00466 | 0.00427 | 0.00787 | 0.00859
(23) | 0.867 00132 | 0.00643 | 0.00180 | 0.00183 | 0.00166 | 0.0014 45
(30,50) | 0.00155 | 0.01471 | 0.01072 | 0.00350 | 0.00329 | 0.0065 0713
.00 .00512_| 0.00168 | 0.00148 | 0.00135 | 0.0011 0120

(50,10) | 0.01126 | 0.01161 | 0.00220 | 0.02740 | 0.02269 | 0.01289 89
00246 | 0.00972 | 0.00245 | 0.01648 | 0.01355 | 0.00246 | 0.00254

(50,30) | 0.00387 | 0.01318 | 0.00450 | 0.00498 | 0.00459 52 | 0.00703
00104 | 0.00502 | 0.00128 | 0.00155 | 0.00142 | 0.00108 | 0.00110

(50,50) | 0.00228 | 0.01107 | 0.00618 | 0,00369 | 0.00333 | 0.00513 | 0.00555
00082 | 0.00383 | 0.00108 | 0.00113 | 0.00102 | 0.00086 | 0.00087

(10,10) | 0.00916 | 0.03484 25 [ 0.01790 | 0.01674 | 0.02412 | 0.03175
01405 | 0.04333 | 0.01684 | 0.02746 | 0.02457 | 0.01355 | 001461

(10,30 | 0.00073 | 0.04607 | 0.03283 | 0.00165 | 0.00135 | 0.01847 | 002444
01032 | 0.03481 | 0.01431 | 0.01467 | 0.01401 | 0.01038 | 0.01101

(10,50) | 0.00314 | 0.05021 656 | 0.00275 020 | 0.01695 | 0.02257
100954 | 0.03348 | 0.01369 | 0.01362 | 0.01293 | 0.00966 | 0.01020

(30,10) | 0.01508 | 0.00558 | 0.00485 | 0.02502 | 0.02203 | 0.01627 | 0.02040
(3.3) 1 0.686 00872 | 0.02876 | 0.00954 | 0.01893 | 0.017 00824 | 0.00863
(30,30) | 0.00306 | 0.01422 | 0.01171 | 0.00463 | 0.00427 | 0.00839 | 0.01082
00457 | 001865 | 0.00582 | 0.00618 | 0.00365 | 0.00454 | 0.00467

(30,50) | 0.00047 | 0.01602 | 0.01526 | 0.00313 | 0.00304 | 0.00665 | 0.00873
00381 | 0.01522 | 0.00531 | 0.00503 | 0.00461 | 0.00381 | 0.00390

(50,10) | 0.01671 | 0.00123 0.02629 | 0,02325 | 0.01497 | 0.01846
00802 | 0.02672 | 0.00840 | 0.01905 | 0.01657 | 0.00749 | 0.00780

The Egyptian Statistical Journal Vol.56, No2, 2012




D. Amal S, Hassan - Haba M. Basheikh

|

Continued Table 1

L)

(m,n)

Method of estimations

MLE

MME

PCE

LSE

WLSE

BESL

s, k)

)

0.686

(50,30)

0.00514

0.01365

0.00430

0.00605

0.00559

0.00751

0.00365

0.01521

0.00438

0.00490

0.00451

0.00361

(50,50)

0.00251

0.01193

0.00812

0.00431

0.00389

0.00574

0.00287

0.01198

0.00361

0.00387

0.00351

0.00286

(LY

(10,10)

0.00785

0.03120

0.01757

0.02016

0.01833

0.00495

-0.01834

0.00627

0.01636

0.01444

0:0053 1

(10,30)

0.00157

0.03510

0.02245

0.00209

0.00374

0.01549

0.00352

0.01410

0.00534

0.00510

0.00497

0.00391

(10,50)

0.00006

0.03710

0.02444

0.00112

0.00270

0.01434

0.00323

0.01352

0.00513

0.00449

0.00430

0.00361

(0,10)

0.01002

0.00960

0.00507

0.02201

0.01939

0.00301

0.01088

0.00330

0.01286

0.01137

0.01237
0.00297

0.837

(30,30)

0.00252

0.01219

0.00824

0.00380

0.00349

0.00660

0.00152

0.00678

0,00200

0.00208

0.00190

0.00157

(30,50)

0.00095

0.01249

0.01016

0.00276

0.00262

0.00538

0.00127

0.00547

0.00185

0.00169

0.00154

0.00131

(50,10)

0.01081

0.00651

0.00029

0.02460

0.02028

0.01114

0.00274

0.00998

0.00281

0.01397

0.01164

9.00265

(50,30)

0.00353

0.01095

0.00364

0.00442

0.00408

0.00121

0.00540

0.00147

0.00173

0.00160

0.00123

(50,50)

0.00194

0.00034

0.00565

0.00320

0.00289

0.00438

0.00095

0.00419

0.00122

0.00130

0.00117

0.00097

Note: The first entry is the simulated about absolute biases.
The second entry is the simulated about MSE’s.
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Table 2: Results of simulation study of absolute bias and MSE of estimates of
reliability for 6,=0.5, 6,=1.5, 1,=5 , 2,=3 , a=1 and 5000 replications

Method of estimations

True
(s.k) R;(;,E) (m,n) MLE MME PCE LSE WLSE BESL BELL

(10,10) | 0.00312 | 0.01913 | 0.01714 | 0.00953 | 0.01024 | 0.01154 | 0.00572
01068 | 0.03303 | 0.01264 | 0.02074 | 0.01943 | 0.00950 | 0.00960
(10,30) | 0.00950 | 0.00196 | 0.00100 | 0.01854 | 0.01631 | 0.00743 | 0.00422
0.00630 | 0.02179 | 0.00727 | 0.01382 | 0.01270 | 0.00589 | 0.00578
(10,50) | 0.01128 | 0.00473 | 0.00493 | 0.01913 | 0.01658 | 0.00699 | 0.00428
00549 | 0.01934 | 0.00621 | 0.01261 | 0.01158 | 0.00511 | 0.0050
(30,10) | 0.00635 | 0.02863 | 0.02403 | 0.00612 | 0.00387 | 0.00709 | 0.00259
0.00835 | 0.02689 | 0.01075 | 0.01216 | 0.01153 | 0.00794 | 0.00778
(30,30) | 0.00131 | 0.00793 | 0.00983 | 0.00294 | 0.00279 | 0.00426 | 0.00236
(13) | 0.345 00371 | 0.01379 | 0.00478 | 0.00491 | 0.00450 | 0.00362 | 0.00358
(30,50) | 0.00264 | 0.00337 | 0.00345 | 0.00290 | 0.00259 | 0.00337 | 0.00198
00274 | 0.01077 | 0.00341 | 0.00373 | 0.00340 | 0.00268 | 0.00266
(50,10) | 0.0063 327 | 0.02954 | 0.00579 | 0.00284 | 0.00816 | 0.00390
00777 | 0.02524 | 0.01040 | 0.01141 | 0.01065 | 0.00745 | 0.0073
(50,30) | 0.00106 | 0.00813 | 0.01292 | 0.00107 | 0.00130 | 0.00295 | 0.0013
00319 | 0.01204 | 0.00411 | 0.00424 | 0.00389 | 0.00313 | 0.0031
(50,50) | 0.00089 | 0.00475 | 0.00718 | 0.00189 | 0.00178 | 0.00268 | 0.00154
00224 | 0.00904 | 0.00292 | 0.00291 | 0.00265 | 0.00221 | 0.00220
(10,10) [001315 T 0.04526 | 0.02288 [ 00275 665 | 0.02932 | 0.02599
100567 | 0.02319 | 0.00746 | 0.01675 | 0.01565 | 0.00634 | 0.00584
(10,30) | 0.01329 | 0.02058 | 0.00714 | 0.02709 | 0.02438 | 0.01775 | 0.01612
0.0036: 326 | 0.00387 | 0.01457 | 0.01319 | 0.00361 | 0.00342
(10,50) | 0.01372 646 | 0.00224 | 0.02635 | 0.02350 | 0.01579 | 0.01443
00327 | 0.01153 | 0.00324 | 0.01390 | 0.01257 | 0.00316 | 0.00304
(30,10) | 0.00398 | 0.04501 | 0.02566 | 0.00768 | 0.00856 | 0.02128 | 0.01873
00379 | 0.01709 | 0.00620 | 0.00500 | 0.00485 | 0.00444 | 0.00415
(30,30) | 0.00472 | 0.01878 | 0.01060 | 0.00689 | 0.00638 | 0.01025 | 0.00930
@3) o118 00180 | 0.00778 | 0.00250 | 0.00254 | 0.00233 | 0.00190 | 0.00184
(30,50) | 0.00468 | 0.01289 | 0.00508 | 0.00574 | 0,00520 | 0.00781 | 0.007
00136 | 0.00591 | 0.00171 | 0.00197 | 0.00180 | 0.00139 | 0.0013¢
(30,10) | 0.00335 | 0.04639 | 0.02906 | 0.00706 | 0.00830 | 0.02094 | 0.0185
00347 | 0.01634 | 0.00603 | 0.00446 | 0.00432 | 0.00413 | 0.00388 |
(50,30) | 0.00251 | 0.01704 | 0.01207 | 0.00489 | 0.00469 | 0.00826 | 0.00745
100148 2 | 0.00213 | 0.00201 | 0.00184 | 0.00157 | 0.00153
(50,50 | 0.00292 [ 0.01196 | 0.00715 | 0.00413 | 0.00385 | 0.00626 | 0.00571
00107 | 0.00467 | 0.00147 | 0.00141 | 0.00128 | 0.00 100109
(10,10) | 0.01013 | 0.03671 | 0.01449 | 0.02504 | 0.02369 | 0.022 02147
100124 | 0.0093 J0182 | 0.01164 | 0.01077 | 0.00195 | 0.00184
(10,30) | 0.00841 | 0.0198 50599 | 0.02293 | 0.02071 | 0.01302 | 0.01272
00078 | 0.00449 | 0.00078 | 0.01155 | 0.01042 [ 0.00093 | 0.00091
(10,50) | 0.00825 | 0.01698 | 0.00374 | 0.022 01987 | 0.01147 | 0.01123
.00071 | 0.00371 | 0.00062 | 0. 101020 | 0.00080 | 0.00078
(30,10) | 0.00493 | 0.03073 | 0.01423 | 0.0¢ 100748 | 0.01595 | 0.01541
(3,3) | 0.027 10006 .00136 | 0.00102 | 0.00099 | 0.00111 | 0.00106
(30,30) | 0.00343 | 0.01378 | 0.00585 | 0.00484 | 0.00446 | 0.00720 | 0.00704
0.00193 | 0.00044 | 0.00058 | 0.00054 | 0.00036 | 0.00036
(30,50) | 0.00 01013 | 0.00324 | 0.00394 | 0.00358 | 0.00544 | 0.00533
100022 | 0.00137 | 0.00028 | 0.00048 | 0. 100025 | 0.00025
(50,10) | 0.00435 | 0.03037 | 0.01527 | 0.00657 | 0.00686 | 0.01523 | 0.01473
100057 | 0.00502 | 0.00127 | 0.00074 | 0.00073 | 0.00100 | 0.00095
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Continued Table 2

True
(s:k) | Racsiy

(m,n)

Method of estimations

MLE

MME

PCE

LSE

WLSE

BESL

(3.3) | 0.027

(50,30)

0.00230

0.01174

0.00603

0.00361

0.00338

0.00585

0.00022

0.00138

0.00036

0.00032

0.00029

0.00028

(50,50)

0.00209

0.00855

0.00374

0.00283

0.00259

0.00431

0.00016

0.00094

0.00023

0.00022

0.00020

0.00019

(L,1) | 0.163

(10,10)

0.00380

0.03370

0.01817

0.02071

0.02019

0.02103

0.00492

0.01950

- 0.00629

0.01480

0.01381

0.00531

(10,30)

0.01040

0.01282

0.00471

0.02285

0.02047

001273

0.00305

0.01141

0.00333

0.01254

0.01137

0.00302

(10,50)

0.01108

0.00957

0.00035

0.02253

0.01998

0.0114

0.00272

0.00993

0.00280

0.01194

0.01082

(30,10)

0.00085

0.03479

0.02131

0.00296

0.00406

0:01477

0.00344

0.01437

0.00523

0.00477

0.00458

0.00382

(30,30)

0.00316

0.01350

0.00876

0.00489

0.00454

0.00724

0.00159

0.00667

0.00215

0.00223

0.00205

0,00164

(30,50)

0.00345

0.00880

0.00392

0.00419

0.00379

0.00554

0.00119

0.00509

0.00149

0.00172

0.00157

0.00120

(50,10)

0.00047

0.03668

0.02462

0.00261

0.00411

0.01478

0.00317

0.00506

0.00431

0.00411

- 0.00356

(50,30)

0.00125.

0.01034

0.00319

0.00312

0.00569

0.00132

0.00184

0.00179

0.00164

(50,50).

0.00197

0.00602

0.00297

0.00274

0.00137
0.00442

0.00095

0.00127

0.00124

0.00113

0.00097

Note: The first entry is the simulated about absolute biases.

The second entry is the simulated about MSE’s.
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APPENDIEX A
o
T =5
of
T2 = "._—1
_ 2m-1)
30— oi
Qo3 = 2(:;:-1)

= 28 _ g3k (5 11 - 20120 - [ - 2] x
' [1-2]8:C-0inf1 — 2] [k—i—
i1 = 2)%:1 - [1 - 271 ")dz,
Up =388 = 63, () 20 [ - [ - A7 [ - 20D x

[1-2z%1%"%8,In[1 - 2% + 1)dz,

sy = T8 = 0,6 T, () [y — 2120 (1 - (1 - 2T

FIH
{1 - z}%: 8- ({1 - Z])?[i - 1[1 - 2]*% x
[1-[1-21%]"2—i(2k - 2i + D[1 - 2]% x
[1-[1-2]%]t+ (k—1)?]dz,

Up = 3‘;;2; = lls(k).[ 2zt n-[n- Z]OI] [1- z]O,(k—i) X

[1 - z8]%2~L In[1 ~ 2%] [6; In[1 — 2°] + 2]dz.
W, =-a _S-IL‘). e~ Resh),
Wy=-a Jﬁl e~ %Reh),

Wy = ae'ﬂk(s.k) [ (”g:.q) gs.k)_]

202
_ R
Wy, = ae~%Re0 [ (——‘—1"‘ a,’z“]
where,

Rery a-'l— PRen and —M are given, respectively, in equations (A.5).

86, ' 88, ' 06}
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