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Identifying Mixtures of Some
Probability Distributions
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Abatract. In this paper, we identify mixtures of some probability distributions
through a differential equation of the second order, as well as a
recurrence relation between three consecutive conditional moments of
some function A¥(X),k=1,2, .... givenX <y. Some well known
results follow as special cases from our results.

Keywords Characterization, Mixture of Probebility Distributions, Power,
Exponeatial, Weibull, Burr, Pareto Distributions.

1- Introduction.

Mixtures of probability distributions play an important role in statistics
and reliability studies. Suppose a manufacturer produces a; fraction of a certain
product in assembly line i and the life length of a unit produced in assembly
line { has a distribution F;,. Now if the outputs of the assembly lines are merged,
then a randomly chosen unit from the merged stream will possess the life
Ilmhdh'ibudon!-‘-z,r, This has motivated several authors to deal with

their characterizations (see, e.g., Fakhry [7], Gharib [9], Holzmann et al. [10],
ledlndlKodlry[ll].ler[l!]mdemdMnhmM[M]) Also,
some suthors have been interested in inferences on mixtures of some
distributions, among them, Ahmed et al [3], Abu-Zinadh [2], Bartoszewiez [4],
El Sherpieny [S5), Everitt and Hand [6], Maclachian and Peel {12] and
Zakerzadeh and Dolati [18].

Let X be a mixture of two continuous random variables with distribution
function F(x) defined by:

2
an m)-p.r.(-)
jmy

where
R =(d-Mx)%  xe(ap)

41

O<h<Li=ml2snd =l
1) Ge(-Loli=12a0dd are constass.
2) Ix) is & real valued difforentiable fimction on (a, B) with llmh(x) d and

l—d
lim Kx)=d-1
X~ g

Such that:
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In this paper, we are interested in identifying the distribution (1.1)
through a differential equation of second order, a recurrence relation between

conditional moments of n* (X ), k=1,2,..... given X <y and the first
conditional moment of h(X) given X <y.

2- The Main Results
The following Theorem identifies the distribution (1.1) using a
differential equation of the second order.

. Theorem 2.1 Let X be a continuous random variable with cdf F(.),and
denisity function f{.) such that F(@) =0 and F(B) = 1 with F(x)> 0 for all
x > o (so that F(x) < 1 for all x). Let h(x) be a real valued continuous function
defined on (a, P) possessing continuous derivatives on(a, f)with

lim ICx)=d and Iin%_h(x)=d-1. Then X has the distribution
X =ﬁ’ X- ’
defined by (1.1) iff

() \
)R (P 4 (¢, + ¢~ D(d —A®) Fe + c1caF () = 0, where the

.ot - O
symbole o

Proof . The necessity of this theorem can be verified directly. To prove sufficiency, set
z = n(d - h(x)) '

. 1]
Then . 2 e

(oL dFG) _dF(2)dz  -h'(x)
FR== = &~ d-h

(73) - ()~ &%)

 [-HEE e it

R

(- HYEEE , ey
(@~ h(x)P

- {— K (x)F"(z)+ F(Z)h(x)]

F(z)

(@ - h(x)?

Substituting these results in equation (2.1) one gets:
F(z)=(c) +c2)F (2)+ ciexF(z)=0
The solution of this differential equation (see, e.g., Ross
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Flz) = AeS" +Be®*
JAde,
F(x) = A(d — R(x))™ + B(d - h(x))"
The assumption that F(§) = 1 gives A +B = 1. Also, the fact that
0<F(x)<1 forall x>a impliesthat A>0and B >0.
The proof is complete.
Remarks 2.1,

(l)Thmem(Zl)unbeusedmchmmnzeamnmoftwopower
distributions. To this end, seth(x) =-x,d=0a=0,p=1.

Therefore,
e

xF(x)- (e, + c; = 1)xF '(x)+ ¢,c,F(x)= 0
which is the result of Abdel-Rahroan [1].
(2) Ferguson [8] was interested in characterizing the following distributions:

Y F(x)=(-;5:—:)a. b<x<r, 80
b. F(x)=(ﬁ)-o. x<b,6>0

e F=exp[(x-b) [0], x<b,6>0
Theorem (2.1.) can be used to characterize mixtures of the above
distributions as follows:

-x -b :
Lsnll(x)—;:—.d—;—b.a bp=rc=6,i=12,0ne
P

!&)-Zh(:—:—:).l. b<z<r
I (-2 F (x)-(8 +6; - 1)x-b)F(x)+ 6,F(x)=0

b sah(x)-’—_f_;.d=r+b.¢'-¢.9'b.q'~&.i-l.2.onem:

r(x)-ZA.(:—:—:)"‘. x<b
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i (- x)zF *)- (61 +6, +1Xr x)F“(x)+ 0102F(x) 0
o Set h(x)=exp(x—b) d=0,a=—0,p=b, ci=‘—91—.1= L2

i
onegets:

2
F(x)=ZA,exp(x;!b). x < b
=1

Iff IE‘(x)-[’fl %] F@+3 !Sﬂ =0

Now, we identify the dlstnbutlon defined by (1.1) by a recurrence
relation between consecutive conditional moments of h*(X) given X < y.
Theorem 2.2 . Let X be a continuous random variable with cdf F(.), density
function f{.) and reversed failure rate g(.) such that 0 < F(x) <1 for all x > a.
Let h() be a real valued differentiable function defined on (o, B) with

1111% hx)=d-1and lim I x)=d.Then

P o d a
2
Fz) = zz; @-he)%  ze(@h)

=1
cefl0},i=12
iff (22 w=EG@IX<y)=

Olct cah* () +k(d—h O K1) §2+
dk(c, + ¢z + 2k = 1) Uy -k (k- 1) d?up5 ],

k=1,23,mi 0=[crcy + k) +cq +E)|

F@) =3Zhid(@d-hx)"  =ze(a.p),
Ct ¢ {-1.0}
By definition:
«= E[R*Q0 | X< y]= -n__f""(’(’:;‘"”

Now, using integration by parts, we get:

y y
= [ WG)FG) = BOIFG) ~ k [ Btk (P Ceda
= a

Using Theorem 2.1, we observe that
_ —=(d = @)’ (FE)\ FG)
R0 == ()~ + e D)
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Substituting this result in the 2 term of I we get:
’ .
1= [ Bk PG =
a
b4
-1 2 (F(D))'
g | ¥ (53) o=

_ﬂ_"z—:lcz-ly[h"'l(de—h(x))F‘(x)éc

Integrating by parts, we obtain :

I-—h""(v)(d -h))' R,

Fo)
= f (d2ht-2) - 2ht-2) 4 W G)) F (o)

-2t Y it el

h*(y)p(y)+ a0 Ch h(y))’,,J‘f)2
_M 2pk-2(x)F(x
P i‘d B ) (e +
+%m +a+a-1) f R )F ()dx - M f RGP ()

Recalling that u; -ﬁl;)?hk(x)l"‘(x)dx. and the reversed failure rate
=L e =M Oh Y- E)

k()
_kE-D

= ——diup g + —¢(¢, +o3 4 2k = Vuyy
- k(c,, +c3+k)
€€

Solving this equation for uy, one gets:
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we = 8 [c1cah* () + k(d — hG)) RE* () £ £9) b +kd(cy + ¢ + 2K = Dutg—y =
k(k — 1)d u,,_,]
where 8 = [cycp + k(cy+c, +1)]7L.
- Sufficiency
Equation (2.2) can be written in integral form as follows:

ol T @I = tcieah )+ Hd - h(y»zh*-l(y)hg)‘;zy)

e ey 424 GRS M| e

Multiplying both sldes by F(y) 0" and diﬁ'emntiaﬁné both sides with-
respect to y, one gets:

[escz + k(cites + )R GF () = 1R GIF () + cycakh*-L ()R ()F (7)

-
+ k‘h"-‘(y)(d-ho)f(%) + -2 Xd— Hy)RF ()
—2kh*-1(y)(d - h())F () + dk(cy+cz + 2k - D) (y)
_Hr-Da*H2G)F()

Canceling out cjcoh*(¥)F(y) from both sides, dividing both sides by
k#*)), rearranging the terms and dividing the results by k'(), one gets:

d-

\
d -
%Z))Z(%J +(ey+ep - l)th‘(y)Z»F‘(yﬁ c1eoF(y)=0

Using Theorem (2.1), it follows that

F(y)= Za(d h(y)y

i=1
Our proof is complete .
Remarks 2.2

(1) Set hp) = -y, d = 0 ,a = 0, B = 1. Therefore, #(y) satisfies the
assumptions of Theorem (2.2). Hence we conclude that:

L} =9k|cz ) -k=p)* Z(J’)j k=12,..
. 2
iff F(y)=22°, 0<y<l

i=l
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@) Set h(y)=exp(y-5),d=0,a=-,p=b, c,=al. i=1, 2. Then h(y)
(]

satisfies the assumptions of Theorem (2.2). Hence we conclude that:

u, = 8 exp k(y - b)(6,63 + kg ()]
where

Om[0, +8;+k(B +0+K)], k=1,2,...
it FO) =Sk ep %2 | y<b

Corollary 2.1- A continuous random variable X follows the distribution
defined by (1.1) iff

z(h(x1x<y)={m«d—w%+4q+q+o]

where o= +1)ez + )]

Proof. Set k = 1 in Theorem (2.2) and noting that uy = 1, we obtain the result.
Remarks 2.3
(1) Setc;=ca=c,one gets:

Bl < )= L4

iff F@)=(d-h(D)’, xe(a.f)
which is the result of Quyang [15].

@ e Moy - 4 . cma =

whers u(x) is & differentisble function such that Ilm,_..ou(z)-% and
Him.og- u(x) = u(8) thea Corollary (2.1) reduces o the result of Talwalker [17]
O s h(x)=€¢*>,d=0, @ =, ﬂ-b.cl'=al‘.|-l.2.1'lunl(x)misﬂu
the assumptions of Theorem (2.1). Hence we can conclude that:
E(e*tIx <y)= E%;Fﬁ“ +6,0200)]
i

2
r(x)-z:mp(:-b)w.. x<b
1
@ Set A{x)=~x%foc x €(0, 1), d =0, ¢\ =, = 1. then bi(x) satisfies the assumptions
of Theorem (2.2). hence we conclude that:

X <) =35"  ye@.D)
it F(x)=x2,  x£(0,1)
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which is the result of Ouyang [15].
set h(x)= e g x (0, ®),d=1, ¢\ = &= 1. Then h(x) satisfies the result of
Theorem (2.2) and we conclude that:
E(e~**|x <y) =,%'-(e"‘3"l +1), ye(0,)

iff F(x)=1—-e2",  xe(0,)
which is the result of Ouyang {15}

Set h(x): x%,d=1,a=1,p= 0, ¢, = cz > 1. Then h(x) satisfies the assumptions

_ of Theorem (2.2) and we conclude that

EXeiX <) =30 +1, fora > Oye(1,)

if - F(x)=1-x7% x€ (1,0)
which is the result of Ouyang [15].
Seth(x) =(1+x%)b,d=1a=0,f=o,c; =c;=1. Then h(x) satisfies the
assumptions of Theorem (2.2) and we conclude that:
E(Q1+X9 X <y) = %((1 +y9)t+1)

fora>0,5>0,and ye(0, )

iff .F(x)=l—(l+x")_b, x (0, )
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