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ABSTRACT

In this article, we present a new algorithm to compute the moments, product
moments, variances and covariances of order statistics in skewed continuous
distributions for any sample size. The algorithm is written using the Gauss-Legender
quadrature algorithm of GAUSS mathematical and statistical system matrix
programming language. The accuracy of the calculations was tested for the Gamma,
Weibull, and the extreme value distributions. A nonlinear least squares approximation
for the first moments of order statistics for the gamma, Weibull and extreme value
distributions is also presented.
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1. INTRODUCTION

LetX,,X;,..., X, be a random sample from an absolutely continuous
distribution with cumulative distribution function (cdf) F(x) and probability density

~ function (pdf) f(x), and let X1)s X(2) -+, X(n) denote the order statistics obtained from this

sample. The k™ moments of the order statistic Xy is given by '

E(XEy) = o [V (Pl ) 1 - Fy )T fo(y)dy ()

(=1 00e—y s

Sen (1959) showed that, if E|X|° exists for some & > 0, then E{X%",,:;_) exists for all r

satisfying r, <r <n-r, + 1, where r,8 = k. The product moments between any two order )
statistics X and X , r <s; r, s=1, 2,..., n, are defined by

n!
E(XenXn) =

(p=1d{gmr—1%{n-g) °
Lo Loy [ COT 4 [Py = Fyl)lF i1 - Fx O ) fsaxdy @)

The moments of order statistics in random samples of small size n can be
obtained explicitly only for a few populations, such as the uniform and the exponential.
Tables of means, variances, and covariances are available in the literature for some
standard distributions, Harter and Balakrishnan (1996).The tables use different
computation methods and some series approximations and they are available only for
small sample sizes. Some statisticians still believe on what Hirakawa claims in 1973
“moments of order statistics can be evaluated by numerical integraiion, but

The Egyptian Statistical Jou‘{nal Vol.54, No.2, 2010




Osama Abdelaziz Hussien 85

straightforward integration has shortcomings in view of quantity of computation and
the accuracy™.

Recurrence relations between the moments of order statistics have been studied
extensively with the principal aim of reducing the number of independent calculations
required for the evaluation of the moments. Such relations may also be used as partial
checks on direct calculations of the moments.

Algorithms to compute the moments and product moments of order statistics for
small samples from the normal distribution had been presented by Davis and Stephens
(1978) and Royston (1982). The Maple procedures presented by Childs and
Balakrishnan (2002) utilizes the series approximations presented by David and Johnson
(1956) to approximate the moments and product moments of order statistics from any
continuous distributions. Hussien (2009) proposed a new algorithm for the computation
of the moments, product moments, variances and covariances of order statistics from a
continuous distribution and for any sample size. The accuracy of the calculations was
tested for the normal, the uniform and the exponential distributions.

In this paper this algorithm will be extended to compute the moments, product
moments, variances and covariances of order statistics for the gamma, Weibull and
extreme value distributions. Moreover a simple but accurate nonlinear least squares
approximations for the first moments of order statistics from the three distributions will
be presented. In Section 2 we describe the proposed algorithm and some formulae that
can be used for checking its accuracy with a simple and accurate approximation to the
first moment. Sections 3, 4 and 5 compare the results of the proposed algorithm with the
available table-values and approximations for the moments of order statistics from the
Gamma, Weibull and extreme value distributions. Section 6 presents nonlinear least
squares approximation for the first moments of order statistics for the gamma, Weibull
and extreme value distributions.

2. THE PROPOSED MOMENTS EVALUATION ALGORITHM

The proposed algorithm computes the kth moment, k=1, 2, the product
moments, variances and covariances of order statistics from a skewed continuous
distribution with a very high accuracy. This level of accuracy will be at least as good as
the available tabulated values. The computation remains accurate for sample size as
large as 150. One cannot obtain the required level of accuracy in computation of (1) or
(2) unless F(x) and f(x) are evaluated with a high level of accuracy. The evaluation of
F(x) for many distributions depends on some mathematical approximation. The major
mathematical programming languages provide mathematical approximation procedures
to compute F(x) for many distributions. Such procedure will provide accuracy
essentinlly to “machine precision®.

. o . . b .. . o
Any numerical integration procedure approximates fa gi{x)dx where the limits

of integration a and b are finite. This is not true for (1) and (2) for the distributions we
study. So we set a = F'(p,) and b=F"(1-p,). Typically, p, =p2=0.10°. One can change
those limits to get different level of accuracy.

To compute E(Xy) und var(X), r= 1, 2, ..., n, the adaptive Simpson’s alporithm

for numerical integration (intsimp procedure of Gauss 9.0) with tolerance limits 10*will
be used. In the adaptive process, the interval [a,b] will be divided into two sub-intervals
and then decide whether cach of them can be divided into more subintervals. The
procedure is continued until sume specified nccuracy is obtained throughout the entire
interval [n.b]. The Guauss-Legender quadrature algorithm (intquadl procedure of Guuss
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9.0) allows accurate and fast integration for many functions, but it is not adaptive to
yield any level of accuracy as the intsimp procedure, (see Gauss 9.0 Language Reference,
(2007)). For the product moments, the double integration limits will be

fab .).:9 {x, v} dxdy

with the same definition of a and b as above. The Gauss-Legendre quadrature algorithm
for double numerical integration (infgrat2 procedure of Gauss 9.0) will be used. This
procedure allows the integration over a region which is bounded by functions, rather
than just scalars as the infquad2 procedure.

The accuracy of the proposed numerical integration procedure will be checked
by the following general relations, given by David and Nagaraja (2003)

Lis E(Xgy)=np 3)
Er= E(XG) = n E{(X?) )
2roy Xy cov(X, X, ) =N o° 5)

Thus, the following formulae will be used to check the accuracy of the computation for
- each distribution studied, for 2<n<150,

:rzaxﬂi}?Eé'X{,:f —ny, (6)
max, | TE{X?, ) ~ nE{X?)| 7)
max, | ZXcovix,, xc3) — na?| . (8)

3. THE MOMENTS AND PRODUCT MOMENTS OF GAMMA DISTRIBUTION

Let X;,X,,...,X,;, be a random sample from the gamma distribution given by
the pdf '

xFL=x
fx)=12 % sX>0 and >0

and the corfesponding cdf given by

O ,
F(y) = —-l':(-E;, y>0and 8> 0

where (0,y) is the incomplete gamma function defined by

Y(0,y) = .]g té-te ' dt, y>0

The kth moment of X, is given by
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and the product moment of X,y and X is given by

n! oY
X, X = - - - - 6467+ ) N4 Q)
E‘- .r X .5.-" ir- 1)! (s—r- 1)! (n— s)!{.ﬂ‘a)}"_ e J_x'\ ) [f.ex,] [)’.3_\_

- r‘:ax:|]s—r-1[n:9; — r‘:a_\,)]n-s e"-""-"dxd_)'

Most of the work related to moments of gamma order statistics expresscs
E(X,!‘_',_:,) in terms of recurrence relations (Gupta (1960), Krishnaiah and Rizvi (1967),

Breiter and Krishnaiah (1968), Tadikamalla (1978) and Walter and Stitt (1988)). Only
Gupta (1960) and Prescott (1974) presented tables for the covariances of order statistics
from the gamma distribution. However, it is an approximate calculation depending on
Gupta’s recurrence relations and it is available for small sample sizes only. Sobel and
Wells (1990) express E(,\’,’-‘_’,-,)in terms of Dirichlet integrals which is not available as a

standard routine. Nadarajah and Pal (2008) derived an explicit expression for E( \.",.) as

a finite sum of a special function called the Lauricella function. Numerical routines for
the direct computation of the Lauricella function are available (Trott (2006)).
The main advantages of the numerical integration procedure that it gets

accurate calculations for the moments for any sample size without using numerically
computed special functions, used by Nadarajah and Pal (2008). Moreover, it accurately
calculates the product moments and covariances for any value of the shape parameter 0,
and for any sample size. Thus, accurate and complete tables of the covariances can be
produced using the numerical integration procedure.

The computation of the first two moments and the covariances of order statistics
were checked for their accuracy by the identities (3), (4), and (5). Then,
max,|ZE(X.y) — nyg , max,|ZE{X?,.) — nE{X®)| and max,jZIcovixy:. X )= no|

for n=2(1)150 were computed. The results for specific values of 0 are given in Table 1.
This shows that the numerical integration procedure computations of the moments and
covariances are accurate to more than 3 decimals for all sample sizes and all values of 0
considered. Morcover, it is much faster than Nadarjan and Pal (2008) procedure.

To compare the numerical integration procedure results with the tabulated
values we define

MAXDm (k)=max,,|EX — 2| k=1234:1r=12..n
and
AVRDm (k)=average,|EX — [IH k=1,234;:r=12,..n

where, E,’S:’E:_.\"".-,_-.) calculated from Breiter and Krishnainh (1969) tables
re12v..m and 2 =E(X*,.) calculated by the propoesed numerical integration

aleorithm, r=1.2,...n . Values of MAXDm (k) and AVRDm (k) for selected vitlues

The Fgyptian Statistical Journal Vol.54, N0.2, 2010




88 Computation of the Moments and Product Moments of Order Statistics for

Shewed Continuous Distribution

of 6 are given in Table 2. Noté that Breiter and Krishnaiah (1969) tables are
restricted for n<10 and 6=0.5(1)8.5.

Also, we define

MAXDv = maxmiC‘” - pr,sf and
AVRDv = av*er‘age.,.slc,.s — U,
where C.; = F {..\"(,.j_,X.:s}} T <{ 5 calculated from Prescott (1974) tables r=1,2,...,n and

4. = E{X:X;) 1 <s calculated by the proposed numerical integration algorithm,

r=1,2,...n . Values of MAXDv and AVRDv for the sample sizes tabulated in Prescott
(1974) are given in Table 3.

4. THE MOMENTS AND PRODUCT MOMENTS OF THE WEIBULL
DISTRIBUTION

Let X;, X3 ,..., X,, be a random sample from a standardized Weibull
distribution with a probability density function

f(x) = o x> e7*" x>0,

where a > 0 is the shape parameter. Explicit formulas for the moments and product
moments of order statistics for the standardized Weibull distribution were given by
Lieblein (1955) as follows:
{ vk Y -1 -1 s—
E(XEy) =+ r(1+- TiA-1)* ( Jin+x—i+1)”

{§m— i}‘r n—-i%

, 1=1,2,3,...,n and k=1,2,3......

i-1 —y—-i-% 1
t4 ; : S "‘-1- J l— s - LS P
EX.a.Xy }‘“K Loygda “9( N‘fl \ x ,)#'{J—wx-.mt-f-;-.\.'T1}

| 1<J 19.] 1,2,3,...,n,

1

n;

G—1n(—i-1nln-jr °

y(tu)= 'mt)""f( T)B, (1) ,

: t
r—1+—c; , p-—'t": ,t>0, u>0t+u<n

Bp(a,, by=| ;’ x%71 (1 — x)*~1dx ,the incomplete beta function.

Harter (1970b) tabulated the means for n < 40 and @ = 0.5(.5‘)4(1)83 Harter and
Balakrishnan (1996) tabulated the variances and covariances for n < 10 and 2 = 0.5(.5)4.
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For n>20, their computed values for E{:,\;',{_":._,) became extremely large. For n>30, Lesch et

al. (2009) proposed a simple technique that can be used to calculate accurate
approximations to the covariances of Weibull (and Gamma) order statistics., They used
David and Johnson (1954) quantile based approximations to the mean and variance of
order statistics.

The computation of the first ttvo moments and the covariances of order statistics
by the new numerical integration procedure were checked for their accuracy by

max, | 2. —ny, max, 12X — nE{X?)| and max,|{ZZcovixip.xi; ) — no|

for n=2(1)150. The results for some values of o are given in Table 4. The entries of this
table show that the numerical integration procedure for computing the moments and
covariances is accurate to more than 3 decimals for all sample sizes and all values of a
considered. Tables of the variances and covariances of order statistics for Weibull
distribution with a =2 and n=5, 10, 15, 20 and 30, are available from the author.

Define £5 = E{x* ;) as the k™ moment calculated from Lieblein explicit

formula r=1,2,...,n. Define ,u" = E{X* y1i  as the k™ moment calculated from the

suggested numerical integration algorithm, 1=1,2,...n. For a specific sample size n,

define

MAXm(k)=max,|Ef — 1] k=1234

Values of MAXm(1) and MAXm(2) for selected sample sizes are given in Table 5. The
table shows that both Lieblein and numerical integration methods give similar results
for n <30 and the loss in accuracy of Lieblein explicit formula increases rapidly as the
sample size increases while the numerical integration values do not affect by the increase
in the sample size. The stability of calculated values by the numerical integration for
large samples holds also for all higher moments.

S. THE MOMENTS AND PRODUCT MOMENTS OF TYPE I EXTREME VALULE

DISTRIBUTION

Let X(1), X(2).--,X(n) be the order statistics corresponding to a simple random
sample from a standard type 1 extreme value distribution with probability density
function

f(x) = exp(x-e") -0 <X <00,

The moments of the extreme value order statistics can be written as (Lieblein (1953))

n—i{

E(xt)=n(720) ) ("D D Tai+ 0
r=0
where

- %

g (c) = I 2k evmeet gy c>»0
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In particular, the first ttwo moments are

1n— 1x g f1— 1Y . L lnin-i-k=17
- Y:_i R et I L g S
B =-n ()T (') (T
and
i—1 Qt- S 2
E(xZ,) = n[ﬂ“l‘?zl 1)§ 1)—}'._6—*({+lnn_li‘kJ‘1?
s ﬁ\l._]_,‘__rg k ¢ n—i+k+1

where y=-I'(1) is the Euler’s constant, 0.5772156649...

Lieblein (1953) derived an expression for the product moments as

;———ln—;
;71
E\.\*,XUQ*\\] '] FS‘ N an l\ )R it -l —1r+5s)
r-—() 3—0

where the function

I

Cr—tett fy—ee Y ;
wy = J ] xye\FTrE S gl S dxe dy Lu >0
S S

tf

is expressed in terms of Spence’s function which have been extensively tabulated by
Abramowitz and Stegun (1965).

White (1969) presented a table for the means of order statistics for n=1(1)50(5)
100. Balakrishnan and Chan (1992) presented tables of means, variances and
covariances of all order statistics for n=1(1)15(5)30. For larger sample sizes the accuracy
in their numerical computations reduces rapidly as n increases. Childs and
Balakrishnan (2002) presented a Maple procedure that approximate the means,
variances, and covariances of order statistics from the extreme value distribution using
series approximations in the form of David and Johnson’s approximation.

Fard and Holmquist (2007) presented an approximation of the first moment of
the order statlstlcs by finding a and B that minimizing

Q. ) = V*‘ M, - gi(a B
1-..

where M; is the expected values in White (1969) tables, and

gx&mlﬂ F~1{ -,

u—-m—ﬁ ’

Then approximate E(X;;) by the Blom (1958) approxiniation with best fitted @ and f‘;’ as
E(X(i)) x F-li(l R’} 'r(ﬂ ﬁ + 1)‘5

Accordingly, they concluded that differences between this approximation ang the exact
values are less than two decimal places.
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Using Taylor's series expansion, Fard and Holmquist (2008) suggested an
approximation for the variances and covariances for order statistics from the extreme
value distribution. The approximation was constructed using exact values of the
covariances from the tables of Balakrishnan and Chan (1992) for n < 30. For n > 30, the
exact covariances were replaced by the empirical covariances based on Monte Carlo
simulations. They presented a similar approximation procedure for the variances
depend on the tabulated values of White (1969) for n<100 and replaced by the empirical
variances based on Monte Carlo simulations for n>100. Their maximum absolute
deviation between the exact and the approximate covariances is less than two decimal

places for all sample sizes.
The proposed numerical integration procedure gives accurate results for the

moments and product moments for all sample sizes. The computation of the first two
moments and the covariances of order statistics were checked for their accuracy and
max |2\ —nyl , max,|IX7:;. = nE{X")| and max,, | 2Xcovixy, xij Y—no* for
n=2(1)150 were computed. The results are summarized in table 6. This shows that the
numerical integration procedure for computing the moments and covariances are
accurate to more than 2 decimals for all sample sizes <100. Morcover, the procedure is
much simpler than Fard and Holmquist (2007, 2008) approximations.

6. NONLINEAR LEAST SQUARES APPROXIMATION TO THE FIRST MOMENT

Another use of the numerical integration algorithm is finding a simple
approximation to the first moment E(X(,)) as a function of r, r=1,2,...,n. This simple
approximation is not only highly accurate but it also provides a simple rule to put a
bound on the first moments of extreme order statistics. These bounds are much easier to
compute than the bounds presented by Joshi (1969) and Joshi and Balakrishnan (1983)
especially for large samples.

Let X, , X;3,..., X, be a random sample from a distribution Fy. Let C(Fp) be the
approximated E(X() by the numerical integration procedure, then

C.Fg) ¥ i B) +¢, r=12,..,n 9)

where, n(r, B) is a lincar or nonlinear function in r, and €. is the error of the

approximation. In particular, the linear model will be
s _ k y
Bl = Slog;rp; 2<k<n (10)
T'he nonlinear least squares approximation for (9) is a kx1 vector £ that minimizes
= U _#F e AV e )2
Q(B) S;-=1‘\(.Cr R/AY 'ﬂ).)/“ r.)
=(C— n(ATW(C— niB) (11)
The value w, is n measurce of the error in approximation in C.. If the function 1y is
nonlinear the minimization of Q(.) with respect to [3 will be done iterntively using the
Gunuss-Newton method or the Levenberg-Marquardt method, (Nocedal and Wright
2006). The diserepancy between the model and the calculated C is measured by the

mean squared error

MSL = (eTWe)/in -k — 1).
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where the residuals _
e=C— nip
is an estimate of the approximation errors e= C — {52

To find the “best approximation” one needs to consider many forms of the

function 1 and choose the one that minimizes the MSE (or maximizes the coefficient of
determination '
R’*=1-(e"We)/C"[I-(1/n)J]C,

where J is an nxn matrix of ones.

For all distributions considered in this study, the relationship between the
estimated C, and r is the same for all sample sizes considered. So one can search for one
form for the approximating function n that best fit C. Using the statistical package
DataFit one can evaluate more than 300 linear and nonlinear forms of the function m
and choose the one with the highest R* (~1.00).

For this approximation to be easy to use it requires that the number of
parameters in the fitted model to be at most 4 parameters. To achieve this we have to
allow a model with less accuracy (R* <0.999). Joshi and Balakrishnan (1983), and David
and Nagaraja (2003) showed that the approximations methods for the moments of order
statistics do not give satisfactory results for the extreme order statistics. The residuals e
are the difference between the calculated expected value by the numerical integration
-algorithm and the corresponding value estimated by the nonlinear least squares. The

corresponding standardized residuals will be e'=e/~’MSE . Thus, one can increase R’

again by “trimming” the values with |e'|>2.5, i.e. values with less accurate
approximation by the numerical integration procedure. Then fit a trimmed nonlinear
least squares model.

Qr(B) = (Cr — p(BY W {Cr — n(B)) (12)

where Cr is the calculated C after trimming certain proportion of the extremes. That is,
replace the less accurately fitted extremes by its predicted value from the model with
very high accuracy (small MSE and nearly perfect R%). The fitting of this model can be
described by the following steps.

Step 1: Given a random samplc of size n > 5 from a distribution Fg-, use the
numerical integration procedure to calculate
OB E o), B X).
Step 2: Find the best fitting models #{r,g) = E;f':g g; ()8, suéh that2= k < 4
Step 3: From ‘ll.he standardized residual plot of the chosen model y*{r, £)
consider an observation to be an “outlier” ( or less acuratly approximated
values) if the absolute standardizcd residuals c*=|c/xz“m [>2.5

Step 4: If no outlicrs and R?> 0.999, fit the same model for different | ,

sample sizes n=10(5)100 and plot the standardized residual for each
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sample size.

If no outliers and R*> 0.999 for all sample sizes, report the model
C(Fe-) * 0 (r.B).
Step 5: If the standardized residual plot reveals outliers, e > 2.5, trim the
outlying observations and recompute R*. (A further study is needed to

determine the optimal trimming proportions as a function the skewness
of Fg).
Use the trimmed nonlinear least squares in (12) to fit the model
C(Fe) X n"(r.Br]
Fit the same model for different sample sizes n=10(5)100.

Step 6: Report the trimmed model if R? improved over the untrimmed model.

Otherwise, use the untrimmed model.m

Applying this algorithm, the “best” nonlinear least squares fit for E(X() for the gamma
distribution is given by

EXn0)=r/(a+br+ crd). (13)

The estimated coefficients a, b and ¢ for 0 =1, 2, and 4 with n=10(10)100 arc given in
Table 7. A tenth degree polynomial gives the “almost perfect” fit (R*=100) for all sample
sizes, but it is not reported here. The trimmed least squares approxim:tion does not
substantially increase R? so it does not improve the accuracy of the results.

The “best” nonlinear least square fit for E(X,)) for the Weibull distribution is
given by

E(X:p:|la)sby+ b1 ba1® + b1 (14)

where the crror of approximation is very small for all sample sizes considered, MSE
<0.0001 , R* > 0.99 for all n<100. For nearly symmetric shape (u=4) almost perfect fit
were achieved by right and left trimming a fixed proportion for all sample sizes. Table
8.a gives the best fit for a=4 and proportion of trimming [0.05n] from both sides for
different sample sizes. Table 8.b gives the best fit for a=2 and proportion of trimming
[0.06n] from the right side for different sample sizes. Table 8.c gives the best fit for a=1
and proportion of trimming [0.15n] from the right side for different sample sizes. The
accuriacy of thee fitted values in tables 8a, 8b, and 8c are computed to 15 decimal places
but truncated for the space. Graphs 1 and 2 illustrate the effect of “outliers™ of the
above fit for a=4. Graphs 3 and 4 illustrate the cffect of “outliers™ for a=2. For
positively skewed shape (u<3.5) nearly perfect fit is achieved by right trimming a fixed
proportion for all sample sizes. The proportion of trimming increases as the distribution
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became more skewed. For nearly syhlmetric shape a better fit will be achieved by
trimming same proportion from both sides.

The “best” nonlinear least square fit for E(X(y) for the extreme value
distribution to be

E{Xx, )aby+ b, 1%+ b, ln(r) (15)

The error of approximation is very small for all sample sizes considered, MSE
<0.0001 and R*> 0.99 for all n < 100. One can get better fit (R’>0.999) by trimming a
small proportion of extreme values from each tail, [0.01n] from the left and [0.07n] from
the right. Note that the coefficient of skewhess for the extreme value distribution is
1.139547. Table 9a gives the best fit without trimming. Table 9b gives the best fit after
trimming [0.01n] from the left and [0.07n] from the right. Graphs 5 and 6 illustrate the
effect of “outliers”. The mean square are and R will always increase for any sample size
by trimming 7% observations from the right.

7-COMMENTS AND CONCLUTIONS

The proposed algorithm facilitates “nearly exact” computation of the moments

of order statistics for any sample size and for a continuous distribution. In particular,

- for the gamma distribution its calculation is accurate and does not need numerically

computed special functions as the algorithms of Nadarajah and Pal (2008) and Sobel

and Wells (1990). While the available tables for the covariances of order statistics is

restricted to small samples only, Prescott (1974), the numerical integration procedure

accurately calculates the product moments and covariances for any value of the shape
parameter 0, and for any sample size.

For the Weibull distribution, Harter (1970b) and Harter and Balakrishnan
(1996) tabulated the variances and covariances for small sample sizes only. Both
Lieblein (195S) explicit formula and numcrical intcgration procedure give similar
results for n <30 and the loss in accuracy of Lieblein explicit formula increases rapidly
as the sample size increases while the numerical integration values do not affect by the
increase in the sample size. For the extreme-value distribution, numerical integration
procedure for computing the moments and covariances are accurate to more than 2
decimals for all sample sizes <100. Moreover, the procedure is much simpler than Fard
and Holmquist (2007, 2008) approximations.

The accuracy of the calculation for the logistic, , beta, and the student’s t
distributions will be presented in a forthcoming article, The existing tables for thc

above distributions either do not exist or incomplete (for the expected values only or for
small sample sizes only). '

The nonlinear least squares approximation presents an accurate and simple
calculation for the first moments of vrder statistics. However, the optimal (rimming
proportions as a function the skewness of Fg- need to be investigated.

A further study is needed to approximate higher moments by nonlinear least
squares procedure. The exact calculation of the moments of order statistics ¢an improve
the statistical analysis in many applications: Lloyd’s weighted least squares estimators
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for the location scale family, Linear estimators for censored samples from any
continuous distribution and regression based goodness of fit tests.
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Appendix A
Table 1 Accuracy of the computation for gamma moments
a max, ' FEXp — nyl | max, FEX- i - nE(X"1 maxy Eeov(x p. x4 — no |
all n 0.002803 0.058238825 0.304403019
1 o <30 0.0008744 0.0056303 0.0237102
30<n<77 0.001698072 0.015949996 0.22411007
77<n<100 0.002578389 0.058238825 0.304403019
all n 0.001345491 0.024375959 0.018989477
2 n<30 4.04E-04 7.31E-03 5.69E-03
30<n<77 0.001036056 0.018769483 0.014614096
77<n<100 0.001345491 0.024375959 0.018989477
alln 0.000170687 0.020333693 0.0145676
3 n<=30 0.000051215 0.00610703 0.00437103
30<n<77 0.000131429 0.015656944 0.01121694
77<n<100 0.000170687 0.020333693 0.0145676
alln fq 0 WYY A 0.030543148 0.020009765
4 n<30 0.00203103 0.00916503 00600103
[ 30<n<77 o v e ONIAAY 0.023518224 0.015407533
77<n<100 o TVVVARA 0.030543148 0.020009765
Table 2 Maximum and average absolute differences of moments with Breiter
and Krishnaiah tables
0 EXn) EQX" ) E(X* 6] E(X* i)
1.5 MAXDm 0.0000500814 0.000410127 0.00046387 0.004776459
AVRDm 0.0000152055 0.0000444338 0.0000928751 0.000695378
55 MAXDm 0.00040222 0.00055033 0.005015948 0.096961253
AVRDm 0.0000359135 0.000215485 0.002005333 0.016873319
75 MAXDm 0.009546677 0.00456351 0.048151864 0.465129394
AVRDm 0.000271027 0.000701033 0.006339337

0.073916505

Table 3 Maximum and average absolute differences of covariances with Prescott tables

0=2 0=3 6=4
n MAXDv AVRDv MAXDv AVRDv MAXDv AVRDy
2 | 2.27822E-07 | 2.27822E-07 | 6.3875E-06 | 6.3875E-06 | 3.9056E-05 | 3.9056E-05
3 | 4.45174E-05 | 4.45174E-05 | 4.98436E-05 | 4.98436E-05 | 7.97923E-05 | 7.97923E-05
4 | 0.000134005 | 0.000134005 | 7.28268E-05 | 7.28268E-05 | 0.000461102 | 0.000461102
5 | 0.000437856 | 0.000437856 | 0.001880824 | 0.001880824 | 0.001014754 | 0.001014754
6 | 0.003175321 | 0.003175321 | 0.004965222 | 0.004965222 | 0.010550329 | 0.010550329
7| 0.005299528 | 0.005299528 | 0.014529689 | 0.014529689 | 0.02348847 | 0.02348847
8 | 0.014347817 | 0.002946011 | 0.033027082 | 0.007142035 | 0.060430368 | 0.012725836
9 | 0.025829259 | 0.005422265 | 0.052631021 | 0.013338257 | 0.101375433 | 0.023933249
10 | 0.037801243 | 0.009730802 | 0.102076181 | 0.021309409 | 0.182091228 | 0.038777541
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Table 4 Accuracy of the computation for the Weibull moments

a

max, A\.; —nu

max, | 52X, —nE{X"): | max, ZXcovix; Xg i—n o~ |

8.879795E-3

1 1.243078E-3 3.871262E-3

2 6.901261E-7 1.175743E-8 2.753822E-5
4 2.611964E-10 2.700925E-10 4.009964E-6
6 1.682100E-10 1.657130E-10 1.236547E-07

Table 5 Selected values of max rl Ek— /1:‘_' | , k=1,2, a=2 for the Weibull moments

n MAXm(1) | MAXm(2)

5 3.97E-08 1.43E-10
10 7.95E-08 5.62E-10
15 2.98E-08 1.18E-09
20 3.97E-08 5.23E-10
25 6.75E-07 1.33E-07
30 0.000159 1.55E-05
35 0.012799 0.002402
40 4.525267 0.882569
50 281115.1 18990.8
60 6.57E+10 1.23E+10
70 5.21E+16 8.54E+15
80 1.59E+21 2.49E+20
100 7.02E+30 9.92E+29

Table 6. Accuracy of the computation for the extreme value moments

n max,'IX. ;) - ng. max, xx- o —nk -;'.\'3_‘:-. max, - TXcorix:;.x ;)= na:j
2<n<20 0.0000978 0.0015703 0.00065502

20<n<60 0.000298 0.004795605 0.015919896

60<n<100 | 0.000489 0.007861647 0.047806417

100<n<150 | 0.000733 0.011792471 0.113456224
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Table 7. The nonlinear least squares fit for E(X) for the gamma distribution

E(Xy0) ~r/(a+br+ cr’

0 n b c a R’ MSE

1 10 -0.41244 -0.0259 | 10.43126 | 99.99742 | 0.000254
1 20 -0.43399 -0.01249 | 20.43479 | 99.99813 | 0.00042
1 30 -0.44409 -0.00808 | 30.44332 | 99.99861 | 0.000505
1 40 -0.45131 -0.0059 | 40.45856 | 99.99887 | 0.000571
1 50 -0.45781 -0.00459 | 50.4837 | 99.99903 | 0.000635
1 60 -0.46412 -0.00371 | 60.51912 | 99.99911 | 0.000714
1 70 -0.47072 -0.00307 | 70.56708 | 99.99914 | 0.000822
1 80 -0.47799 -0.00258 | 80.63102 | 99.99912 | 0.00098
1 90 -0.48572 -0.00219 | 90.70967 | 99.99905 | 0.001205
1 100 -0.49412 -0.00187 | 100.8061 | 99.99893 | 0.001523
2 10 0.596059 -0.05428 | 1.612099 | 99.96649 | 0.00013
2 20 0.747969 -0.03521 | 2.513486 | 99.80245 | 0.001096
2 30 0.844488 -0.02706 | 3.261114 | 99.59173 | 0.002748
2 40 0.915464 -0.02234 | 3.921702 | 99.37155 | 0.00481
p) 50 0.971603 -0.01919 | 4.523321 | 99.15342 | 0.007121
2 60 1.01801 -0.01691 | 5.081193 | 98.94133 | 0.009589
2 70 1.057532 0.01517 | 5.604752 | 98.7366 | 0.012156
2 80 1.091923 -0.0138 | 6.100359 | 98.5395 | 0.014782
2 90 1.122338 -0.01268 | 6.572563 | 98.34985 | 0.017443
2 100 1.149585 -0.01175 | 7.024758 | 98.16729 | 0.020122
4 10 0.348648 -0.0246 | 0.321638 | 99.9543 | 1.25E-05
4 20 0.388428 -0.01458 | 0.453867 | 99.74149 | 8.24E-05
4 30 0.411907 -0.01064 | 0.555073 | 99.45484 | 0.000189
4 40 0.42835 -0.00847 | 0.640021 | 99.15083 | 0.00031
4 50 0.440888 -0.00708 | 0.714482 | 98.84836 | 0.000437
4 60 0.450952 -0.00611 | 0.781442 | 98.55422 | 0.000564
4 70 0.459315 -0.00538 | 0.842689 | 98.27081 | 0.000691
4 80 0.466441 -0.00482 | 0.899395 | 97.99872 | 0.000815
4 90 0.472627 -0.00437 | 0.95238 | 97.73776 | 0.000936
4 100 0.478077 -0.004 | 1.002242 | 97.48746 | 0.001053

- The Fauvnfian Staftictical Tarswmal YIal £4 AT.A_AOfN




Osama Abdelaziz Hussien

101

Table8(a) Fitted regression E(Xun)=bo+bir+byr’+bsr’ for the Weibull distribution with
o.=4 The proportion of trimming is [0.05n] from both sides

trim

bo

b,

b,

bs

RZ

MSE |

10

0.349407876

0.183668466

-0.021906666

0.001289999

99.975

2.14E-)

0.281453427

0.163220173

-0.015525386

0.001501482

99.995

8.98E-)|

15

0.349407876

0.130614779

-0.011152867

0.000452132

99.926

5.58E;

0.231720618

0.122676493

-0.0090559

0.000545105

99.977

3.81E-:

20

0.349407876

0.101409811

-0.006739792

0.000208323

99.875

8.96E-: |

0.2026682

0.099122421

-0.005938459

0.000259323

99.952

8.09E-(:}!

30

0.349407876

0.070109039

-0.003227096

6.76E-05

99.788

0.000145;}

0.24467904

0.062161903

-0.002391911

7.42E-05

99.964

5.04E.0:

40

0.349407876

0.053584281

-0.001886225

2.99E-05

99.722

0.00018811

0.212685103

0.050099375

-0.001549152

3.46E-05

99.935

9.86E-(:

50

0.349407876

0.043366466

-0.001235754

1.57E-05

99.67

0.000220¢

0.23679526

0.0383918

-0.000919303

1.70E-05

99.951

.

6.83E-(!!

75

0.349407876

0.029369277

-0.00056688

4.85E-06

99.582

0.000276:

0.225533206

0.02635655

-0.0004337

5.27E-06

99.936

8.99E- |

100

0.349407876

0.022203761

-0.000324019

2.09E-6

99.526

0.000311¢ |

N (SR |QW|ICIN(OIN|C| OO | =D

0.219707135

0.020072726

-0.000251523

2.28E-06

99.928

0.000103;]

Table8(b) Fitted regression E(X(r:,,))=b0+b1r+b2r2+b3r3 for the Weibull distribution
with a =2. The proportion of trimming is [0.06n]

#trim

bo

b,

b,

b3

RZ

MSE

10|

0.063974234

0.237438014

-0.03009503 |

0.00223141

1 99.918

0.000232

0.099066037

0.200117163

-0.02027913

0.00151567

99.996

7.22E-06

15

-0.063974233

10.169173626

©.0.01550735/

0.00078209|

99.814

0.000464

0.096131304

0.143886733

-0.0108769

0.00055221

99.981

3.46E-05

20

©0.063974294

10.131514658

0.00036035|

99.717

©0.00067

0.10315965

0.106824822

-0.00592131

0.00022654

30| ..

0.063974295

10091061451

-0.00454444

0.00011697]

oo

99.563

1.94E-05

_0.000993

0.099809307

0.075134516

-0.00300612

7.76E-05

99.967

5.40E-05

40| -

006307431

0.069659159|

-0.00266495|

. 5.17E-05|-

99.45

0.001229

0.102337267

0.056420642

-0.00169093

3.28E-0U5

Y9.96/

4.98E-05

50|

0.06397431].

0.056407825

'-0.00174941|

99.364

0.001407

0.100098452

0.046264885

-0.00114965

1.79E-05

99.951

7.78E-05

75

“ 0.06397431

0.038231793

-0.00080467

8.39E-06

99.219

0.001708

0.102355072

0.030836159

-0.00050943

5.30E-06

99.952

7.26E-05

100

-0.063974314

'0.028916116

-0.00046056

-3.61E-06

99.127

0.001897

ololunlolwlo|lwlo]ln loln ok lo |- o

0.101510341

0.023423122

-0.00029544

2.31E-06

99.942

'8.93E-05
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Table8(c) Fitted regression E(X.n))=bo+b;r+b,r*+bsr’ for the Weibull distribution with
a =1. The proportion of trimming is [0.15n]

n | #trim bo b, b, b, R’ MSE
5 0 -0.23796196 | 0.58544746 | -0.18431103 | 0.033467 | 99.97 | 0.0007887
0 - -0.23796_ |- 0.360635 | - .-0.07093 |- 0.006552 | 99.57 | 0.0049860 -
40 2 -0.03135753 | 0.13716842 | -0.01082136 | 0.0020543 | 99.99 3.62E-05
15 0 | -0.23795964 | "0.26183772 - | -0.03707219 | -0.002297 | 99.11 | -0.0093157
[ 3 | -0.025136969 | 0.090315385 | -0.004684562 | 0.00063236 | 99.98 | 4.32E-05
20 |0 | =0.23795979 - |: :0.20572476:..| - -0.02270793 |- :0.001058 | 98.71 | 0.0129731
3 -0.03135753 | 0.13716842 | -0.01082136 | 0.0020543 | 99.99 3.62E-05
30 | 0| -0:23795991 |- 0.14409441 .| -0.01102372 | 0.000344 | 98.11 | 0.0184811 -
5 -0.02659282 | 0.04820917 | -0.00154029 | 9.42E-05 | 29.96 9.62E-05
40 |- 0 .0.2379601.: |--0.11090379 - | : 0.00648854 |~ 0.000152 | 97.69 | 0.0223485
6 -0.02936537 | 0.03774699 | -0.00100642 | 4.33E-05 | 99.95 0.000142
50 | -0 [ =0.23796065..]- 0.09014740 .| -0.00426896 | : 8.00E-05 | 97.39 | .0.0251978
8 -0.02533219 | 0.02917618 | -0.00057762 | 2.11E-05 | 99.95 0.000111
75 | .0 | ~0.23796004 | 0.06141789 ".|. -0.00196946~ |- 2.46E-05 .| 96.90 | 0.0298485
12 | -0.023813065 | 0.019339783 | -0.000252962 | 6.28E-06 | 99.96 | 0.00010924
100 | 0 :|-=0.23795998 .| 0.04657642 |  :-0.00112893 | 1.06E-05 | 96.60 | 0.0326565
15 -0.0256339 | 0.01489494 -0.0001562 | 2.79E-06 | 99.94 0.000137
T




Osama Abdelaziz Hussien

103

Table 9(a): The best approximate fit for the extreme value first moment.

EIX, iabg + byr = byln(r}

n b0 bl b2 R2 mse \t
5 -2.177602305 | 0.003329024 1.514974368 99.95822751 0.001029@:;
10 | -2.827792478 | 0.000606989 1.36845269 99.87570393 | 0.00ZZOSI%%
15 | -3.200186065 | 0.000208882 1.302425924 99.83421427 | 0.002792
20 | -3.462203118 9.58E-05 1.263138909 99.81164086 0.003117@“i
25 | -3.664755047 5.18E-05 1.23646825 99.79830441 0.0033122ﬂi
30 -3.83007548 3.11E-05 1.216898268 99.78996539 0.003435331
35 | -3.969868165 2.02E-05 1.201779973 99.78455014 0.003516&\
40 | -4.091054461 1.38E-05 1.189664737 99.78094833 | 0.003570¢}
45 | -4.198068788 9.91E-06 1.179685883 99.77852236 0.00360765\
50 | -4.293923862 7.34E-06 1.171289446 99.77688548 0.00363289;
55 | -4.380760488 5.58E-06 1.164102886 99,7757926 | 0.0036500i
60 | -4.460154879 4.35E-06 1.157865356 99.77508284 | 0.0036613!
65 | -4.533301445 3.46E-06 1.152388133 99.77464742 O.OO36685!‘1
70 | -4.601127107 2.79E-06 1.1475309 99.77441099 0.0036726€§
75 | -4.664365765 2.29E-06 1.143186913 99.77432026 0.0036745.@
80 | -4.601127107 2.79E-06 1.1475309 99.77441099 0.003672&1
85 | -4.664365765 2.29E-06 1.143186913 99.77432026 0.00367452}}
90 | -4.831955871 1.35E-06 1.132489148 99.7745875 | 0.00367174
95 | -4.881795566 1.15E-06 1.129523683 99.77478528. | 0.0036691

100 | -4.929141013 9.93E-07 1.126793621 ‘| 99.77501453

0.0036660.!
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Table 9(b) The best approximate fit for the extreme value first moment. [0.01n]
from the left and [0.07n] from the right

E{X, )abg+ byr? + balnir)

N b0 bl b2 R2 MSE
5 | -2.096645126 3.17E-03 1.443208348 100 1.70E-14

10 | -2.732539902 5.79E-04 | 1.312733468 | 99.98945831 8.07E-05
15 | -3.060498593 2.11E-04 | 1.230602968 | 99.97932443 | 0.000135727
20 | -3.328502211 9.62E-05 1.202263469 | 99.96822866 | 0.000242574
25 | -3.536894808 5.19E-05 1.183030317 | 99.95862147 | 0.000349271
30 | -3.684264538 3.17E-05 1.159141737 | 99.94289036 | 0.00044001
35 | -3.831120181 2.05E-05 1.149647947 | 99.93505439 | 0.00053689
40 | -3.958409997 1.40E-05 1.141960102 | 99.92824396 | 0.000627143
45 | -4.055878567 1.01E-05 1.130196872 | 99.91267653 | 0.000715132
50 | -4.157912267 7.47E-06 1.125458989 | 99.90729194 | 0.000794037
55 | -4.250177918 5.68E-06 1.121338136 | 99.90251027 | 0.000867378
60 | -4.323673858 4.44E-06 | 1.114194393 | 99.88828582 | 0.000945058
65 | -4.402152153 3.52E-06 1.111373302 | 99.88452089 | 0.001009304
70 | -4.474746251 2.84E-06 1.108820979 | 99.88111944 | 0.001069368
75 | -4.533965371 2.34E-06 | 1.103950541 | 99.86829905 | 0.001136947
80 | -4.597858848 1.93E-06 1.102093503 | 99.86562684 | 0.001190039
85 | -4.657806387 1.62E-06 1.100370261 | 99.86318119 | 0.001239996
90 | -4.707486029 1.38E-06 1.096795928 | 99.85160633 | 0.001298997
95 | -4.761435817 1.17E-06 | 1.095491869 | 99.84969686 | 0.001343583
100 | -4.806291265 1.01E-06 | 1.092498917 | 99.83888785 | 0.001397691
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Appendix B

Fitted Line Plot Vesusials
J50 = 0.3434 + 0.04337 150 4]
-0.001235¢50"* 2 + 0.002016 150" ° 3
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Graph 1: Weibull distribution fit alfa={; n=30; no trimming
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Graph 2: Weibull diswibution fit alfa=d; n=30; trim [0.03n] both sides
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Graph 3: Weibull distribution fit alfa=2; n=100; no trimming
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Graph 4: Weibull distribution fit alfa=2; n=100; trim=(0.06] right.
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Graph 5 Extreme value distribution fit , n=100; no trimming
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Graph 6 Extreme value distribution fit , n=100; trim [0.01n} left and [0.07n] right

The Egyptian Statistical Journal Vol.54, No.2, 2010




