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Bayesian and Non-Bayesian Estimation for Exponentiated-Weibull

Distribution Based on Record Values
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Abstract This article deals with the problem of estimating parameters for the
two-parameter exponentiated Weibull distribution based on a set of lower record
values. Maximum likelihood and Bayesian estimators, either point or interval, for
the two shape parameters of the exponentiated-Weibull distribution are derived
based on lower record values. Bayes estimators have been developed under
symmetric (squared error) and asymmetric (LINEX) loss functions. Numerical

computations are given to illustrate these results.
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1. Introduction

The exponentiated Weibull (EW) family was introduced by Mudholkar and
Srivastava (1993) as a simple generalization of the well-known Weibull distribution
by introducing one additional shape parameter. The main feature of this family from
other lifetime distribution is that it accommodates nearly all types of failure rates
both monotone and non-monotone (unimodal and bathtub) and includes a number of

distributions as particular cases.

The two shape parameters EW distribution has a cumulative distribution

function (cdf) of the form

F(x)=[1—-exp(—x®)]% x>0, a6>0 | (1.1)
and hence the probability density function (pdf) is given by

Filx) = aé[l — exp(—x®)]9 lexp(—x)x* 1, x>0, a,60 >0 (1.2)

where a and 6 are the two shape parameters. The reliability and hazard (failure rate)

functions of the EW distribution are given, respectively, by
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R(t) =1 —[1 — exp(—t®)]° (1.3)

af[1 — exp(—t%)]¥ Lexp(—t*)t* 1
[1 —(1- exp(—t“))a]

H(t) = (1.4)
The principal applications of the exponentiated Weibull (EW) distribution are
in the areas of reliability and survival analysis, extreme value analysis. isotones and
distribution approximations. Its applications in reliability and survival studies and
the extreme-value analysis are illustrated in Mudholkar et al. (1995) and Mudholkar

and Hutson (1996).

Let X;, X5, ... Xy, ... be a sequence of independent and identically distributed
random variables having cumulative distribution function F(x) and probability
density function f(x). Let ¥;, = max(min) {X;, X, ..., X} forn = 1. We say X; is
an upper (lower) record value of this sequence if ¥; > (<)Y;_; ,j > 1. Thus X; will
be called an upper (lower) record value if its value exceeds (is lower than) that of all
previous observations. By definition X; is an upper as well as a lower record value.
One can transform from upper records to lower records by replacing the original
sequence of random variables by {—X j =1} or by{l/X i) = 1} (ifP(X; > 1) =
1 for all i) the lower record values of this sequence will correspond to the upper

record values of the original sequence. For more details, see for example.

Ahsanullah (1995) and Amold et al. (1998).

Record data arise in several real-life problems including industrial stress
testing, meteorological analysis, hydrology, seismology, athletic events, oil and
mining surveys. The formal study of record value theory probably started with the
pioneering paper by Chandler (1952). After that many authors have discussed
estimation problems for record values based on certain distribution. Mousa. ct al.
(2002) obtained the Bayesian estimators for the two parameters of the Gumbel
distribution based on lower record values. Jaheen (2004) derived Bayes and
empirical Baves estimators for the one-parameter of the generalized exponential
distribution based on lower record values. Malinowska and Szynal (2004) derived a

family of Bayesian estimators and predictors for the Gumbel model based on lower
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records. Ashour and Amine (2005) obtained Bayesian and non-Bayesian estimators
of the unknown parameters of Weibull distribution based on upper record values.
Doostparast (2009) derived Bayesian and non-Bayesian estimates for the two
parameters of the Exponential distribution based on lower record values, with

respect to the squared error and Linear-Exponential loss functions.

The aim of this paper is to develop estimators for the two parameter
exponentiated Weibull distribution based on record values using different methods.
In Section 2, estimation of parameters using maximum likelihood estimation are
obtained. In Section 3, Bayes estimators for the unknown two shape parameters are
obtained based on squared error and LINEX loss functions. Finally, a numerical

example is provided in Section 4.

2. Maximum Likelihood Estimation

Suppose we observe m lower record values X L() = X1, XL2) = X2, er s
X1 (m) = Xm from the EW distribution with pdf (1.2). The likelihood function of the
m lower records is given by (see Ahsanullah (1995))

L(x|6)=fCtm) Hr(xi) - 2.1

where x = (X1, X3, ..., %) and 7(x;) = £ (x;)/F (x;)

Substituting equations (1.1) and (1.2) in equation (2.1), the likelihood

function based on the m lower record values from EW distribution is

L(x| a,0)=am™8Mexp {(a —1) z Inx; — Z xf + Z q; — qu} (2.2)
=1 i=1 i=1
where

g =—In(1—-e*)  i=1,.,m

Gm = —In(1 - e—x,‘ﬁ)
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Taking the logarithm of the likelihood function (2.2), we have
InL(x|a8)=mln(a) + mIng —U (2.3)

where

m m -
Uz{—(a—l)Zlnxi+ina— qi+9qm}
i=1 i=1 =

To obtain the MLE's of @ and 6, we can solve the following two non-linear

equations:
dinL m
P =;—u1—u3+9u2=0 (2.4)
and
dinL _m _ 5 .
6 g Im= (2.5)
where
m
Uy = Z(xla = 1) In Xi, U, = wm[(l - e—x%)]ﬂ’
i=1

m
Uz = Z wi[(1— e‘x?)]‘1 and w; = e—x‘ixxi“ In(x;)
i=1

From (2.5), we obtain the MLE of 8 as a function of &, as follow

S (2.6)
—In(1 — e~*m)

OmL =

where @&, is the MLE of the parameter a, which can be obtained as a solution of the
following non-linear equation
Ay = m/[ug +uz — m(uz/qm)] (2.7)

It may be noted here that a closed form for «, from likelihood equation given
in (2.7) is not possible. Therefore, the solution can be obtained by -using Newton—

Raphson method.
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The asymptotic variance—covariance of the MLE for parameters @ and 6 are

given by the elements of the inverse of the Fisher information matrix

P OlnL(a,6 | x) 5 13
ij = dadf S

But, it is difficult to get the exact expressions of the above expectation.

Alternatively, we can use the approximate asymptotic variance—covariance matrix
for MLE as follows

92InL  9%InLy "

- " 322 " 9a00 ZA Y
_ - 2.8
& 9%InL 9%InL |:6a,9 592] ol
66(69 692 9=§ML' a=amy

The elements of the sample Fisher information matrix are obtained by
obtaining the second derivatives of the log-likelihood function (2.2) and evaluating
them at the MLESs. This elements can be written as follow

m

0%InlL m 1—x%—e*i
e B i e ]} (In(x)?
a = (1 — e Xi )
0 e~ *mx2 (In(x,,))?[1 — x& — e‘x%l]
(1 — e~*m)?2 '
0°InlL . m
062 92

and

0%InL - e *mxZ In(xy,)
0add (1 —e~*m)

(2.9)

The asymptotic normality of the MLE can be used to compute the

approximate confidence intervals for the parameters  and 6, as follow

By Tt Z7 2+ 62 (2.10)
BOps, &+ 2o/ 62 (2.11)

where Z,,1s an upper (t /2)100% of the standard normal distribution.

The Egyptian Statistical Journal Vol.54, No2, 2010




Habib, M. D. Abd-Elfattah, A.M. Selim, M. A. 52

When « is known, the maximum likelihood estimator 8,,, of the shape

parameter 8 based on the first m lower record values is given by

g, = = (2.12)
S e ) '
The mean and the variance of the MLE 8,,, are
Elf]=E(X)=6 = =1 (2.13)
ML| — - m — 1 ’ m . .
Var[fy,] = (o) m>2 (2.14)
MU (m = 1)2(m - 2)’ ' '

This means that the maximum likelihood estimator 8,,, is a biased estimator of 8

and the unbiased estimator is

5. = m—1
HEE —ln(l — e"‘%)

(2.15)

By putting @ = 1 in equation (2.6), we get the MLE for the parameter 6 for
generalized exponential distribution based on lower record values, which coincide

with the result obtained by Jaheen (2004).

3. Bayesian Estimation for the Parameters a and 6

Under the assumption that the parameters a and € are unknown, we assume a

gamma (conjugate prior) density for § with parameters a, b and the following pdf
() x 6% e, >0, ab>0 (3.1)

and the prior density function of the parameter «, is the uniform distribution with

density function

1
m(a) = ——, c<a<d. (3.2)
d—c

Then, the joint prior density functions of o and 6 will be obtained from
multiplying equations (3.1) and (3.2) as follows

Qa—le—-bG
n(a,@)oc——d—_—c—— c<a<d, 6>0, ab>0 (3.3)
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The joint posterior density function of @ and @ given x is obtained by

combining equations (2.2) and (3.3) as follow

_ gmta—1,mo—6(qm+b) L e—x?x.a—l
m(e,6]x)=— kT (m + ) H (1- ei"iz ) GH
=1
where
d a™ L e_x,‘:zx{z..]_ :
ky = fc o L_l[ T | 3.5)

The marginal posterior density of the parameter « is obtained by integrating
the joint posterior density (3.4) with respect to the parameter  as follows

m

am e~ xa1
melz) = ] - - G

i=1

and the marginal posterior density of the parameter 6 is obtained by integrating the

joint posterior density (3.4) with respect to the parameter a as follows

012 = @)
where
d L —x? a-1 - .
ky = f a™(1 - e~*h)° H Rl S ' (3.8)
c . (1 — e )
=1

3.1 Bayes Estimator for a and 6 Under Squared Error Loss Function (BESF)

Under a squared error loss function, the Bayes estimate is the mean of the

posterior distribution. Therefore, the Bayes estimators &g and G for parameters a

and @ know as

i d_ . .
&Bs=f an(a|x)da
c
and

ABS =f 9.”(9 |£)d9
0
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where m(a | x) and m( @ | x) are the marginal posterior densities for @ and 6
respectively. Thus, the Bayes estimator under a squared error loss function &zs of «

can be expressed as

aBS — -k—l (39)

where

d mtl ik e—x{'xlgz—l
k3 = l—I —s da 3.10
: c (qm+b)m+a oy (1 — e_x?) ( )

In a similar way, the Bayesian point estimator of 8 is given by

- m+a)k
Bgs = (mtake (3.11)
Ky
where
) fd a™ ﬁ e—x?xia—l . .
= a N |
I L (1—e™*) (3.12)

i=1
The estimators of the parameters a and 6 do not result in closed forms;
hence, we propose numerical integration procedures for their evaluation

numerically.

When « is known, we consider the natural conjugate family of prior densities

for @ is a gamma prior density function with pdf

b@
- a-1,-b0 1
(6) = -——F(a)e e %Y, 6 >0, ab>0 (3.13)

Combining the likelihood function (2.2) with the prior density function (3.13)

and applying the Bayes theorem, we get the joint posterior density function of @ as

follows

(Gm + )™
r(m+a)

(61 a,x)= gm+a-1g=0(am+b) >0 (3.14)

The Egyptian Statistical Journal Vol.54, No.2, 2010




55 Bayesian and Non-Bayesian Estimation for Exponentiated-Weibull Distribution
Based on Record Values

which is distributed as gamma distribution with parameters (m + a, g, + b). Thus,

the Bayes estimator under a squared error loss function Ogs of 6 is the mean of the

posterior density (3.14), as follows

5 _m+a
BS._b—!—qm

(3.15)

where q,, as given in (2.2).

By putting @ =1 in equation (3.15), we get the Bayes estimator of the
parameter 0 for generalized exponcential distribution based on lower record values,

which coincide with the result obtained by JTaheen (2004).

3.2 Bayes Estimator Under LINEX Loss Function (BELF)

The Bayes estimators for the shape parameters a and 8 of EW distribution

based on lower record values under LINEX loss function can be obtained as (see
Zellner (1986))

1
&BL - '—; ln(E(e_v CZ))
and
= 1 .
Gy = -~ ln(E(e U ))

where E(.) the posterior expectation. Therefore, these estimators can be expressed as

Gp, = —% In (%—) | (3.16)'
and
B,y = —% In (—%) | (3.17)
where
ks = i ﬁ ﬁ_—x—x-‘:- da (3.18)
¢ @ntb)mtel 1 (1 —e0) '
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and

am e lxa—l
. W+b+gy,)mta H (1—e™x) L 5:19)

The estimators of the parameters ¢ and 6 do not result in closed forms:

hence, we propose numerical integration procedures for their evaluation.

When a is known, the Bayes estimate 85, of 6 under the LINEX loss

function is obtained by using (3.14), as follows

~ m+a
QBL: o ln(l'l"

e qm)' v#0 (3.20)

3.3 Credible Interval for a and 0

A symmetric 100(7)% two sided Bayes probability interval for a can be
obtained from the posterior density of the parameter a given in equation (3.6). The
lower and upper limits for o are L, and U, respectively, can be determined by

solving the two equations

f H da = | (1 T T) (3.21)
a = .
(qm + b)(m+a) (1 == e'x “1 2
jd “ ﬁ L (1 —) (3.22)
5 a=k (3.
Ue (Gm + b)ta) ) (1 — e %i ) I\ 2

The two integrals do not result in closed forms; hence, we propose numerical

integration procedures to determine the interval (L, and U,) for .

In a similar way, from equation (3.7) the credible interval of the parameter 0.

denoted by L gy and U gy, can be obtained by solving the following two cquations

d oo = e_x?xfz_l +7T
J j Qm‘*’a_le“g(Qm'*‘b)am n ————1_7— dfda = k1F(7n =} a)( 2 ) (3 23)
c Lg i=1 (1 — ¢ l)
d oo m a
—Xi x0-1 1—-7
f f gm+a=1,-6(am+b) om n '('el_'_xir—“) dda = k,'(m + a)( 5 ) (3.24)
- —e
c Ug =1
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The integrals (3.23) and (3.24) can be solved numerically to get the Bayesian

interval estimation for 6.

4. Numerical Illustration

In the following, a numerical example is given to illustrate the developed

procedures in this paper. Estimation of the parameters @ and 6 from the EW

distribution based on a lower record values will be computed by using the Mathcad

(2001) program according to the following steps.

(1) A lower record sample of size m = 8 is generated from the EW (a = 3,

)

3)

6 = 2) distribution with pdf given by (1.2). This sample is:

1.138 1.088 1.085 0.826 0.766 0.68 0.625 0.592
Using the previous data, the MLE, approximate variance-covariance matrix
and 95% confidence intervals for @ and 6 are computed from (2.4), (2.5),

(2.8), (2.15) and (2.11). The computational results are displayed in Table (1).

Table 1: MLE, approximate variance-covariance matrix and 95% confidence
interval for @ and 6

Parameter MLE Variance-covariance 95% confidence interval
matrix
a 4.464 0.155 -0.096 (0.692, 5.236)
0 3.35 -0.096 1.307 (1.109, 5.591)

For given values of the prior parameters a, b, ¢ and d, The Bayes estimates of
a and 6 under the SE loss function are computed from (3.9) and (3.11). While,
the Bayes estimates of « and 6 under the LINEX loss function when the same
prior paraméters are used with given values of v are computed from (3.16) and
(3.17). Also, the 95% credible intervals of @ and 6 are computed from (3.21)
to (3.24). The computational results are displayed in Table (2).

The Egyptian Statistical Journal Vol.54, No2, 2010




Habib, M. D.

Abd-Elfattah , A.M.

Selim, M. A.

58

Table 2: Bayesian point and interval estimation of the shape parameters ¢ and & for

given values of the prior parameters a, b,v, (c=2.5 and d=3.J).

a1t @3s @31 Ass ést.
=5 | v= v= v=J | v=2 | v=3
3.114 3.095 | 3.036 | 2.997 2.685 2.517 | 2.145 | 1.965
2|2
(2.616, 3.981)" (1.283, 4.604)
3l 3 3.126 3.108 { 3.05 | 3.01 2.325 2.209 | 1.937 | 1.798
(2.564, 3.487) (1.158, 3.896)

" The 95% credible intervals for & and 8 (in parentheses)

5. Concluding Remarks

In this paper, the maximum likelihood and Bayes methods of estimation are used
to estimate the two shape parameters of the exponentiated Weibull distribution based on
record values.

Remark 1. The 95% confidence interval in Table 1, and the 95% credible interval for «
and @ in Table 2, contain the true values of the parameters « = 3, & = 2. But the 95%

confidence interval is wider than the corresponding 95% credible interval.

Remark 2. As can be seen from these results the Bayes estimators of the parameters a
and @ are quite better than the maximum likelihood estimators (being closer to the

population parameters).

Remark 3. The Bayes estimates of the parameters @« and 8 that are obtained based on

the LINEX loss function are closer to these estimates based on squared error loss when

v tends to zero.

Remark 4. Different values of the prior parameters (other than those listed in Table 2)

have been considered, but did not change the previous conclusion.
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