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Abstract.

In this article we consider the problem of determining the reliability of a series chain
consisting of k identical links. The stress acting on the chain is known a prior, i.e., deter-
ministic. We consider the case of repeated applications of stresses, i.e., cycles of stresses.
We also consider the change of the distribution of strengths of the links with time, i.e., (the
change of the distribution) during different cycles of stresses.. We find an expression of the
reliability function after m cycles of stresses. The strengths of the links of the chain could
be random independent, random fixed or deterministic. A two-sided confidence ‘interval
for the reliability is obtained. As an application, the cases of exponential and Rayleigh
distributions are studied. In order to highlight the results obtained a numerical illustration
is performed. :

1- Introduction.

In stress-strength models a component fails if at any time the applied stress X, is greater
than its strength Y, and there is no failure if ¥ > X. Thus Pr(Y > X) is a measure of
the reliability of the component. :

The problem of estimating R = Pr(Y > X), has béen studied in the literature in both
distribution free and parametric frameworks. However in this paper we are concerned with
the parametric case. .

Church and Harris (2], derived the maximum likeliliood estimator (MLE) of R assuming
X and Y are independent normal and that the distribution of X is completely known.
Downton [4], obtained the MVUE of R in the case of independent normal with parameters
of X also unknown. Reiser and Guttman [8], Presented two approximate methods for
obtaining confidence intervals and an approximate Bayesian probability interval. Owen
et. al., (7], discussed the normal case for equal standard deviation and presented non
K:ametric confidence limits for this problem, in addition to the normal case, the problem
been extensively studied for many other models including exponential, Gamma and
Burr distributions, for example see Sathe and Shah [9] for exponential case; Constantine
and Karson [3] for the Gamma case, and Awad and Gharraf [1] for the Burr case. Nassar
et. al, [6], obtained confidence intervals for R = Pr(Y > X), where Y and X follow
Rayleigh and normal distribution respectively. )

If the stress and strength change with time, we call it time dependent stress-strength
model. Kapur and Lamberson {5}, stated that time dependent stress-strength models (SST)
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are models that consider the repeated application of stresses and also, consider the change
of the distribution of strength with time, which may be caused by aging and/or cumulative
damage. Such models are frequently observed in practice. Xue and Yang {10}, obtained
a simple formula for estimating upper and lower bounds for stress-strength interference

reliability when X and Y are s-independent normally distributed. However, not too much
work is done on time dependent nodels. . o

The present paper gives an explicit expression for the reliability function of a series
chain consisting of k links after m cycles of stress. The repeated stress is deterministic i.e.,
its value is known in prior. The reliability is derived under three strength forms of the links
of the chain: random-independent, random-fixed and deterministic. As an application, the
Rayleigh and exponential distributions are considered. A two-sided confidence intervals
for the reliability are then obtained for the case of random-independent and random-fixed
strength. Finally a numerical illustration of the results obtained is performed.

2-Assumption and Notation.

1- The system is a series chain consisting of k links.

2- The links are identical and indépc;ndent.

3- The chain is subjected to cycles of common repeated stresses. These stresses are the
main cause to break the chain and are independent of the strength of the links of the

chain.

4- The chain will break (fail) if the stress on the chain exceeds the strength of the chain
for the first time.

5- The repeated stress acting on the chain is deterministic, i.e., the stress during cycle j
is given by zo, for all j, j =1,2,...,m, where zo is known value.

6

Y:; is the strength of link ¢ during cycle j, i = 1,2,.. ok i=12,...,m.
7- Ek,; event that no failure occurs on ;" cycle.

Ry.,;m is the reliability of the chain of k links after m cycles.

(o]
i

3- The System Reliability.

We discuss the reliability of the system assuming three different models.

Model I: Random-Independent Strength.

In this model, the strengths Y;;’s, i = 1,2,...,k, j = 1,2,...,m, are non-identical
independent distributed random variables, having c.d.[. G;(y) and p.d.f. g;(y). .
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T'he streigth of the chain on the 3t eycle will be; )

Y; = min(YiJ‘,}’z]’, e ,ij)

with c.d.f. i E i
Gy (y) =1 - [~ G;(y)]*".

Clearly, the system reliability is
Rk,m = PT(Ek,li Ek,21 ey Ek,m)y

where,
Eyj ~ (Y] > o).

Since the successive values of Y/'s are independent for j = 1,2,...,m,

Rem = ﬁ Pr(Ey,;), (1)
i=1
where,
PT(E]C’]') = P’I‘(Yj’t > Eo)
=1~ G;(zo)}*-
Hence,
Rim = [[11-Gj(zo)l*. ; 2)
=1

Model II: Random-Fixed Strength.

In this model, the random veriable of strength varies in time (during cycle 5) in a known
manner, i.e., the strength of i*h link during the 7t cycle Y;; is given by

Yi; =Y — o,

where Yjg is the initial random strength of the i** link, and a; is a known non-decreasing
function in j.

Assume that Y;p are iid., i =1,2,... +k, having c.d.f. Go(y) and p.d.f. go(y). We could
easily see that the strength of the chain during the j¢* cycle is

Y=Y~ 3

where,

Y§ = min(Yi0, Yao, - - -, Yio),
having c.d.f. :
Grs (4) =1~ [1- Gofy)]*.
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The system reliability is,

Ry m = Pr(Ex,, Ek,,2!, vory Ekm)
= Pr(Ek,llEkl%,-. e oy Erm).Pr(EBg |Ek,3,, corsBrem) X ... (4)
X P’I‘(Ek,n_.l|Ek,m).P7‘(Ek,m).

All but the best term [Pr(Ej )] in the R.ILS. of the Equation (4) are T'g this Is dus

to the restriction on the a;'s that they are non-decreasing which cause the strength Y to
decrease in time (in j). Then,

Ry =Pr(Eg,m)
= Pr(Y, > zo) (5)
= [1 — Go(:L'o + am)]k.

Model III: Deterministic Strength.

In this model, the strength of the i** link on the j** cycle is deterministic given by v;;,
1 <i<k; 1 <35 <m. Since the chain consists of k links connected in series, the strength
of the chain on the jt* cycle will be

y; = min(ylj,ij; v !ykj)

Since,

Rk,mz = P?"(Ek,l,Ek,g, caey Ek,m),

where, Ei; is the event that (y} > zo), we get

i

R 0 if y; <o forsome 7 1<j<m
S U ST R e foral 7 1<j<m

Remarks.

1- Taking k = 1, we obtain the reliability of an item after m cycles of stress.

2- Taking a,, = 0, we obtain the reliability of the system in the static case.

4- Confidence Intervals for System Reliability.

We obtain confidence intervals for system reliability under models I and 11, considering
Rayleigh and exponential distributions.
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4.1 The Rayleigh clistribution. 3
Assume that Gily) =1 —exp{—y%/f;} for Model ],
and G'o(y) =1—exp{—y?/Bo} for Model 1L
Using Bquations (2) and (5), we obtain,» .= . s
exp{—kz3} for Model I
BRym = ) 2 (7)
exp{—k(zo + am)2tho} for Model 11,
where,
b= ;%
and ° 1
Yo = B

If the parameters fo and B, j = 1,2,...,m are known, then by Equation (7), we obtain
the cxact reliability. .

If the parameters By and B;, 7 = 1,2,...,m are unknown, then wé can replace these
parameters by their MLE's, to get MLE, Rk, of Rgm for the two models as follows:

N exp{—kz3d} . for Model I
Ry, m = 2% . (8)
exp{—k(zo + am) %o} for Model 11,
where, :
- s 1
¢=Z(»—) ) B = —_Zy?i,
j=1 Bj 7 =1
and
- 1
do=% %——Zm
ﬁo 1,"1
Y51, Y525 -+ » Yins, 0d Y01, %025 - - - , Yono, are random samples of sizes n; and ng drawn from
Gi(y), 1 =1,2,...,m, and Go(y), respectively.

It can be easily shown that ﬁ], 7 = 1,2,...,m and ﬁo have Gamma distributions
with parameters (n,,ﬂ]/n_-,)y i =12,...,m and (no, Bo/no), respectively, or (2r;53;/5;),
i=12,...,m, and 2ngfp /Bo, have a Chl square distribution with n; and ng degrees of
freedom respectwely
Clearly,

BB =8, var(B)) =(B3/ny),

E(Bo)=B ;  wvartho) = (63/na)-
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Define W; Bj Biyi=412,...,m and U = ﬂo —ﬂo Clearly W,, i=L1L2,...,m,
and U are asymptotically norma.lly distributed with zero means and variances ﬂ /ns,
i=1,2,...,m, and B3/no, respectlvely

Using Taylor’s expansion” and Equa.tlon (8), we obtain -

. { Ry,m + ("‘xoRk ) E + R, for Model 1 9
k,m = . 9
Rym + k(%ﬂ)sz,mU + Rg for Model 11,

where, R; and Ry are remainder terms.

We see that for the two models, Ry ,m are asymptotically normal with means Rk m
given by Equation (7), and variances

kxR )2 (1
A = (k23 Rr,m) El("?’?) for Model 1 )
k,m B
%((p%)(-”?o e ¢1m)2)2(Rlc,rn)2 for Model II.

Consequently Rk,m in (8), is a consistent estimator of Ry .

Two-sided (1—0a)100% confidence intervals of Ry, for Model 1 , and Model II, are given
by: : :

for Model I.

Pr{x*(2nj,1—a) < ?—ng—’- <x}(2n;,0)}=1-«
.

: m _9 m
Pr{—k2 3 X215 oy~ 1 oavnX x*(2n;,1 - @)
i moj=z1 2n;B; x,o;ﬁj 021 .7'3.1 b=
Prioxp(—ka} SOy < enp(pag 3CELZ )y g o
j=1 2n;0; = jﬂ,

for Model II.

Pr{x*(2no,1 —a) < 1’2:;60 < x%(2n0, @)} = 1 -a
r 2, X (2n0, ) ~k(z0 + am)? _ 2,X°(2n0,1 — 0)
Pr{—k(zo+am)*( 2l ) < ﬁo < —k(zo+am) (—————2%’30 )} =1-ef

Pr{exp(—k(zo+am) (X(z—no’a))) < Ri,m < exp(— k(mo—i-am)z(w))} = 1-4a
2n0fo | © 2n0fo ( 121

where, 1 — a is the confidence coefficient.
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4.2- The Exponential distribution.

Assume that for Model I, the distribution of the strength of each link on 'th_e‘jth cycle is
exponential with mean §8;, j = 1,2,...,m. For Model 1], assume that the initial strength
Yio is exponentially distributed with mean Go.

Arguing in a similar manner as in subsection 4.1, we obtain,

exp{—kzoy} for Model 1
Rk,m = (13)
exp{—Fk(zo + am)to} for Model 11,
where,
P = i(—l-) and Y= ~1—
=1 3 ﬁO
Rk,m _ exp{—kzoyp} ) for Model I (14)
exp{~k(zo + am )0} for Model 11,
where, .
PO | R 13
P=>(=) , Bi= ;Zyji;
=1 Pj . 7 i=1
and )
» 1 . 1 &
Yo== ,  fo=—) wou.
Po o ;
. Rim + (k2oRam) 3> %% + R for Model I
Rim = { i) 2 of +Hh (15)
Rieym + k(242 ) Ry U + Ry for Model 1,

Clearly, for the two models, Rk,m, are asymptotically normal with means R . as given
by Equation (13), and variances

(kzoRam)? 3 (L for Model I
"?‘tk = ) ng("’_ﬂ?) (16)
L (&) (=0 + 0m))?(Rim)? for Model I1.

and consequently Rk,m in (14), is a consistent estimator of Ry .
Two-sided (1 — t)100% confidence intervals of Ry, for the two models are given by:
for Model I.

Pr{exp(—kzo i x2(2n;, a)) < Rim < exp(—ka i x2(2nj,1— Ot))} l-a (17)
T ,m —KZo sl p= 1
j=1 2njﬂj =1 2'n]-ﬂ i
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for Model II.

x’(z"Osl—fa)))}-l_a

Pr{expl-bizo + am)( L2y < R < cxpl-(en +am) P25

(18)

8- Spocial Case.

1f the strength of link 1, = 1,2, ...k, during repeated cycles of stress are in dent
but identical random variables, we have in Model I, G;(y) = G(y) for all j. Then Equation

(2), becomes
Rim = (1 - G(zo)}*™ (19)
(i) Rayleigh distribution. -
i | G(y) = 1 - exp{-y*/B). (20)
Using Equations (7), (8), we obtain
Rim = exp{~kma}/B), 21
d A
Rim = exp{—km=/ B}, (22)

where, § = -}‘gyf, ¥1,12, - -, ¥n is & random sample drawn from G(y) in (20).

Aleo, , |
e = 3 Rem). (23)
Two-sided (1 — @)100% confidence intervals of Ry m is given by

Pricapt-bme} (o)) < Repm < expl-bmad Ty 1 e (2e).

(ii) Exponential distribution. |
if G(y) = 1 — exp(-y/PB}. | (25)
Using Equations (7), (8), we obtain |
Ry = exp{—kmzo/f}, (26)
and

Rum = exp(—kmzo/B}, ()
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where, =13 9, y1,¥2,- -, ¥n is 2@ random sample drawn from G(y) in (25).
i=1
Also,
2 1, kmzg

P = SR
Two-sided (1 — @)100% confidence intervals of Rg,m is given by

2(2n,1 - @)

PT{exP(—k‘mmo('XQ—(;llﬂ»ia—))) < R < exp(—kmap(LCRL=)y 1 g
1)

2np

6- Numerical Example.

(28)

(29)

A simulation study, is made by taking the average of 500 generated samples drawn {rom

Rayleigh distribution with parameters §; = 10000, §2 = 8000, and fo = 10000.

The reliability Rim, the MLE of Rk m, variance Rk,m and two-sided confidence interval

for Rg,in, for Model I and Model II are given tables 1, 2, 3 and 4 respectively.
For simplicity we take k=1, ¢; = a.j, j =1,2,...,m, m = 2 and m¢ = 10.
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Non-Identical Random Independent Strength (Rayleigh distribution)
R E 0.9778, ny=ny=n.

" B B, R, 6?

S 09821 7839 0.972093 0.000099
15 . 10073 8107 . 0.976432 : 0.000020
25 10004 8064 0.976905 0.000011
30 09941} 8003 0.976983 0.000009
50 09922 7981 0.977201 - 0.000005
75 10099 8007 0.977562 0.000003
100 10097 7994 0.977615 0.000003
300 10030 8020 - 0.977740 0.000001
500 10017 8028 0.977769 0.000000

Table (1)

Confidence Interval for Ry,
Non-Identical Random Independent Strength (Raylcigh distribution)

I-q 0.90 0.95 . e . 0.99

L U D L U D L U D

5 0.9585 | 0.9926 | 0.0341 | 0.9505 | 0.9948 | 0.0443 6.933 1 | 0.9975 | 0.0643

15 0.9674 | 0.9874 0.02 0.9636 | 0.9893 [ 0.0257 | 0.9556 | 0.9923 | 0.0366

25 0.9697 | 0.9854 | 0.0157 | 0.9668 0.987 0.0202 | 0.9611 | 0.9897 -| 0.0287

30 09702 | 0.9846 | 0.0144 | 0.9676 | 0.9862 | 0.0186 | 0:9625 | 0.9888 | 0.0264

50 0.9718 | 0.9831 | 0.0113 | 0.9699 | 0.9844 | 0.0145 | 0.9662 | 09867 0.0205

75 0.9732 | 0.9823 | 0.0091 | 0.9717 | 0.9834 | 0.0117 | 0.9687 | 0.9853 0.0166

100 09738 | 0.9817 | 0.0079 | 0.9725 | 0.9827 | 0.0102 0.97 0.9844 | 0.0144

300 0.9755 | 0.9801 | 0.0046 | 0.9748 | 0.9807 | 0.0059 | 0.9734 | 0.9818 | 0.0083

500 0.976 0.9796 | 0.0036 | 0.9755 0.98 0.0046 | 0.9745 | 0.9809 | 0.0065

Table (2)
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Random- Fixed Strength (Rayleigh distribution)

Rz =0.9900
: <

Iy R 1,2 G }

5 9978 0.987784 0.000037
15 10156 0.989501 0.000008
25 9985 0.989568 0.000004
30 10122 0.989786 0.000004
50 10021 0.989812 0.000002
75 10005 0.989877 0.000001
100 9908 0.989821 0.000001
300 10023 0.989997 0.000000
500 9986 0.989977 0.000000

Table (3)

Confidence Interval for Ry,
Random-Fixed Strength (Rayleigh distribution) -

I-o 0.90 0.95 0.99
N L U D L u D L Y D
b 0.9816 | 0.9968 | 0.0152 0.978 0.9977 | 0.0197 | 0.970t | 0.9989 | 0.0288
15 0.9854 | 0.9944 0.009 | 09837 | 0.9952 | 0.0116 0.98 0.9966 | 0.0165
25 0.9863 | 0.9934 | 0.0071 0.985 0.9941 | 0.0092 | 0.9823 | 0.9954 0.013
30 0.9868 | 0.9932 | 0.0064 | 0.9856 | 0.9939 | 0.0083 | 0.9833 | 0.9951 | 0.0118
50 0.9874 | 0.9925 | 0.0051 | 0.9866 | 0.9931 | 0.0065 | 0.9849 | 0.9941 | 0.0092
75 0.9879 0.992 0.0041 | 09872 | 0.9925 | 0.0053 | 0.9859 | 0.9934 | 0.0075
100 0.988! | 0.9917 | 0.0036 | 0.9875 | 0.9921 | 0.0047 | 0.9863 | 0.9929 | 0.0066
300 0.989 0.9911 | 0.002] | 0.9887 | 0.9913 | 0.0027 | 0.9881 | 0.9918 | 0.0038
500 0.9892 | 0.9908 | 0.0016 | 0.9889 0.991 0.0021 ].0.9885 | 0.9914 | 0.0029

Table (4)
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iNon-lTdentical Random lmlevf)endcnt Strength (Exponential distribution)
R|'z =0.9978 y =M=,

n ﬁl ﬁz Ry, 5

5 9821 7839 0.997168 | 1.06E-06
15 10073 8107 | 0.997617 | 2.05E-07
25 10004 8064 0.997666 | 1.15E-07
30 994 8003 0.997674 | 9.4E-08
50 9922 7981 0.997696 | 5.47E-08
75 10099 8007 | 0.997733 | 3.51E-08
100 10097 7994 0.997738 | 2.61E-08
300 10030 8020 0.997752 | 8.5E-09
500 10017 8028 0.997754 | 5.1E-09

Table (5)

Confidence Interval for R,
Non-ldentical Random Independent Strengih (Exponential distribution)

l-a 0.90 0.99
" L U D L : D L U D
5 0.9958 | 0.9993 | 0.0035 | 0.9949 | 0.9995 | 0.0045 | 0.9931 0.9997 | 0.0066
15 0.9967 | 0.9987 0.002 0.9963 | 0.9989 | 0.0026 | 0.9955 | 0.9992 | 0.0038
25 0.9969 | 0.9985 | 0.0016 | 0.9966 | 0.9987 | 0.0021 0.996 0.999 0.0029
30 0.997 0.9985 | 0.0015 | 0.9967 | 0.9986 | 0.0019 | 0.9962 | 0.9989 | 0.0027
50 0.9971 | 0.9983 | 0.0011 0.997 0.9984 | 0.0015 f 0.9966 | 0.9987 | 0.0021-
75 0.9973 | 0.9982 [ 0.0009 | 0.9971 | 0.9983 | 0.0012 | 0.9968 | 0.9985 | 0.0017
100 0.9973 | 0.9982 | 0.0008 | 0.9972 | 0.9983 0.001 0.997 0.9984 | 0.0015
300 0.9975 0.998 0.0005 | 0.9974 | 0.9981 | 0.0006 | 0.9973 | 0.9982 | 0.0009
500 0.9976 | 0.9979 | 0.0004 | 0.9975 0.998 0.0005 | 0.9974 | 0.9981 | 0.0007

Table (6)
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Random- Fixed Strength (Exponential distribution)

R],z = 0<9990

Mo B lA{I.z &'

5 9978 0.998772 3.83E-07
15 10156 0.998947 7.92E-08
25 9985 0.998953 4.57E-08
30 10122 0.998976 3.62E-08
50 10021 0.998979 2.13E-08
75 10005 0.998985 1.39E-08
100 9908 0.998979 1.0SE-08
300 10023 0.998997 3.4E-09
500 9986 0.998995 2E-09

Table (7)

Confidence Interval for Ry,
Random-Fixed Strength (Exponential distribution)

I-a 0.90 0.95 0.99

n, L ) D L U D L U D

5 0.9981 | 0.9997 | 0.0015 | 0.9978 | 0.9998 0.002 .997 0.9999 {_0.0029
15 0.9985 | 0.9994 [ 0.0009 | 0.9984 | 0.9995 | 0.0012 0.998 0.9997 | 0.0017
25 0.9986 [ 0.9993 | 0.0007 | 0.9985 | 0.9994 | 0.0009 | 0.9982 | 0.9995 0.0013 |
30 0.9987 | 0.9993 | 0.0006 | 0.9986 | 0.9994 | 0.0008 | 0.9983 | 0.9995 | 0.0012
50 0.9987 | 0.9992 | 0.0005_| 0.9987 | 0.9993 [ 0.0007 | 0.9985 | 0.9994 | 0.0009
75 0.9988 | 0.9992 [ 0.0004 | 0.9987 | 0.9993 | 0.0005 | 0.9986 | 0.9993 | 0.0008
100 0.9988 | 0.9992 | 0.0004 | 0.9987 | 0.9992 | 0.0005 | 0.9986 | 0.5993 | 0.0007
300 0.9989 | 0.9991 [ 0.0002 | 0.9989 | 0.9991 | 0.0003 | 0.9988 | 0.9992 | 0.0004
500 0.9989 | 0.9991 [ 0.0002 | 0.9989 | 0.9991 | 0.0002 | 09938 | 6.995] 0.0003

Table (8)
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From tables (1) and (3), we see that the variances decrease with sample sizes, showing
consistency of the estimator.

From tables (2) and (4), we seexthat our procedure gives a substantially good confidence
interval for Ry ,m taking different confidence coefficients 1 — o = 0.90,0.95,0.99. The
difference between upper and lower limits of confidence interval is sma.ll even for small
sample sizes. Obviously, this difference decreases by increasing n.

We find that the reliability of the system under Model 11 is greater than that under
Model 1. This means that the value of reliability change by changing the type of strength.

Similar results are obtained in the cases of the exponential distribution.
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