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ABSTRACT

Bayesian csiimation of the parameters of Pareto life time distribution is
consideted. The parameters of intercst are the shape and scale parameters,
reliability and hazard rate. Inferences are based on-doubly censored observations
when the data is both left and right censored. In addition to point estimators,
credible regions for the parameters of interest are considered.

1. INTRODUCTION

The life distribution under consideration in this study is the two parameter

Pareto distribution with probability density function
fma,0)=a0x*  (x20) (L))
where >0 and o> 0.

The Pareto distribution has found wide spread use as a model for various
socio-cconomic phenomena; such gs city population sizes, occurrence of natural
resources, stock price fluctuations, size of firms and personal incomes which
appear to have remarkably regular distributions with very long right tails; see, for
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example, Johnson et al. (1994). The Pareto distribution has also been used in
reliability and lifetime modeling; see, for example, Davis and Feldstein (1979).

Bayesian inference procedures for samples from the Pareto distribution have
been the focus of attention of a number of authors; for example, Malik (1970) and
Sinha and Howlader (1980) considered estimation of the shape parameter under
complete sampling when the scale parameter is known. Lwin (1972) presented the
estimation of the survival probability when either or both parameters are unknown
in the case of complete sampling under both squared and absolute error loss
functions using the Natural conjugate prior (NCP). Amold and Press (1983) had
some attempts considering the estimation of a@ and o as well as the survival .
probability using both loss functions under complete sampling using a different
prior specification. Upadhyay and Shastri (1997) considered Bayesian analysis of
the Pareto distribution, under the Non-informative prior (NIP), when the
observations are both left and right censored by providing sample-based estimates
of posterior distributions using Gibbs sampler algorithm. The estimated marginal
posteriors of @ and o were shown using frequency curves. Using the samples of
a and o, Upadhyay and Shastri (1997) obtained the corresponding samples for
the survival probability at mission time £, S(l), by substitution and the estimated
posterior of S(t) was illustrated using a frequency curve.

This article is concemed with estimation of the parameters of the density
function (1.1), reliability as well as the hazard rate. The analysis is carried out
under double censoring when lifetimes are both left and right censored, of which
- complete sampling and Type II censoring are special cases. Under this type of
double censoring n items are simultaneously put on test and observed until there
have been r failures. However k-1 lifetimes are censored on the left. The actual

observed lifetimes are the middle r—k+1 observations. Denote by X(;) the

lifetime of the j-th item to fail. For the derivation of point estimators of the

paramelers of interest squared error loss and absolute loss will be used as an
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extension of the work of Amold and Press (1983). As an extension to the work of
Upadhyay and Shastri (1997) closed forms of the estimators will be provided in
this article.

However, the existence of a loss function is a big assumption. Unless there isa
very clear need for a point estimator and a strong rationale for a specific loss
function, the summary of the information available about a single random
quantity in a single value to summarize the posterior density may be misleading,
especially if the posterior density is markedly skew. Bayes probability intervals
for the parameters of interest will be derived. To minimize the size of this
interval, only points with the largest posterior density are included arriving at a
highest posterior density credible region; Bernardo and Smith (1994).

2. BAYESIAN MODELS FOR THE PARETO DISTRIBUTION

When both @ and o are unknown, a NCP for {a, o) was first suggested by
Lwin (1972) and later generalized by Amold and Press (f983) to include broader
classes of prior distributions. The kemel for generalized Lwin priors or the -
Power-Gamma prior, denoted by PG(v,1, u1,8), is given by

. gla,o)xco*a"u™ (a>0,0<a<8) (2.1)
where #, @, v and A are positive constants, and 6* < z. Such a prior specifies
g8(e) 8 Ga(v,lnu—11n6) and glofa) as a power function distribution
PF(A2,8) of form Aac™*6™ (0<o <8).

Under double censoring, when the lifetimes are both left and right censored,
k-1 lifetimes are left censored and n—r lifetimes are right censored and the
r—k+1 middle observations are the actual observed lifetimes. The likelihood for
this data configuration assumes the form
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(-r)a 5. .
(-4 ] ar-m c,,(r-m)- 1—[ xm-(m)
I=k

hep)s zrlm{ (x(.,].}hl[x(.,
(o < 20y < Xy << 3y).

Applying the power gamma prior given in (2.1), the corresponding posterior
density under this sampling plan is given by

(a |(,-m>) "Hﬂg(kx l)( 1) gl '(#x(,) * )Hxa))
g\a,olx =

R (e = 120

(r+a+j-k+1)

(@>0,0<w) (22)
where X = (X, X gy ers Xy )» w=min{f, x)) and

A(j)= ilnx(,) +nu+ (n —r)lnx(,) + jlnxy) —(n +A+j-k+ l)ln w for
Ik

j=0..,k-1.
The posterior density (2.2) specifies

) Z(k )zT(L,,—I)[ o
r(r+v-k+1)§( ; )G+—/‘L(-l-_—j—kL-l-l){A(i)}-(m—M)

(2.3)

i )=(, +v—k+ 1):):(k N 1](_ 1Yo {A(i)— (+a+i-k+ l)ln(%)}-(m_.,-,,

2 e o

O<o<w), 24
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glla.x¥) o [l -["L“’] }H ©<o<w).

k-1 -1 - NN
g( 7 )G+4+]-k+|)""7w(. e

When we are in a situation where little is known a priori about the values
of @ and o; that is, information conceming « and o comes primarily from
the sample. The following NIP will then be adopted

1
> i 9 >0 .
glc)e— (ao>0)
Results under the NIP are equivalent to those obtained under the Power
Gamma prior (2.1) on setting v=—-1, =0, y=1and 8 > o.

3. ESTIMATION OF THE SHAPE PARAMETER

The Bayes estimator for @ wilh respect to the quadratic form loss is the
mean of (2.3) given by

(r+v k+l)Z[ )ﬁ:‘%ﬁ){ (,)}-(m-n..).
g(kl I]L.ﬁ(:,Lm)( 20) pmd

With respect to the absolute loss function, the corresponding estimator for @, @,
i the median of the posterior density; that s, Pa < @~*)=7 . From (23), &

satisfies the equation
S Jes g oresv-rsradd |
r(m-m)ﬁ["' Inﬁ(ﬁ)':ﬁ){ T
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where T'(g,y)= ]u"'e"'du (g>0,y> 0) is the incomplete gamma function.
y : ’

A 100(1— 7)% Bayes probability interval for @ is obtained by solving the

following equation
-J_g(a|x(,-l+l))ia =1-y

for the lower and upper limits a. and a" respectively. From (2.3) a. and a’

satisfy the following equation

g(k?l)——;(“ﬁ?lm {A(:-»*'"*"’[r{r+v—k+1’a-4("’}-f{’”‘**"“"(i)}]-n-r

F(HV_HI):Z:(k; l) Inut(; :':'kuj e )
@..

In practice one would pick those a. and " that satisfy (3.1) for which a° ~a.

is shortest.

The hazard rate at time ¢, h(f)=ay/t, specifies the instantaneous rate of death
or failure at time ¢ given that the component survived up till #. Point estimators as
well as Bayesian probability intervals for h(l) could be derived directly from the

corresponding estimators and intervals for .
4. ESTIMATION OF THE SCALE PARAMETER

In their study under complete sampling, Amold and Press (1983) presented no
estimators for o _stating that the marginal posterior distribution for o ( a special
case of 2.4 when k=1 and r=n) is not as simple as one might hope. To
overcome this difficulty estimators for o will be derived here using (2.2). Under
squared loss the Bayes estimator of o is of the form
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6= E(o‘lx("“')) Hog(a a'lx(""“))loda

From (2.2) this is given by
rev-kH) A) A)
‘I m Xn+1+|—k+t)"' +AH hﬂ}}‘mhﬂqﬁ‘h"_"&"m}
k-—l
I(H.H m-1+;—k+ Mi»hﬂ
@.n

For the evaluation of & from (4.1), we nced to evaluate T(g,y) for

) Al
=012,.r+v-k+l d y= for i=0,,...k—-1. Th
g=0\.2,.r+v and y T Ati—kt1 or i=0),..,k-1 e

following recurrence relation could be used for ¢ =1,2,...r +v—k

M(g+1,y)=gT(g,y)+y%e™ (Erdelyi etal. (1953)),
where l"(l, y)= e™”. The special incomnplete gamma function r(o, y) is given by

the exponential integral, E,(y)= Iu"e"'du , tables of which can be found in
y

Abramowitz and Stegun (1965).
Ul}dcr absolute loss the Bayes estimator &, the median of the posterior density
(2.4), satisfies the equation

g(k'_l}(rﬁ:—xl%ﬂ)%(‘) (r+a+1- k+1)|n( )}-("H")
e L

From the posterior density (2.4), a 100{1 — r)% Bayes probability. interval for o
is obtained by solving the following equation

N =
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-j_g(alx(,-h-l)pa. =1-y,

for the lower and upper limits o. and o° respectively. Hence o. and o satisfy

the following equation

{A(i)—(n+/1+|'—k+I)In(g“-:-]}-(m-m)_

(k-1 _1)
E( i )(Hlﬂ_kﬂ) {A(i)-(n+;t+i-k+l)ln(%)}-(m-h“

= (nsA+j-k+1

4.2)

=l—r

In praclice one would pick those o, and ¢ that satisfy (4.2) for which o’ -a.

is shortest.
5. ESTIMATION OF RELIABILITY AT TIME ¢

The probability that a component survives mission time, t, for a given ¢ is S(t)

which for (1.1) is given by

- == o<t<wortzw,
S(t)-P(X,>t)— P
1 t<o<w

Under squared error loss
S (t I j(_) g (ll O'Ix('-kﬂ))jada + .”Ig(a alx(r-h-l))l oda (t é w)
T( ) gla, a|,<,4+.,)d oy - ()

From (2.2) this is given by
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e faoy e

k-1
g( i )(m+i-k+an+4+i—k+z)

5 e e
Iz ) ) MRS

8 s Lo

A\ J Jnta+j-k+

1 <w)

5=

where B()= A()- (n+/1.+i—k+l)ln(—:;).

Under the absolute loss function, the Bayes estimator S, the median of the
posterior density of S, satisfies the equation P(S 2 §|x"‘"“’)=%. The posterior
density of S will be derived and hence the posterior probability of the event
525 . Fora given ¢, Figures (1) and (2) give 5(¢) as a function of a and o for
the twa cases £ <w and ¢ > w respectively.

FIG. (1) S(¢) as a function of @ and & for t <w

‘."/

w0-(3)
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FIG.(2) § (t) as a functionof @ and o for f 2 W
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For ¢ < w, from Figure (1), we have that

Ho=}i+9)- ) Tl

) f(k_l) o ){A(i)}-"*""" -

J=0 j (n+1+j"'k+l

x(r-ul))i cda

From Figure (1), for 0 <5 <1, we have that

P(S < st(’""))= P(d)= ;rj:lg(a, O'Ix(""“))doda

k-1 — M-(rtv—k+l
E( j )in+;t(+;)ik+l){A(1)}_( )

Hence for a given 1 < w, p(:lx(’"”)) is given as follows
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'(k l) n+41+l k+1 [B('»-‘m-“)

e
g(k -l)(_ 1) st () boe-sr)
i)

For ¢ 2 w, from Figure (2), we have that

p(g < _,ix(r-m)). ‘ _!!'g‘z. o‘lx("‘"))iala

p(,',(o-m))_

(:_ll

Getes-ra) 0

» (rev-te1)

s :lx(v-m))= :?)aj.g@, alx"""’)lda + J: '.j'g(a' O'Ix("“'))ial "
i)

From the posterior density (2.2), we find that

N——]

g[k'—l) mi(};%ﬂ);ﬁhuvﬂ[n([)}-blv-lﬂ)'[r+v—k+|[l(l _'("9"7)

r(rs#*'“)=

vkl e e

g(k I)(.uu tn)("('»'wm’;

r+v-k+1,{4( E":'V')J
(4

1)y
k+l
ko=t ’g( 1)17-+4+J

m(‘(l»*"""’
(5.2

where y(a,y)= :[t"'c"dr =I(a)-I(a,y).

o, ) 2 s s ),
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For t 2 w, it follows that

i Taded rv-kt) | Lk I Ins 1
p(s (,._,,+1))= ;[k, l)( lﬁ)s(“‘.’ B )7!:- ~k l{B()‘Ln W H (5.3)

r+v—k+ 1)"2-4:[jrc B 1) 1 (e

@+l + j - k+0

Now the posterior median S for a given ¢ could be denved for the two dlfferent

cases as follows

~ e » |
For t <w, il S is the posterior median of § and if P(S = 1|x( "‘“))< > that 1s

o (n+/1+_; L+ j~k+1)

thus from (5.1), S satisﬁes the equation

k=1 (k-1 ~1) w (n4241-k41) { p (; N-(r4v-Kk+1)
C) B
M_WL_’”I)S__}_QL__=£ (5.4)

- ("' l)j N =(r+v—k+1) | 2
,_ﬂ( )in+ﬂ.+1 k+1j{ (J)} "
A search program can be used to arrive at the value of §, s, satisfying (5.4).

For t 2w, if S is the posterior median of S then p(s < S lx (r-*+!))= .%. A search

program can be used to arrive at the value of S, S, from equating (5.2) to 0.5.
A 100(1 - y)% Bayesian probability interval for S could be derived from the

posterior distribution for the two separate cases as follows:

For 1t <w, let Pt;. <S§< s"x‘"“")= 1 -y, by setting P(O <S< 3'.'r(’f*+‘))=

N R

and P(:' <3S < llx("'“'))+ P(S‘ = llx(""’""))= -72'_

Ths for a given ¢ will provide the limits for S given by the following equations



ISSR, CAIRO UNIV., VOL., 45, NO.2, 2001, PP, 199-215
-211-

iz-l [ k- 1] (-1) (r+avt-01) fp (N)-oov-1e1) )

s | G+1+f—k+l)3'

“\ g (rei+j-k+1)

ti(k_l] -1y . .(..uu-m){B(i)}_(m_m]

ba| tn+,1+i—k+l)s

] (R B T s %

“l i Jlnsasj-k+1)

(5.5)

(5.6)

For ¢t 2w, let P(s. <S< s'lx("'“'))= 1-y, by setting P(O <S5 < s.lx"'“"): % and

P(;‘ <8< 1\:"'*+")= %

For a given 7, bounds on S in this case are then obtained from fractiles of (5.2). The

lower and upper limits s, and s° for S are the unique solutions for § from equating

(5.2)to 2’2_ and 1_% respectively, for some preassigned .

For the special case £k =1 and r = n results of sections 2 to 5 reduce to the case of

complete sampling, while for the special case of k =1 results are obtained under Type

I1 censoring.

6. NUMERICAL EXAMPLE

Considler a life test where 20 units whose lifetimes follow the same Pareto
distribution with both parameters unknown are put on test simultaneously. The times of

failire of the third to the eleventh items measured in an informative experiment are

shown in Table 1.

TABLE I Times of failure of the third to the eleventh items
10.425 10.757 10.946 11.433 11.663
11.945 14.712 15.279 16.121
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We use the results of sections 2 to § with n=20, k=3 and r=11, and .

assume little is known a priori about (a,a); that is, results of these sections are
used under the settings v=-1, A=0, y=land § > w.

Figure (3) illusltrates the posterior density of & given x® under these settings,
a|x(°) = Ga(8,5.506624). The posterior density of a is slightly positively skewed.

FIG. (3) The poslerior density of & given x(,)
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The posterior mean of a is given by @& =1.4528 while @ =1.39269. A 95%

Bayesian interval for & is of the form o, =0.62724 and a* =2.61912.

Figure (4) illustrates the posterior density of o given x®. The posterior

density of o is negalively skewed.

FIG. (4) The posterior density of & given x(g)

0.7 -
0.6 1
0.5 -
0.4
0.3
0.2
0.1 -

0 T v
018 5 10 15

sigma

posterior density




ISSR, CAIRO UN1V., VOL., 45, NO.2, 2001, PP, 199-215

~213-

The posterior mean of o is given by & =9.24284 while & =9.42128. A 95%
Bayesian interval for o is of the form o, =7.24481 and 0" =10.21093.

The probability that a component survives an arbitrarily chosen mission time
=12 (> w=2x4=10425) is given by §(2). Figure (5) illustrates the
posterior density of S given x® for £ =12. The posterior density of § is almost
symmetrical (very slightly negatively skewed).

FIG. (5) The posterior density of S given x® for 1 =12

posterior density
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The posterior mean of § is given by §=0.70048 while §=0.70543. A 95%
Bayesian interval is of the form s, =0.53369 and s° = 0.83941.
The posterior mean, median for the failure rate at mission time 12, h(l2), are

given as /i=0.12107 and % =0.11606 respectively while a 95% Bayesian
interval is of the form A, =0.05227 and &" = 0.21826.

7. CONCLUSION
Bayesian estimation of the parameters of Pareto life time distribution was
considered. Point estimators of the shape and scale paramelers as well as
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reliability at time ¢ were derived under squared and absolute error loss. Bayes
probability intervals for the parameters of interest were obtained. Inferences were
based on doubly censored observations when the data is both left and right
censored. Gaps in earlier work of Amold and Press (1983) in case of complete
sampling was covered as a special case of work presented in this article. Closed
forms of the estimators of the parameters of interest were presented in case of
Natural conjugate prior as well as non-informative prior as an extension of the
work of Upadhyay and Shastri (1997) who provided sample based estimates of

posterior distributions of parameters under the non-informative prior.
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