THE EGYPTINA STATISTICA JOURNAL
ISSR, CAIRO UNIV., VOL., 45, NO.2, 2001

On EstimatingThe Parameters Of The Bivariate Normal

Distribution
ed M. M Sultan Albert H. Moore
II:-\:::nim Air Force Air Force Institute of Technology
Cairo, Egypt Patteson AFB, Ohio 45433
11ala Mahmoud Khaleel
Zagazig University
Zagazig, Egypt

Abstract

A technique is applied to estimate lhe parametérs of the bivariate normal

distribution with unknown mean vector and unknown covariance matrix by
minimizing the Cramer von Mises distance from a non-parametric density cslimatc
and the paromelric estimate at the order statistics. The maximum likelihood
estintors  were found and a comparison was made with the proposed cstimator. For
different paramcters of the true density the proposed estimators were tested using a
Monte Carlo experiment . The results show an improvement in mean integrated
square error which is taken as a measure of the closeness of the estimated density and
the true density.

1. INTROD 1{0)\]

Among the different criteria for the choice of the parameter estimators for a

probability densily are the unbiasedness, the consistency, the minimum variance and the
sulliciency. A number of authors considered the estimation of the parameters of the

- bivariate normal density using the method of moments, the maximum likclihood,
besides other methods. Section 2 discusses.the maximum likelihood estimators for the
parameters of the bivariate normal density. The log likeliliood equations are solved to
give the estimators for the mean and covariance matrix. In seclion 3 the application of
a non-parametric density cstimalor to obtain estimntes of the parameters of the
Irlvnrinle normal distribution is discussed. A Monte Carlo comparison of the maximum
likelihood estimators and the minimumn distance estimators is given using the integrated
squared error between the (rue density and the estimated true model for a sample size
of 5(5)20 and different Monte Carlo repelitions in tables. A comparison is madc
belween the estimators for a given - mean vector and a given covariance matrix for
sample sizes 5(5)20 in tables and figures.
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2. MAXIMUM LIKELIIHQOD ESTIMATORS FOR THE
PARAMETERS OF THE BIVARIATE NORMAL DENSITY

If X= [x‘,] :i=1,2 and r=1,2,...,n be a 2 x n matrix which represents a samy
of size n from thé bivariale nonsingular normal distribution with mes.
vector gt = [s4,,4,] and variance covariance matrix X =[a,].1j=1.2, then the jolu

p.d.f. will be given as:
L2y = (27) "|g) " exp{— %n-z-'(x -l XX - ;.E,,)(} (21

where £, isan \ x n matrix with all elements unity.

The loglikelihood function of the sample observations is given by:

log, l.(/l, Z)
= - Slop,(2x)- Jlow, 5| - 305 (X — 5, Y - )

= ~Zlo, (2r)- Zlog |2 - %n-}: \X - XE, (X~ XE,)
- 208 (¥, = 5, Y, - )

n —-— -
= —-z-log,(er) - %’lug,lll - -;-n-z 'S - ’E'n-z"(x - u)(X-n) ..(2-2)

where

— 1 .
X= - XL, is the vector of sample means,
? .
E,, = nx1 matrix with all elements unity (£, = E'm) and
nl

S=X [l"—;h ',,,,],‘:' is the matrix of correcled sum of squares and sum c.

products.

A )

To find the maximum likelihood estimator for u, we differentiate log, L(#,Z)

. . ” a() ! / ’
in (2-2) with respect to u, usmg[———————( X AX) =24X ] and set the resulling expressic.
equal to O:

dlog, L(11,2 o,

Olog, L4LE) _ 51 _ iy =0 ..(2-3)

e
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which gives
a=X .. (2-4)

Before dilferentinting log, /.(.Z)to find £, we substitute fi = X in(2-2) ant

rewrite log,|E| in terms of I 'to obtain
- I .
log, /{fi,Z) = —2'-'-Iog,(21r) + %’Iog,l): 'l - EII'Z 'S .(2-5)
Using
W(AB) _ p+ B - diag(B),
[

dlog, |A| " 5
1 =24" -diag(A

and difTerentinte (2-5) with respect toZ ™' we get

ﬂﬂ_.,_z’({'_’:) dmg(z) S+—dlq((9) 0 ..(26)
from which we have
i--mag(z) = -[S-—dlag(S)] (27)
note lllnl for the oﬂ‘-dllgonal elamenls we have
G, = -'-s" Frj
and for the diagonal elements we have

- 1. 1
oy - Ea, =—(s, —E.r.)
or
-'-6 ) L
2 "
ie
. 1
Oy = ';’l
thus, we have

L
Lu—s§ ..(2-8)
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3. MINIMUM DISTANCE ESTIMATION

Minimum distance estimation (MDE) has characterization and properties that
could be found in Parr and Schucany (1980), Wolfwitz (1957). Hobbs, Moore, and
James (1984) used MDE to find the location of the gamma distribution. Similarly,
Hobbs, Moore, and. Miller (1985) used MDE to estimate location of the Weibull,
Sultan and Moore (1995) used MDE for the parameters of the (wo parameter logistic
distribution,

MDE selects as estimates those p.d..f parameters which minimize the discrepancy
between the sample data and the estimated distribution. The distance measures, which
are minimized are ‘Goodness of fit statistics’. -

The MDE has the following characterization and properties:-

I. Not susceptible Lo outliers (Parr and Schucany, 1980).

2. Statistically consistent(Wollwitz, 1957).

3 .Easily applied to all the paramelers(Parr and Schucany 1980).

A series of logical candidates for the distance estimation task is studied by
Fuchs(1984). .

In this section it is required to estimate z1,X for the bivariate normal distribution

function such that a goodness of fit statistic is minimized using a nonparamelric

estimator £(.X). In this case X = (x.x,) for the bivariate density [{X) given by:

f(X)= -—\——exp{-—(x ,u) (X - ,u)}
Qrysfi L.
. where
U= (f’hﬂz)l
and '

o, O
3 =[ A} \1]
On On
as the mean vector and the covariance matrix respectively.

The kernel estimator is to be used with a Gaussian kernel which is defined as :

Fxy=—s ,,,ZK{ Lx- x,)}

i=l

with K(X) given by
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) ‘o,
R(X)=(27)"em -ix x)
=(11) " em —-‘i(x} + 1.'.")]
which rescits the {o':owing expression for i (X):

- | 1 2
f(x. --":) = ,‘m—zze"l’{a":[(xl = "'u), "'(“'1 = x,,) ]}
This f (-\'. ..\'g) defines the kernel density estimator with a Gaussian kernel. Tie:
c.d.fof this kernel density /°(.X) is given as:

Honn)=1] Sl ) +bea - e,
L P (R BYCREN | P8
555

L]
where 9(X) denotes the c.d.f for the standard bivariate normal random variable.

The Cramer von Mises statistic W* defined as:

WM = ,.j_[ﬁ(x)_ p(x)far(x)

or the computational formula:
we3ste)- 1522 s

is to be used. The optimal value of the window width h ( in the MISE sense) depens
on the choice of the kernel K, the underlying unknown density f{X) and the sample size

B = (R}S(AR)) 5(n)

An approximation for the oplimal window width for & normal sample in case oi
univariate distribution was suggesied to be 1 where k is a real constant
(Silverman 1986).  Although this approximation simplifies the optimal expression for
the window width and works fine with the normal distribution it is not goud for other
distributions (Sultan, 1995). This lcads to the idea of introducing an approximaic
expression for &, . :
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An cflicient alternative for computing the window width that gives an
improvement in the sense of applying nonparametric density estimation in parameter
estimation is the empirical choice of h equals xsa \ where S represents the sample
standard deviation. In fact, the choice of the constant k that guarantees a close enough
MISE to the theoretical optimal h needed a relatively extensive calculations. The
choice of the h paramcler is data dependent which is a function of both the sample
slandard deviation and the sample size.

The choice of the h parameter for the univariate case, can frequently be chosen
visually in a satisfactory manner, Flowever this is not exactly the same in the bivariate
case. The bchavior of dilferent distributions under a proposed choice of the h
parameter had been studied (Moore and Sultan in 1990 ).

4. THE MONTE CARLO EXPERIMENT

To evaluate the performance of the method a Monte Carlo experiment s
designed. Deviates from a bivariate normal distribution with a given mcan vector and &
given variance covariance matrix are generaled. The data based choice of the
smoothing parameter is calculated for each sample of the Monte Carlo experiment. The
integrated square ertor ISE given as:

185 = [[7(0) - (0] ax

is computed for each sample.

An estimate of (he mean integrated square error MISE is obtained by aveing:.;
the ISE from the Monte Carlo repetitions. Likewise, an estimate of the stanuss
deviation of MISE is computed.

The Monte Carlo procedure used here could be described in the following steps:

I. Different samples from the bivariate normal distribution with a given mean vector
and a given variance covariance matrix for different sample sizes were generated. The
bivariate normal deviates were generated using the RNMVN routine from IMSL.

2. The MLE estimators for u# and £ were computed as discussed earlier.

3. The CvM statistics was computed for the estimated density with MLE estimators for
the parameters.

4. Tlie CvM stalislics was minimized over the parameler space with g, , M, and

O\.0y . Oy, Oy, as decision variables.
3. The new parameter eslimates were compared wilh those of MLE, using the ISE as &
measure for the comparison.
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The following table ( table 1 ) shows the MISE for both estimators ( MLE anc
minimum distance estimator with CvM )

le size S 10 15 20
No. of Monte 529 125 341 385
Catlo .

E(MLE} i.04061E-3  3.46079E-4 2.04458E-4 1.89423F-4"
(2.23041E-3)  (4.50843F-4)  (2.127461-4)  (8.2007381F-5)

MISE (CvM) 9.61347E-4  2.65217E-4 1.88698E-4 1.50644C-4
(2.45467-3)  (3.21761-4)  (9.848R06F-5)  (1.395811-4)

table L. Results from M.C experiment for sample size 5(5)20

To show the effect of the variation of the covariance matrix on the MISE, a
dilferent experiment was run for a sample size of 20 and 4 values of L(Z,,---.Z,)
The results of this experiment is shown in table 2 for the following values of the
matrix:

g[ W 3] g [ ] W 375
lews w [ e s \1 m _‘ A58

Bivar. Nor. MISE_(CwM) MISE_(MLE)

N(r..X,) 3.91250E-3 2.41766E-2
(5.98327E-3) (1.81924E-3)

(i 2,) 3.508693E-3 6.68145E-3
(4.80272F-3) (4.76252F-3)

TNES) 3.14077E-3 4.342011E-3
(3.76742E-3) (3.043978E-3)

Wi, E,) 3.18853E-3 3.14943E3
(1.93254F-3) (1.23398-3)

table 2. Results from M.C size 1000 for sample size 20

The table shows that both the MLE inethod and the new technigue are
statistically the same for covariance matrix I,. However the new technique shows a
significant improvement over the MLE method for Z,,Z,,Z,.

Together with the results from the previous table, the new Lechnique shows :.:
improvement over the MLE method. Different cases sre shown with the integrated
square error (ISE) for the nonparametric density estimation approach as well as for ilie
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MLE. The parameters eslimators for both cases are given. The variations in h together
with the variation in MISE indicate that the method is an adaptive one in the sensc
that the choice of the parameter h which is data dependent varies with the variation of’
the distribution paramecters and the sample size. Graphs for these cases are given in
figures (figl - figd), while table2 shows the resulting MISE together with its standard
deviation for sample size 20 for the dillerent parameter values for both the new
proposed estimation technique concurrently with the MISE for the MLE.

The final conclusion is that the minimum distance estimation method using the
CvM stalistic as a measure of the dilference between a nonparametric estimator based
on a suggesied window widthand  a paramelric densily with unknown parameters
gives in general a smaller MISE value than the maximum likelihood method.

Bivariate Normal Sample  ( Sample Size = 5)
Bivariate Normal Data Points

X, X,
-.150383 494668
3.438728 -.381145

-.827254 -1.614013
-2.758851 2.203328
.141007 -.835404

IRUIE PARAMIEETTERS AREE
MEAN VECTOR = ( 5.000, 5.000)
COVARIANCE MATRIX : 10.000 =375
=375 20.000
MLE PARAMISTERS AR,
MEAN VECTOR = ( .000, .000)
COVARIANCE MATRIX:  5.000 -1.563
2.100

MEAN VECTOR = ( 2.654, -.026)
COVARIANCE MATRIX:  30.020 -.990

: -.990 7.818
ISEMLE .0065
ISE MDCVM .0002

O....True deunsity M...MLE C...MDE CvM

Fig 1
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Bivariate Normal Sample  (Sample Size = 10)
Bivariate Normal Data Points
Ry Ry Ry Ry
485 10.65 535 542
8.44 827 482 6.65
417 8.16 3.84 745
224 646 649 6.71
5.14 13.48 4.41 200

IRUIED, L1ERS Al

MEAN VECTOR = ( 5.000, 5.000) :
COVARIANCE MATRIX : 10.000 -375

-375 20.000
LE D 21ERS ARE

‘MEAN VECTOR = ( .000, 2.500)
COVARIANCE MATRIX : 2700 _ 0.768
0.768 9.300

MDCYM PARAMETERS ARE
MEAN VECTOR = ( 3.071, 2.526)

COVARIANCE MATRIX : 10.494 0.990
0.990 9.242

ISE MLE .0023
ISE MDCVM .0002
: } 1 : ] 1
& 200t & 2.517°
c (o] M
O.... Tvue deasity " M...MLE C...MDE CvM

Fig 2
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Bivariate Normal Sample  (Sample Size = 15)
Bivariate Noimal Data Points
Ry Ry Ry Ry Ry X,
485 544 535 579 899 1.10
8.44 651 482 6.12 741 467
417 744 384 433 7.21 531
224 6.87 649 -0l 596 -.63
5!4 l97 44| 747 |IOI 1.93
. RE
MEAN VECTOR ( 5.000, 5.000)
COVARIANCE MATRIX : 10.000 ~375
-375 20.000

MEAN VECTOR = ( 1.000, -.700)
COVARIANCE MATRIX:  5.200 -2.795
-2.795 7.400
MDCVM PARAMIETIERS ARIE
MEAN VECTOR =( 2.014, -.712)

COVARIANCE MATRIX : 117.482 -.990
' -.990 11.316
ISE MLE .0013 '

-1ISE MDCVM . .0003

TNOIT oY




mv..vm..a.mmrg_u—m

Bivariate Normal Sample  ( Sample Size = 20)
Bivariate Normal Data Points
Ry Ry Ry Ry Ry Ry Ry Ry
485 581 535 1.24 899 289 531 L.76
844 599 4.82 476 7.41 3.65 6.16 3.92
4.17 432 384 543 721 .26 6.71 7.27
224 .15 649 -65 5.96 1097 6.25-4.42
5.14 745 441 2.18 11.01 4.38 2.86 1.97
MEAN VECTOR = ( 5.000, 5.000)
COVARIANCE MATRIX : 10.000 =375

-375 20.000

MLE PARAMETERS ARE
MEAN VECTOR = ( 0.9, -1.500)
COVARIANCE MATRIX :  4.400 0.642
0642  11.500
RS AR

MEAN VECTOR = ( 3.484, -1.533)
COVARIANCE MATRIX:  18.353 0.990
0990 _ 11.375
ISEMLE .0009
___ISEMDCVM .0001

Fﬁ»
» 9
v -~
cg—

0....True density ~ M..MLE C...MDE CvM

Fig 4
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