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Abstract:

In this paper, we derive exact explicit expressions for the single and double moments of
the upper record values from Lomax distribution. We then use these expressions to compute
t' » mean, variance and the best linear unbiased estimates ( BLUE's) of the location and
scale parameters of lomax distribution. Finally, we obtain the maximum likelihood estimates
(MLE’s) and compare them with the BLUE's.

1 Introduction

Record values arise naturally in many real life applications involving data relating to
weather, sports, economics and life testing studies. Many authors have studied record val-
ues and associated statistics. Among others, are Chandler (1952), Ahsanullah (1980, 1988,
1990, 1993, 1995), and Arnold, Balakrishnan and Nagaraja (1992, 1998). Ahsanullah (1980,
1990). Balakrishnan and Chan (1993), and Balakrishnan, Ahsanullah and Chan (1995) have
discussed some inferential methods for exponential, Gumbel, Weibull and logistic distribu-
tions, respectively. Abd-El-Hakim and Sultan (2001) have obtained the maximum likelihood
estimates of the location and scale parameters of Weibull record values and have compared
them with the BLUE's given by Balakrishnan and Chan (1993).

Lomax distribution las been used in connection with studies of income, size of cities and
tiinbility modeling. The Lomax distribution Is also known as the Pareto II distribution
fi” Arnold (1983)). Lomax (1954) used this distribution in the analysis of business fallure

ata. .
The two-parameter Lomax distribution has its density as

1+ (-6)/o]" ™1, y>6,0>0,
) =

ol othuwiu,

(1.1)
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while the standard form of Lomax distribution is given by

A +2)"OH) 2>0,A>0,
f(z)= (1.2)
0, otherwise.
and )
1-(14+2)™, z>0,A>0,
F(z) = (1.3)
0, otherwise.

Balakrishnan and Ahsanullah (1994) have established some recurrence relations satisfied
by the single and double moments of upper record values from the Lomax distribution in
(1.2).

In this paper, we derive exact explicit forms for the single and double moments of record
values from Lomax distribution in Section 2. Then, we use these moments to obtain the
BLUE’s. In section 3, we obtain the MLE's of Lomax parameters. In Section 4, we discuss
an application. Finally, conclusion and comparisons are made in Section 5.

2 Moments and Best Linear Unbiased Estimates (BLUE’s)

Let Xy(1), Xu(z)s - - - Xv(n) be the first n upper record values from the Lomax distribution
(- 2), then the single and double moments are derived as follows:

2.1 Single moments

The single moments of the upper record value Xy () is obtained to be

up = F(%T) /ow z"[~log({1 - F(z)}]™"' f(z)dz,
- i(:)(—1)'-‘(1—i/x)‘", A2randr=12.... (21)
i=0

As a check put r = 1 and m = 1 in the above expression of ps,'.), we get

1
W = i

A-1

which gives the mean of Lomax distribution given in (1.2).
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2.2 Double moments
The double moments of the upper record values Xym) and Xu(,.,, m < n is given by

rs) — _!_ 0 1% . e - m—
"sn.n) = r(m)r(n_m)/o -/: SV'[ lO!{l F(t)}] :

« (- log{1 - Flu)} +og(1 - F*" L= ftudaya,
- i Zr: ‘) (r) (=)= -j/ A)--m (1 - '—{-”- i ASr+s
j=0i=0 ! :

(2.2)
As a check put s =0 in (2.2) and use (2.1), we have
) = .

2.3 Best linear unbiased estimates (BLUE’s)
Let Yyq < Yu(z) < -.- £ Yy(n) be the upper record values from Lomax distribution in
(1.1), and let Xy(;) = (Yu(.-) —0) /o, i =1,...,n, be the corresponding record values from

tue standard Lomax distribution in (1.2). Let us denote E(Xy;)) by i Var(Xy(;) by
a,,. and Cov(Xy(i). Xu(j)) by oiy; further, let

T
Y = (Yuu).Yua)----.?’U(n)) ,

B = (I‘hm'---ol‘n)ry
1. = (L1,...,1)7,
n
and & = (’H)JS‘-J'S"-

Then, the BLUE's of @ and o are given by ses Balakrishnan and Cohen (1991)]

o [pTE 1T - yTE TR s
= {(u‘*‘n-'u)ufﬁ)-mrJ"n—:1)=}"=?_:,"""“" (23)

- 1‘1":—!1“1‘2-1 —1Tg~1,1TH-1 n
o= {(u E-1p)(1T2-11) - (u“!!"l)’ } Y= E"-“’v«)- (24

Furthermore, the variances and covariance of these BLUE's are gi Balakrish
and Cohen (1991)] given by [see rishnan

” TE_I
Varify=ot {(u n—'u)(x‘fz—u)“— (sTZ-11) } =o'l =
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1Ty-11
0y . 2 —ive —— = 2
Viarjo'}i=@ {(u"‘z-lu)(l'rz-ll)—(uTE—ll)’} e
and
Tyi-1
oy _ 2)_ o z 1___ = g2
Colld'iz') we {(uTE-‘u)(sz-ll) —‘(#TE-II)’} e
where

pm=(1-1/2)""~1,

£-! = (o) is a symmetric tridiagonal matrix, and for i < j, g%/ is obtained to be

[ —(3) -2 -1, j=itli=lunk-1,

A=2)! (932 _ i _
e (352) @2 -4r+1), i=j=1tok-1,

(A - 1)2(¥)k1 i=j= k,

| o, i>i+l,

(2.6)

(2.7)

(2.8)

(2.9)

for details, we refer for example to Balakrishnan and Cohen (1991). By using the above
expressions, the BLUEs of § and o can be calculated for different sample sizes-and different
values of \. The coefficients of the BLUE's a; and b; in (2.3) and (2.4) were calculated in

Table 1 for n = 3(1)7 and A = 5.

Table 1: Coefficients of the BLUE’s
when A =50, #=0.0and 0 =1.0.

1425 -.125 -.300

1.310 -.102 -.061 -.147

1.260 -.092 -.055 -.083 -.079

1.234 -087 -052 -031 -.019 -.045

1220 -.084 -.050 -.030 -.018 -.011 -.026
b;

-1.700 .500 1.200 -

-1.241 408 .245 .588

-1.038 .368 .221 .132 .318

-935 .347 .208 .125 .075 .180

-878 .336 .201 .121 .073 .044 .104

NG AW D O WS
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y making use of the entries in Table 1, the BLUE's 0* and o* given in (2.3) and (2.4), were
ated based on 10000 simulated upper rccord sets of sizes n = 3(1)7 ( with 8 = 0.0,
1.0 and A = 5.0). Table 2 represents the bias and MSE of these BLUE's.

Table 2: The Bias and MSE of the BLUE's
when A=5.0, 8=0.0and o =10

g* a*

n| Bias MSE [ Bias MSE

3]-.0036 .1361 | .0114 1.1779
4| .0010 .1234 | -.0066 .9737

5|-0101 .1178 | -.0002 .8837
6

7

-0124 .1150 | -.0330 .8388
-0336 .1144 | -.0665 .8170

3 Maximum Likelihood Estimates (MLE’s)

The joint density funclion of the first n upper record values Xy(1), Xyq2), - - - » Xur(a) 18 given
by

n-1

Sia..a(Zuqy - -1 Tum) = H f(Iu(i))/ H[l - F(zyu)) (3.1)

i=l i=1

where f(.) is given by (1.1) and F(.) is the corresponding cdf.
The the log-likelihood function of (3.1), is given by

— n Jy -
L*'(8,a,)) =nlogA —nlogo — Alog (1 + W("T)o) - Zlog (1 + _z_um_a) .
4

i=1

and hence the MLE’s of 8, A and o are obtained, respectively, by

b = Ty(1) : (é.z)
5= nfig (1+"’+ﬂ’——0) (3.3)
and
%@ = f\( Z(e — 0 ) pyfu=fon (3.4)
G+zym -6/ ={&+zum -0

From (3.2), (3.3) and (3.4), we observe that:

L. If 6 and o are known, then E(§) = 8 4 /(A - 1),A > 1, that is 7 given in (6.2) i
biased estimate of 8 while / ) ghveniin (12 e

o
0==zyqgy — z\——l"\ >1, (3.5)
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is an unbiased estimate of @ with variance is given by

Ao?

Var(8) = m,A >2. (3.6)
So, we can replace (3.2) by
6= Zya) — K{T,S >1, (3.7)

. If @ and o arc known, then n/A ~ I'(n,1/}), and hence 1/:\ is an unbiased estimate
of 1/, but E(A) = 72, that is A given in (3.3) is a biased estimate of A, while

- -0
A =(n—1)/log (1 + ﬂ’-‘!;——) (3.8)
is an unbiased estimate of A with variance is given by
a 2 .
VGT(A) = ;—_—i,ﬂ >2, (3.9)

and the efficiency of A based on Cramér-Rao inequality is obtained to be (n — 2)/n.

3. If @ and o are kn-own, then both of A and A given in (3.3) and (3.8), respectively, are
sufficient estimates of A. ;

. The nonlinear equation (3.4) has a unique solution, that is because %(0) > 0, ¥(c0) <
0 and ¢¥/(6) < 0.

When ) is known, the MLE’s of 6 and o were calculated based on 10000 simulated

records as presented below:

Table 3: The Bias and MSE of the MLE’s
when A=50, 6=00andoc=10.

Bias MSE | Bias MSE
0380 .1267 | -.1625 .9813
0137 .1251 | -.0653 .9592
-.0001 .1240 | -.0101 .9097
-0077 .1224 | .0203 .9034
-0129 .1210 | .0413 .9010

qacn.&uuj
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Application

An interesting application of the Lomax distribution stem from the fact that it is a mixture

tor compourid) of exponential distribution fxje(z | 8) = e, where © has a gamma
istribution, fo(0) = [a/[‘(ﬁ)](ad)""e"’. This is used in Lhe analysis of heart transplant
ata in Turnbull et al. (1974). The data represents the survival times and times to tansplant

(in daya) for 82 patients from the Stanford heart transplantion program. From the data,
ne gets the upper record velues, then by using Table 1, the BLUE's for the location and
cale parameters are obtained as given below:

Survival times Upper record values | BLUE's
Nontranspiant patients | 49, 84, 101, 148 9* =28, 0*=85
Transplant patients 35, 50, 82 =19 o' =64

5 Conclusion and Comparisons

In this work, the moments of the upper record values from Lomax distribution are derived.
These moment are then used to obtain the BLUE's. In addtioh, the MLE's of Lomax
parameters are obtained. From Tables 1, 2 and 3, we conclude the following points:

1. The coefficients of the BLUE's, presented in Table 1 are cheked by the forms
Thisi=1 and T bi=0.

2. As we can see from Table 2, the MSE's of the BLUE's of  and o decrease as n
increases.

3. From Teble 3, we can see that the MSE's of the MLE's of § and o decrease as n
increases. .
In conclusion, we can say that the BLUE of # is better than its MLE except forn =3,
while the BLUE of o is better than the MLE except for n=3 and 4.
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