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Abstract.  The Wilcoxon-Mann-Whitney statistic is rewritten using
nearest neighbors techniques and a characterization in terms of a Markov
chain is established here for the first time.
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1. Introduction

Let X;,X5, ...... , Xpnand Yy, Y, ....., Yy, be two independent -
random samples of observatxons in the Euchdean space R* from unknown
distribution function F;, i= 1,2, respectively.

The two samples are combined into a single sample Z,, Zy o Zn
of size N=n+m, , such that

X, , i=12,..n

Y, i=n+Ln+2,..,N

Let Ri(X;) = rank of observatlon Xi with respect to distance from X;.
Then we define X; as the k™ nearest neighbor of X; if R(X;) = k and as a
k-nearest neighbor if Ry(X;) < k. Assume that there wxll be no ties.

Let I(ij) = I{Z and its j" nearest neighbor are from different

samples} where I{E} is the indicator function of the event E.
Fori=1,2,....,Nand k=1,2,.....N-1, define

N-1 k
B= ;&. —ZZ!(:.;)

kel ful
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The object of the present investigation is to rewrite B; as a liniear
function- of the Wilcoxon-Mann-Whitney statistic .and to characterize a
Markovian structure for the Wilcoxon test.

2. A representation for B,

. Choose the first variable to be Z; (fixed), .i =1,2,....,N and calculate
lz,-z). i = 1,2,....N,j #i. The combined ordered arrangement of the

two samples can be denoted by a vector of indicator random variables
Z;y, where Z;, = 1 if the point Z; and its k™ nearest neighbor, Z;, belong to
different samples and Z;y = 0 if both points belong to the same sample,-
k=1,2,....,N-1. -The rank of the observation for which Z, is an indicator
is k, and therefore the vector Z; indicates the rank-order statistic of the
combined ordered arrangement of the two samples and in addition
identifies the sample to which each observation belongs B; can be
expressed in terms of this notation. This kind of statistic is called a linear
rank statlstlc which is defined as

N-1

By, (Z)= Zalzl.k

] KL
"where ay are given numbers.

Lemma

For each i(1 < i< N), a lmear relationship exists between the
statistic B; and the Wilcoxon-Mann-Whitney statlstlc

Proof:

If we take a; = (N-j) then By.(Z;)) can be written in terms of B; as
follows: _ :

N-1

Bua(2)= 2 N-BZ,

k=t
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k=1
= Bi
Therefore,
N-1
B =) (N- ])Zi,
j=t
mN-W, , i=12,..,n
nN-W, , i= n+1,N+2,..,N
where

N-1
w,=Yjz,, isthe wilcoxon rank sum statistic.
j=t

So, B; has a Wilcoxon-Manu-Whitney distribution.

Thus B; is aclually the same as the Wilcoxon-Mann-Whitney rank
sum test, since a linear relationship exists between the two test statistics.
Therefore, all the propemes of the tests are the same. One of the
important properties is a Markovian property which is proved in the
following section.

3. A Markovian Property of the B;

The main result of this paper is the following

Theorem

For every i (1 £ i < n), the sequence {Bix; k=1.2,.....N-1} isa
Markov chain, i.e., for every k (< N-1) and max (0,k-n+1) <1 < <...<1y
< 1y £ min (k+1,m) '

P(Bi1 = 1 | Bij=1;;j £k) = P(Biy1= 11 | Bix=r)
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Proof:

Let S be the set of all permutations of ({1,2,.....,N}-{i}) satisfying
the condition {B;; =11, Bi2 =13,...., Bix =1¢}. Itis clear that for any seS,
Bix+1 can assume only the values ry and i +1. If {a;,a,,...,ax} € S, then in
the set {aj,a,,...... ;ax}, we have r, elements of the set {n+1, n+2,.... N}
and (k-r,) elements of the set {1,2,.....,n}. Then we may have either of
the following: :

. k+ 1 e {ntl, n+2,....,N}. This happens with the (conditional)

~ probability
m—r,
| N-1-k | _
w. ktl ¢ {n+l, nt2,....,N}. This happens with (conditional)
probability

_m-rn__n-l-k+n
N-1-k N-1-k

1

In case (i), Bi+1 can assume only the value r+1 With probability
m-—r,

N-1-k
probability

, while in case (ii), Bix+ can assume only the value 1, with

n—-1-k+r,
N-1-k

Thus, the assumable values of Bjy.i(viz.r,, rc+1) and their
respective (conditional) probabilities (given the B;;, j <k) depend only on
the values ry assumed by B;y.

Corollary:

Foreveryk (1 £k < N-l)'and 1y, we have

(Y "y

for max (0,k-n+1) <r, <min(k,m), i=1,2,.....,n,
and for every £ > K, r¢>r, :

mY n-1 m-—r",, n=1-k+n ) .
n\Nk-n \r,-n \Nb-k—-r,+n (2)

(N—1)!{(k)!(£—k)!(N—1—Z)!}"’.

p(Bi,k =l B, =1n)=
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for max(0k-n+l) < o < rg < min (¢ ,m); i = 1,2, ...... , n; and
1<k<f<N-1.

By (1) and (2), we may note that

—2-kYN-1-k)"
P(Bxa =5/B,, = r) =[N )( ) ....(3)

m-=s m-=r
fors > (and 0 for s <r), so that

m-r
N-1-k , s=r+l

n-1-k+r
p(Bl‘kH:S/Bi'k:r) =4 N-1-k , §=Tr (4)

0 , szr+2ors<r.

Hence, from (4) we have

(N-k-2) m

E(Bya!By,) = (N-1<F) ™ + N-1-k) .5
fork=1,2,.....,N-2.

Also,

B )= B30 g 2mo] m .(6)

(N-1-k) ™ (N—l—k)B"‘ * (N=-1-k)

Conclusion:

We conclude that the Wilicoxon-Mann-Whitney test can be
characterized by a Markovian property. Furthermore, such Markovian
property is essential for a new proof of the normality of the Wilcoxon-
Mann-Whitney test via Martingale limit theorem.
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Note: Tor i=n+l,...., N, the same resents are obtained but n and m are
interchanged.
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