The Possession of the Markov Chain Property by the Wilcoxon-Mann-Whitney Statistic

Ali S. Barakat

Department of Statistics, An-Najah National University, Nablus, West Bank, Palestine. Fax. +(972)9-2387982, E-mail: barakat@najah.edu

Abstract. The Wilcoxon-Mann-Whitney statistic is rewritten using nearest neighbors techniques and a characterization in terms of a Markov chain is established here for the first time.

Keywords. Nearest neighbors, Wilcoxon, Markov chain

1. Introduction

Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be two independent random samples of observations in the Euclidean space R^d from unknown distribution function F_i , i = 1,2, respectively.

The two samples are combined into a single sample Z_1, Z_2, \ldots, Z_N of size N=n+m, , such that

$$Z_{i} = \begin{cases} X_{i} & , & i = 1, 2, ..., n \\ \\ Y_{i-n} & , & i = n+1, n+2,, N \end{cases}$$

Let $R_j(X_i)$ = rank of observation X_i with respect to distance from X_j . Then we define X_i as the k^{th} nearest neighbor of X_j if $R_j(X_i) = k$ and as a k-nearest neighbor if $R_j(X_i) \le k$. Assume that there will be no ties.

Let $I(i,j) = I\{Z_i \text{ and its } j^{th} \text{ nearest neighbor are from different samples} \}$ where $I\{E\}$ is the indicator function of the event E. For i = 1,2,...,N and k=1,2,...,N-1, define

$$B_i = \sum_{k=1}^{N-1} B_{i,k} = \sum_{k=1}^{N-1} \sum_{i=1}^{k} I(i,j)$$

The object of the present investigation is to rewrite B_i as a linear function of the Wilcoxon-Mann-Whitney statistic and to characterize a Markovian structure for the Wilcoxon test.

2. A representation for B₁

Choose the first variable to be Z_i (fixed), i = 1,2,....,N and calculate $\|Z_j - Z_i\|$, j = 1,2,....,N, $j \neq i$. The combined ordered arrangement of the two samples can be denoted by a vector of indicator random variables $Z_{i,k}$, where $Z_{i,k} = 1$ if the point Z_i and its k^{th} nearest neighbor, Z_j , belong to different samples and $Z_{i,k} = 0$ if both points belong to the same sample, k=1,2,....,N-1. The rank of the observation for which $Z_{i,k}$ is an indicator is k, and therefore the vector Z_i indicates the rank-order statistic of the combined ordered arrangement of the two samples and in addition identifies the sample to which each observation belongs. B_i can be expressed in terms of this notation. This kind of statistic is called a linear rank statistic which is defined as

$$B_{N-1}(Z_i) = \sum_{k=1}^{N-1} a_k Z_{i,k}$$

where a_k are given numbers.

Lemma

For each $i(1 \le i \le N)$, a linear relationship exists between the statistic B_i and the Wilcoxon-Mann-Whitney statistic.

Proof:

$$B_{i,k} = \sum_{j=1}^{k} I(i,j) = \sum_{j=1}^{k} Z_{i,j}$$

$$B_{i} = \sum_{k=1}^{N-1} \sum_{i=1}^{k} Z_{i,j}$$

If we take $a_j = (N-j)$ then $B_{N-1}(Z_i)$ can be written in terms of $B_{i,k}$ as follows:

$$B_{N-1}(Z_i) = \sum_{k=1}^{N-1} (N-k)Z_{i,j}$$

$$-92-$$

$$= \sum_{k=1}^{N-1} \sum_{j=1}^{k} Z_{i,j}$$

$$= \sum_{k=1}^{N-1} B_{i,k}$$

$$= B_{i}$$

Therefore,

$$B_{i} = \sum_{j=1}^{N-1} (N-j) Z_{i,j}$$

$$= \begin{cases} mN - W_{i} &, & i = 1, 2, ..., n \\ nN - W_{i} &, & i = n+1, N+2, ..., N \end{cases}$$

where

$$W_i = \sum_{i=1}^{N-1} jZ_{i,j}$$
 is the wilcoxon rank sum statistic.

So, Bi has a Wilcoxon-Mann-Whitney distribution.

Thus B_i is actually the same as the Wilcoxon-Mann-Whitney rank sum test, since a linear relationship exists between the two test statistics. Therefore, all the properties of the tests are the same. One of the important properties is a Markovian property which is proved in the following section.

3. A Markovian Property of the Bi,k

The main result of this paper is the following

Theorem

For every i $(1 \le i \le n)$, the sequence $\{B_{i,k}, k = 1,2,\ldots,N-1\}$ is a Markov chain, i.e., for every $k (\le N-1)$ and max $(0,k-n+1) \le r_1 \le r_2 \le \ldots \le r_k \le r_{k+1} \le \min(k+1,m)$

$$P(B_{i,k+1} = r_{k+1} \mid B_{i,j} = r_j; j \le k) = P(B_{i,k+1} = r_{k+1} \mid B_{i,k} = r_k)$$

Proof:

Let S be the set of all permutations of $(\{1,2,\ldots,N\}-\{i\})$ satisfying the condition $\{B_{i,1}=r_1,B_{i,2}=r_2,\ldots,B_{i,k}=r_k\}$. It is clear that for any $s\in S$, $B_{i,k+1}$ can assume only the values r_k and r_k+1 . If $\{a_1,a_2,\ldots,a_N\}\in S$, then in the set $\{a_1,a_2,\ldots,a_k\}$, we have r_k elements of the set $\{n+1,n+2,\ldots,N\}$ and $\{k-r_k\}$ elements of the set $\{1,2,\ldots,n\}$. Then we may have either of the following:

1. $k + 1 \in \{n+1, n+2, ..., N\}$. This happens with the (conditional) probability

$$\frac{m-r_k}{N-1-k}$$

 $k+1 \notin \{n+1, n+2,...,N\}$. This happens with (conditional) probability

$$1 - \frac{m - r_k}{N - 1 - k} = \frac{n - 1 - k + r_k}{N - 1 - k}$$

In case (i), B_{ik+1} can assume only the value r_k+1 with probability $\frac{m-r_k}{N-1-k}$, while in case (ii), $B_{i,k+1}$ can assume only the value r_k with probability $\frac{n-1-k+r_k}{N-1-k}$.

Thus, the assumable values of $B_{i,k+1}(viz.r_k, r_k+1)$ and their respective (conditional) probabilities (given the $B_{i,j}$, $j \le k$) depend only on the values r_k assumed by $B_{i,k}$.

Corollary:

For every k $(1 \le k \le N-1)$ and r_k , we have

$$p(B_{i,k} = r_k) = {\binom{N-1}{k}}^{-1} {\binom{m}{r_k}} {\binom{n-1}{k-r_k}}$$
(1)

for max $(0,k-n+1) \le r_k \le \min(k,m)$, i = 1,2,...,n, and for every $\ell > k$, $r\ell \ge r_k$

$$p(B_{i,k} = r_k, B_{i,\ell} = r_\ell) = \frac{\binom{m}{k} \binom{n-1}{k-r_k} \binom{m-r_k}{r_\ell-r_k} \binom{n-1-k+r_k}{\ell-k-r_\ell+r_k}}{(N-1)!\{(k)!(\ell-k)!(N-1-\ell)!\}^{-1}} \dots (2)$$

for $\max(0,k-n+1) \le r_k \le r_\ell \le \min(\ell,m)$; $i = 1,2, \ldots, n$; and $1 \le k \le \ell \le N-1$.

By (1) and (2), we may note that

$$p(B_{i,k+1} = s/B_{i,k} = r) = {N-2-k \choose m-s} {N-1-k \choose m-r}^{-1} \dots (3)$$

for $s \ge r$ (and 0 for s < r), so that

$$p(B_{i,k+1} = S/B_{i,k} = r) = \begin{cases} \frac{m-r}{N-1-k} &, s = r+1 \\ \frac{n-1-k+r}{N-1-k} &, s = r \\ 0 &, s \ge r+2 \text{ or } s < r. \end{cases}$$
(4)

Hence, from (4) we have

$$E(B_{i,k+1}/B_{i,k}) = \frac{(N-k-2)}{(N-1-k)}B_{i,k} + \frac{m}{(N-1-k)} \qquad(5)$$

for k = 1, 2,, N-2.

Also,

$$E(B_{i,k+1}^2/B_{i,k}) = \frac{(N-3-k)}{(N-1-k)}B_{i,k}^2 + \frac{2m-1}{(N-1-k)}B_{i,k} + \frac{m}{(N-1-k)} \dots (6)$$

Conclusion:

We conclude that the Wilicoxon-Mann-Whitney test can be characterized by a Markovian property. Furthermore, such Markovian property is essential for a new proof of the normality of the Wilcoxon-Mann-Whitney test via Martingale limit theorem.

Note: For i = n+1,..., N, the same resents are obtained but n and m are interchanged.

References:

- Bailey, N.T.J. (1964) The Elements of Stochastic Processes. Wiely, New York.
- Barakat, A.S., Quade, D., and Salama, I.A. (1996) "Multivariate homogeneity testing using an extended concept of nearest neighbors. "Biometrical Journal, 38, 5, 605-612.
- Bishop, Y.M.N., Fienberg, W.E., and Holland, P.W. (1976) Discrete Multivariate Analaysis: Theory and Practice. MIT Press, Massachusetts.
- Gibbons, J.D. (1985) Nonparametric statistical inference. Marcel Dekker, New York.
- Sen, P.K. and Salama, I.A. (1983) "The Spearman footrule and a Markov chain property". Statistics and Probability Letters, 1, 285-289.