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ABSTRACT

Bgsed on an interim type 1l censored sample of size n, a Bayesian predictive
approach is adopted to obtain the predictive probability that if testing is continued for a
further type 11 censored sample of size n1, a decision will be reached regarding a future
observation (rom the two parameter Pareto distribution. Since the Pareto distribution is
teansformation equivalent to the exponential distribution, the results can also be applied
to the latter distribution.

1. INTRODUCTION

Geisser (1992) addressed the problem of curtailment or continuation of an
experiment or trial at some interim point where n observations are at hand and
al jeast ¢ > n observations had originally been scheduled for a decision. A
Bayesian  predictive ‘approach was used to determine the probability that if the
uial was continued with a further sample of size m where n + m>c,a
patticular decision would be reached regarding a parameter. He also considered
the same problem when it is required to reach a decision about a future .
observation. This problem is important when the experimental procedures are
costly or time-consuming . In such a case if it is assumed that a fixed-size
experiment requires say c trials for concluding the effectiveness of a new
trecatment, drug or therapy, it will be of great interest for the investigator to know
afler observing same unplanned interim  sample size n  whether or not to
continue (he experiment until its prescribed minimal size ¢ or beyond. This
minimum sample size may be required to m#himize a ‘preposterior’ measure of
loss [sece Martz and Waller (1982)] or aMernatively to maximize a certain
measure of information.

Geisser (1992) discussed this problem for a number of random sampling
distributions including the one-parameter exponential distributions with all
values fully observed. Geisser (1993) dealt with the same distribution when the
observations are subject to censoring and loss te follow up. Papandonatos and
Geisser (1999) considered the problem of Bayggian interim analysis of lifetime
data that are independently distributed accofdfﬁ'g to an accelerated-failure time
model. A possible solution was suggested based on Laplace approximation to the
posterior  distribution of the parameters of interest and on Markov-Chain Monte
Carlo. Both Geisser (1993) and Papandonatos and Geisser (1999) considered
hypotheses regarding parameter (s) of the assumed lifetime distribution .

In this article, Bayesian interim analysis of censored observations from the
two-parameter Pareto distribution is considered. Since the Parcto distribution is
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transformation equivalent to the exponential distribution, the results can also be
applied to the latter distribution.

In section 2, some results relating to Bayesian analysis about the Pareto
distribution are reviewed. In section 3, the following problem is considered.
After observing a type Il censored interim sample of size n, it is required to -
calculate the predictive probability of accepting a hypothesis regarding a future
observation Z from the two parameter Pareto distribution if tesing is continued
for a further type II censored sample of size m. In section 4 application of the
results to the two-parameter exponential distribution is discussed. Finally
numerical examples are provided in section 5 to illustrate the theoretical results.

2. PARETO POSTERIOR AND PREDICTIVE DENSITIES

Consider data from a two-parameter Pareto type I distribution with shape
parameter @ and scale parameter o and with probability density function,

fao)=ao® x ™Y x>q, ' @.1)
denoted by PI(a,0) where a>0, 0<o<L,: It is assumed that @ and o are
random variables . For other types of Pareto distributions , see for example
Johnson , Kotz and Balakrishnan (1994).

The two-parameter Pareto distribution has been subjected to a Bayesian
analysis regarding the Parcto parameters by some authors e.g. Lwin (1972),
Amold and Press [(1983),(1989)]. Problems related to Bayesian prediction of
future observations from the Parcto distribution have been studied by Geisser
((1984), (1985)), Nigm and Hamdy (1987), Amold and Press (1989) and
Dunsmore and Amin (1997). For recent articles on prediction , refer to AL-
Hussaini [(1999),(2001)].

If both a and o are unknown, Amold and Press (1983) suggested for the
Pl(a,0) distribution a power —gamma prior , denoted by PG(ga,uL,) , by

assuming that a has a gamma distribution , while the conditional distribution of o
given «a is of the power function form, sce Amold (1983) . The density function
of
(a,0) is then given by: -

7(a,0) < gy %! a>0,0<0<l,, Q22
where a, 11,1, are positive constants, g > -1 and L§ < u.

For a vague priorwehaveg=-1, y=1, a=0 and Ly —> «. Consider the

case of typell censoring where only the first r ordered observations X,
X)Xy r < n ) in a sample of n items are measured in an experiment in
which all items are tested simultaneously. In this case the results of the
- informative experiment can be summarized by the jointly sufficient statistics

Xpand Q0= In X +(=r)in X,y -n In X
i=t
Based on the results of Epstein and Sobel (1954), X;;yand Q are independent
with conditional joint probability density function given by
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fxgya | “’”=r:r {nq" ? exp-aq)a™xg ™) 9>03 >0, 23)

where ¢ is a realization of Q.

The posterior distribution of @ and o is a Power — Gamma density of the
form . _
= (a0 | X1, q)=PG(r+g,n+a,n x{',;'n Xpw) 24
L]
where w=min (Lo, xm)-

Based on the first 7 ordered observations of the informative experiment,
consider predicting a future observation, Z, from the Pareto distribution. From
Dunsmore and Amin (1997), the predictive density function of Z is given by

(@+nXg+r) [' ‘(a:.i)"‘(i)] -

(@+n+1)L [|+( % ln(_‘z;]] S a>W,

f@z l x(.,.q)=

@s) .
where
r
Le) In xp+In pg+(n-r)ln x,)—(n+a)lnw.
i=l

3. PREDICTIVE PROBABILITY OF ACCEPTING THE NULL HYPOTHESIS
' THAT A FUTURE OBSERVATION z IS AT LEAST z,

The problem of interest is of testing a hypothesis regarding a future
observation z, namely
Hp:z2zp versus Hi:z2<zp . (cB))
At the interim stage, consider a type II censored sample of size n from the two-
parameter Pareto distribution where Xy;) < Xy < ...< Xy are fully observed while
the remaining (n-d) observations arc censored. Assume also that a type II
censored sample of m further observations from the same distribution are put
on lest until X items Xpes) < Xpeg)...< Xpeny are fully observed while the
remaining  (m — k) observations are censored. Suppose that at the end of the
experiment we will decide for Hy if

Pr(Z> 2| X8 Xy 2P 62
where
d
"'=Z In x4 +(r-d)in x4-n In Xy
- i=l

ek
= Z In x, +(m-k)in Z(net) —m In Xaet) -
tearel
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Considering the prior distribution given by (2.2), it follows from (2.5) that the
predictive density function of Z is given by

e
N

L]

EJEN

AG [l-(

(A+1)zH , a3)
[I +(

Iz | x(1ys8sX(natyott) =

x|~

where :
A=a+n+m, G=g+d+k w|=min{[.¢;,xm,x(,.+u}
H=s+nlnxgp+u+minxg.p+Inu—Alnw,
Equation (3.3) gives the predictive density function of a future 6bservation from
the Pareto distribution based on the results of the first d+& ordered observations
of an informative experiment of size n+m consisting of two type II censored
samples .These results can be summarized by the statistics X7, Xpus1y, S and U ,
where S and U are defined by equation (3.2) . It thus follows that the predictive
density function given by (3.3) has the same form as the predictive dénsity.
function given by (2.5) .The quantities n, r, w, L appearing in (2.5) are replaced
by n+m, d+k, w; and H respectively in equation (3.3).
From (3.3), it follows that :

8 L0 I
DEOEE

Now consider the probability defined by (3.2). .

PrZ> 2| Xy08, Xy t) =

For the case zp> w , it follows from equation (3.4) that (3.2) is satisfied if :

[H%l..('_a]rz&‘—:ﬂe :

w

which can be written as

1
LEWE 4 [¢_
7] "{ " ]S[ [(A+ I)p] ']
Noting that the left hand side of the above inequality is always positive , it follows

that : '
Forthecasezo>wy , -
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AT 4 . .
f [(A+l)p] "'“"PZ;A—;,;- (3.2) will not be satisfied

A o ws
If p< Tl (3.2) is given by,

1
_A_y. £ .
"[(pmn) '] 2"{".]' 0=
Similarly it can be shown that for the case zo <w, ,if ps‘—':-l,(s.z) will

always be satisfied whereas if p> 7% ,(3.2) is given by

n[((l—pxul))'%-l] s{n{‘—:.l]] ) (.6)

Now suppose that only an interim type II censored sample of size » is
avnilable. Based on this sample, it is required to calculate the predictive
probability that if testing is continued for further m observations Z exceeds z, with
a probability greater than or equal to p. This probability is given by
: P’ =PAPHZ > 2g| XystsXinery¥) 2 P} - 3.7
The inner probability is defined by equation (3.2) whereas the outer probability is
obtained using the joint predictive density function of Xy and U.

From Dunsmore (1974), X, and U are independently distributed, the
conditional joint probability density function of ¥ =InXg+y and Uis given
by:

f(v,ul a-.o) =

a'u*? exp{-a[u+m(v-inc)]} ,u>0,v>ino.

) (3.8)
Integrating (3.8) with respect to the posterior distribution of (a,0) which is given
by (2.4), with r being replaced by d, it follows that the joint predictive density
function of (v,u) is given by '

m
I(k-1)

o m(atn) H™ u"I(G)HC 450
Sev.n| xp,.8) Fii-)lig+d) 1 = ,#>0,v> - (39

where

o
II|=Z In x4+l p+(r-d)in xq -(a+n)hn w, HG and 4 are defined in (3.3).
-l
It is clear that the calculation of P° given by (3.7) differs according to
whether zp <wjor zp> wy At the interim stage , howev.er.m is unknown since
X(a+1) has not yet been observed . Hence, to calculate P, two cases have to be
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considered :  zp >w and zp<w, where w is defined in equation (2.4). These
cases will be investigated in the following two subsections.

3.1 The case zp>w

Since w; can be expressed as minimum (w, xu+1)) , then zo > w implies that
20> Wy )

For this case , when p <7':—| , _
PH(Z > 2| X(1)s5.X(auryot) 2 p is defined by equation (3.5). It is noted that :

If In w<v, thenw;= w and it follows from the definition of H given in
equation (3.3) that ( 3.5) can be put in the form

u+vaLl(<-'-, (3.10)

1
A TJo
K—[p(A+l)] -1
and

d
K, =—K[ln '”'"Z In 'x(,)+(n-d)lnx(d)—(a+n+m)|nw]+ln(z—‘:-J.

where

Il In w> v, then w;=xyu+)and (3.5) is expressed as

u—v [a+n—%]zkl—ﬂk:ﬁ 5 (3.11)

where

d :
Ky = K[In p+z In x +(n—d)|nx(,,].
=
For zp> w, the following cases have to be considered :
A *
i) Il p2——,then P =0.
Wi rz

This follows from noting that (3.2) is not satisfied in this case as explained above.

" A 1
f L —
(i) If p< L (a+n K)>0 and

F d
..[|..,,+ Z Inxg,y +(n—d)lnx(,,,]+(a+n)lnw+%ln(%’)SO ,

i=l
then P'=1.
This can be shown as follows . If condition (ii) is satisfied , the following
inequality is obtained for values of v<Inw.

- In{w) [a+n__] > Inzg-K, .
K

K
But since In(w) [aﬂ.-%] is alower bound for the left hand side of (3.11),
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it follows that (3.11) will always be satisfied . Applying a similar argument ,
it can. be shown that for values of v>Inw , equation (3.10) will also be
always satisfied under condition (if) .

A 1
(iii) 1r p<—zl—-ﬁ'(a+"_F)>°

- [lnp +zd: Iuxg, +(n—d)lnx(,,]+(a+n)lnw+—l-ln(-’l) >0,
=l K \w
then

P | [ fodsaodddus [ [ £y o)

(r)aR; (vm)eRy

where R, is the region of (#> 0 , v> In w) values satisfying (3.10) and R;is the
region of (u >0, v<Inw) values satisfying (3.11).

It can be shiown that

P=pP P eyt (3.12)
where

1"=|_M
' (k-1,g+d)

pr o _taen) | o lln('—'] i Hp
2 T@rnem)| ' (K \w Blk.g+dXg+d+k-1) |’

P = m e
' tavu+m) Pk~ Ig+d)""‘

Jg o) ‘(?- f)

= (G-i-2) |\ K.[K(a+n)-1]

[K(a+n) -y "

oz

Ky =[inzg - K; +(In(w))(K(a+m) - K ,

o :
-[In HE Z Inxg +(n- l)hx(,,]+ (@+n)in z,
i=l
[X(a+n)-1] ’

Kq=
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p,(a..a,)=[ y*(l-y)dy, 4,>0,a,>0,0<x<l.

A 1
(iv) If p<m,(a+n—i)<0 lmd

d
-[lnp+ E Inx, +(n—d)lnxm:|+(a+u)lnw+%ln('7°) <0,

P =1-—"= (ﬂ)ﬂ[l-(a+n)K]"'”‘". G.13)

4
",=Iny+2 Inxgy +(n~d)inxy ~-(a+n)in z5. .
=i

A 1
wIf p<-m,(a+n—i)<0 and

& of 5
(a+a)in z, <Iny+z Inxy) +(n—-d)inx,, <-l—ll(£'-)+(¢+n)hw 8
= K \w )
then
P=p'+p' +P , (3.14)
where P,’and P;’ are defined in (3.12)

P.=_(ﬂm D1 (a+ MR
4 H, (a+n+m)

[,_ﬂg(k-l.gm
ﬂ(k—l,g+d)

pfsha] / [42) v

Theorem: A theoretical limit for P* given by (3.14) when both m and k tend to
infinity with their ratio kept constant is given by:
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2y
In = o
b s:_d__'{zl _(ﬂ) -

lim M=1-
n o 1, Cnp) | \H,

IO |
,[H, —(a+n)||{';°)}-ln P

where D(.) is. the distribution function of an F variate with 2(k-1) and 2(g+d) *
degrees of ficedom.

Eroof

By using the relation between the incomplete beta function and the distribution
. function of an F variale , it can be noted that

(3.15)

Lif5)-
/l,..(k-l.gfd)" uq.d)(K“{w) "'J
Bk-\.g+d) U &k-9) ’

Using the formula a*=exp(x In q) in expressing K defined in equation (3.1) and
- applying the Maclaurin’s formula for expanding the function exp (x), it can be
shown that

ot [ o)

pe H k-0 | HGhp)
Hence .
) s _1_pl&+d ln(z,lw! .
ml_ﬂl‘ol’, =1 D[—m “inp) ] (3.16)

Similarly it can be shown that if (i) is constant, then
m

. L}
|i|‘|1[|_/’cz(l-l.g +d)]_,_ ((+d)||{w]

Pik—1.g+d) (H,—(a+ .).(%)K_hp) '

Noting that
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i —"[1—(a+nm)K] 8L patn
m->o0q+n+m
it foltows that

. (fl_!_)“’pm - | (g+d)|n(z—°) . (3.17)
B

li 1’4 =
o H, H,—(a+ n)ln( ))(— In p)

n—»w0

It can be shown that

tim C,*" = exp[-H, I/ p)/ In(z, I W)},

" and that

+d
lim (a+mH}

HI=AeD

gid
(ad+-n+m) pk.g+dXg+d+k- I{l ln[z—o])
K \w
L latm HFYKE (g +d+ k-1)

=7 =0.
(a+n+m)(g +d) l"(k)ln(w)

l-'l—)w

FHence
lim P =0. (3.18)-

Tom-»o

Using (3.16) , (3.17) and (3.18), the theoretical limit given in (3.15) ls
eslabhshed

(vi) If p<ﬁ—; (a+n——l-)<0 and

=1

[I:;;14Z Inx,, +(n- d)lnxm] [(a+n)lnz,,] s

then

P'=P|‘+P2 .+1’5., ) : (3.19)

k-2 k=21
m(11,)**[1 - (a + W)k} 42 ( i )( H.] ) .
k-lLg+d < s o427
A( _g+ Xa+n+m) (G—i—Z)(In(%)) [%_(“_")]

wherep,” = -

Note that the condition (a+n- %) <0 implies that
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¢+mmn< +(a+n)lnw

The derivations of equations (3.12) , (3.13),(3.14) and (3.19) are given in the
'Appendix. :

3.2 Thecase Zg<w

It is noted that for the case zg<w:
20> wy for values of nand v satisfying —c0<v <lnz, ,u>0.
zo<w; for values of 1 and v satisfying Inzo <v<Inw,u>0 and v> Inwu>0.
It can be shown that :

. A 1
wIr I,SA—I nmi(aﬂ k]>0,lhen

P=\ (3.20)
(ii). If psﬁ md(a+n-—;-)<o
then
T - M[l—x(un) ok (321
(a+n+m) Hy - 21) |

Gi)) If p> ﬁm

d (a+n.+m)ln x
_[Iny+z Inx(,,+(n—d)lnx(,)]+(+n)lnw+4[—lx f0/ <0,
=l

]
then - .
P=0 3.22)

where
K, =l0-p)t+a)] ™ 1.

A A
(iv) If PoE— and

J (a+n+m)|l{-!
_[Illﬂ+z lnx(,,-l-(n—d)lnx(‘)]+(¢+n)hw+ = ”])0,

] ]
lhﬂ} e
P'=Ps +Py-Py . (.23)
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where

pr P (k-kig+d)
‘" p(k-lg+d)’

e m_ (HY" B (k-Lg+d) @.'}
n——{m(m) lk-Tgra) (AWK H(atnim)] p,

P = (a+m)HF ;
* 7] (@a+n+m)g+d+k-1)B(k,g +d)
g+dak-1
(a+n+m)lr{1)
K, -\ % _H,
K
(a+n+m)ln(1) 5
Zy

(a+n+m) ln[l] (a+n+m) In(l]
29 z
C', s —_— Hl ————

Xy [3
(a+n+m) ln(zi]
K¢ =(a+n)4+ (230FM)
" Ky .
The derivations of equations (3.20) ,(3.21) , (3.22) and (3.23) are given in the
appendix .

4. APPLICATION OF THE RESULTS TO THE TWO-PARAMETER EXPONENTIAL
DISTRIBUTION

Making the transformation 7= In X and using the reparametrization

d=In o in(2.1), we obtain the two-parameter exponential distribution
with probability density function given by

Jitla.6)=aexp[-a(t-5)], t26,a>0.

4.1
The natural conjugate prior for (a,d) is given by Dunsmore (1974) as
4 ) .
#(@,6)= ;(" sa* ep(-alh+a(b-8)]), 8<ba>0 @42)
g : .

wherea>0,h>0andg> -1,

Nole that (4.2) may be obtained from (2.2) by making the transformation
d=In o and setting h+ab = In u where b=InL,.
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‘Givena type I censored sample of size n where ty;) < t) < ...< 1) denote
-the first r ordcred observations, the posterior distribution of (a,d) is given by

G
lf;’é —a® ep(~a[L+ 4(B-5)]), 5<B. @3

F.(a-‘sl ‘1;;-4) =

where

Q= 2’: ty + (1 =)y —nty), qis a realization of Q .
=]
Ay=a+n,

H+A,B=h+nb+i Iy +(n=r),,
=]
and
B =min (b, l(,)). .

Consider a future observation from the two-parameter exponential distribution .
It can be casily shown thatif we apply the transformation ¥ = In Z
where Z~PI( a,0), then Y~exponential (aino) so that Pr[Y <1y ] =
Pr(Z <zg) where fo=Inz,. )

It [ollows that all of the results presented for the two parameter Pareto
distribution may be applied to the two-parameter exponential distribution
by setting

T,=h X, i=12,.,n+m,

d=Ino,

b=In Ly,

B =min [In Ly,In xm]-lnw.
Y=l 2,

to=Inz,

By =min [In Ly.n xg, In x(,,,.,]
=l w,. '

REMARK

It is to be noted that for the prior given by (4.2) there is no restriction
for 610 be non negative. In life testing experiments, taking &>0 isa
natural constraint. The results presented in this article however , may still
be used as good approximations for the corresponding results for the case
where 5> 0 if the probability that & takes negative values is negligibly
small. From (4.3), the posterior probability that & takes negative values is

. L
gvet by (L +AB
(refer to Evans and Nigm (1980) fora discussion of this problem ).

i
] " which s likely is be small in life testing experiments
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5. NUMERICAL EXAMPLES

Example (5.1). .

Nigm and Hamdy (1987) used the Pareto distribution to model the survival
times (in years) of new small businesses, they gave the following data which
represent the operational times of the first 10 of a random sample of 15
businesses . '

1.01,1.05,1.08,1.14,1.28,1.30, 1.33, 1.43, 1.59, 1.62.
A non-informative prior is assumed for the parameters .

It is noted that at the interim stage, the predictive probability that Z exceeds zo
givenby Pr(Z > zolx(,),s) may be calculated for different values of zq as follows .

Pr(Z > 1.007] xg),5)=0.943.
Pr(Z > 1.02] x;y,,5) =0.920.
Pr(Z > 1.09] x),5) = 0.809.
PK(Z > 1.18] xg),5) = 0.696.
PrH(Z >1.32] x,5) =0.565.

Table (5.1) displays P’ for different values of zp, p and k when m=15.

ISSR, CAIRO UNIV,, VOL., 45, NO., 1, 2001
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Table (5.1) :P° for different values of g,
pand k when m =15

P ] k 5 7 10 15
Nﬂ
0.5 0.999 0.999 * 0999 0.999
0.6 0.999 0.999 0.999 0.999
0.7 1.007 0.998 0.998 0.998 0.998
0.8 0.977 0.976 0.976 0.975
0.9 0.840 0.841 0.842 .| 0843
0.5 0.999 0.999 0.999 0.999.
0.6 0.999 0.999 0.999 0.999
0.7 1.02 " 0998 0.997 0.997 0.996
0.8 0.966 0.996 0.965 0.964
0.9 0.767 0.768 0.769 0.770
0.5 0.999 0.999 0.999 0.999
0.6 " 0999 0.999 0999 . 0.998
0.7 1.09 0.977 0.974 0.970 0.966
0.8 0.635 0.629 0.627 0.626
09 [ 0.002 0.003 0.005 0.008
0.5 0.999 0.999 0.999 0.999
0.6 ! 0981 ;- 0969 . 0953 0.935
0.7 LIS | 0397 | 0.426 0.449 0.469
0.8 ~ 0014 | 0022 0.03 0.041
0.9 0 .0 0 0
0.5 0.857 0.823 0.800 0.783
0.6 . 0210 0.247 0.247 0.309
0.7 1.32 0.015 0.023 0.032 0.044
08 0 0 0.001 0.001
0.9 0 0 - 0 0
Comments

From the numerical results it is observed that :

(1) The values of P’ are sensitive to variations in p and z, especially for larger
values of either por 2o .

(2) For values of p less than the predictive probability at the interim stage
increasing k may decrease P*. On the other hand forvnlueuofpgreatuthnn
the predictive pmbablllty at the interim stage increasing k may increase P'.
This conclusion is similar to the one reached by Papandonatos and Geisser
(1999) who explained this situaticn as follows . Any value of p less than the
predictive probability at the interim stage would have resulted in acceptance of
Hy al the interim stage . Hence by introducing uncertainty in the form of extra .
observations , we risk altering our conclusion in favor of H, . Similarly any p
greater than the predictive probability at the interim stage wou'd have made
acceptance of Ho impossible at this stage . In this case by in-reasing ka
favorable outcome might then become possible at termination .

Based on the data given in example 5.1, figure (5.1) (pagt 17) , shows

I’ for different values of p and m for zg fixed at ! .09 when both &k and m are

"increased such that their ratio isalways kept constentat0.5. The value of P*

when m — o is calculated using the theoretical limit given by equatic: (3.15).
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(3) Itis observed from figure (5.1) that for values of p given by 0.65, 0.7, 0.75
and 0.8 which are less than the value 0.809, predictive probability at the interim
stage, the curve corresponding to m = 20 is the highest curve . Whereas for values
of p given by 0.85 and 0.9 which are greater than 0.809, the curve corresponding
to m —» oo is the highest curve. This comment agrees with comment (2).

Example ( 5.2)

In astudy of new anticancer drugs in L1210 animal leukemia system, Johnson,
Zelen and Kemp (1965) successfully used the two-parameter exponential
distribution as the model for survival time.  The system consists of injectinga
tumor innoculum into imbred mice. These tumor cells then profilerate and
eventually kill the animal, but survival time may be prolonged by an active drug
(cyclophosphamide)

The following data represent the survival time of 19 mice treated with a dose .
of 320 mg per kg of cyclophosphamide on day 7 after receiving a tumor

" innoculum.

Table (5.2.1): Survival times of Mice

Time (t;) 17| 18119 | 20 [ 21 | 22| 23 | 25| 26
Number of mice’ .
dying 41 17131111 St 1 2] 1

To illustrate the results presented in this paper, it will be assumed that the -
minimum sample size required is given by 34 and that the treatment will be
considered of value if the survival time of a future observation exceeds 18 with
probability p = 0.70. An interim analysis is conducted to see whether itis
worthwhile to continue the trial with m =15 additional rats for different values
of k. Table (5.2.2) displays values of P* corresponding to several values of k.

Table (5.2.2):P" for different values of k
fp=18, p=0.7 and m=15

K . P

2 , 0.8972
5 0.8801
10 0.8550
15 0.8350

Hence continuation of the trial is likely to achieve the required goal for all
values of k considered.
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Figure 5.1:Values of P* for different values of p and m when k /m=0.5
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APPENDIX
1 : Derivation of equation (3.12)

Suppose that condition (jii) defined in section 3.1 is satisfied . In this case P
can be expressed as
P'= L+h
where

L= I Ij'(v,ulx(l),s)dvdu
(v.n) &R,
and

I, = I _[f(v,u)lx,'.,,s)dvdu

(vn)eR,

Ry is the region of (x>0, v> In w ) values satisfying (3.10) , Rz is the région of
(@ >0, v < In w)values satisfying (3.11) and f (v,u |x(|),s) is defined by equation
(3.9). Theregions R, and R; are shown in figures A.1 and A.2 respectively .

v=inw v=inw
v<v (1) R Rz
v> vo(u)
u=0 . U=0
Figure A.1:Region R, satisfying v vy() Figure A.2:Region R, satisfylng vSvy(u)
where

v (u)= %[%—u]

(Ku+ K, -In(zy ))
K(a+n)-1

vy(u) =

From figure A.1, it can be noted that I; can be expressed as
I=Intha,
where

1, = J: _l;:w J, u|xw,s)dvdu .

and

;= L"- J:(u) f(v,u|x(,,,S)dvdu ;
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u -%—mln(w) .
1t can be shown that

Iy =

@+n) [} Balk-Lg+d)
(a+n+m) Bk-1,g+d)

and Jj; cdn be expressed as

=Py,

where ¢, , A(a1,a2) and Py’ are defined in equation (3.12).

From figure A.2 , , can be written as
L= hitln,

where

I, =J: . I (v.qx(,,.s)dvdu
In= r I:(.’ f(v’qx(l):’)d"du
and .

(In(z,) - K; ) + In(w)}K(a +n)-1)
u = X

It can be proved that

Iy =—" l_ﬂa(‘-“-!‘“’)
U " a+n+m) Bk-1,g+d)

(A.1)

(A2)

(A3)

(Ad)

(A.S)

Applying the following binomial expansion for the case where k-2 is & positive

integer

(-x)2= ‘f:[": ](-l)'x'

=)
it can be s!mwn that
Inp=P; ,

Whete P;’ is defined in equation (3.12) .
Noling that :

Iythi=P,’

where P," is defined in equation (3.12) , equation (3.12) is obtained .

(A6)
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2 :Dcrivation of equation (3.13).
Suppose that co_ndition (iv) in section 3.1 is satisfied . P’ will be gi\'ren'as follows
P'= I+l ,

where

Iy = I If(v,ulx(,,,s)dvdu

(var)eRy
and

I = I If(v,u'x(l).s)dvdu .
(v.n)el,

* Rs is the region of (>0 , v>Inw) values satisfying (3.10) and R, is the reglon of
(>0,v<Inw) values satisfying (3.11) .
Note that the inequality u+mv > K/K defined in (3.10) will be satisfied for all values
of n and v > In w since m In(w), which is a lower bound for the left hand side of
(3.10) is greater than K;/K . Hence

.], = EJ:W f(v,ulx(,,,s) dvdu.

It can be shown that
(a+n)
(a+n+m)
R4 defined in integral I4 is shown in figure (A.3) .

(A7)

3=

=lnw

Ry

V< vy(u)

U=0
Figure A.3:Region R, satisfying v2v,(u)

From figure (A.3), _it can be observed that

1= [ foadsgedvdu

which can be expressed in the form
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I,=

m
(a+n+m) H,

O
l—(—'] (1—(a+mK)s+est (A8)
where H, is defined i equation (3 9) and Hhis deﬁned in equahon (3.13).
From equations (A.7) end (A.8), it is noted that P’ is as given by equation (3.13).

3z Derivation ‘of cquation (3.14)

Suppose that condition (v) defined in section 3.1 is satisfied .
In this case
P'= Istls
where

s Is= I If(""'l"(l)")M
(ra)aRy
and

o dg= | [ ey sva .
(rr)ak,

Rs is the region of (>0 and v> In w) values satisfying inequality (3.10)
and R is the region of ¥ >0 and v < In w velues satisfying (3.11) .
Since according to condition (v)

1
-[lnp+§lnx(,, +(n- d)lnx(,,]+(¢+n)lnw+iln[ ] >0
it follows that Js will have the same form as I; which is the sum of /;; and /;»
defined in equations (A.1) and (A.2) respectively . Rg defined in J; is shown
in figure A4 .

Veln w
Re
v<vyfn)
U=0
FigureA.4:Reglon R, satisfying 12 v,{x)

Hence Js can be expressed as

I, = j:[:; ](v,u‘x(,),s)dvdu .

1t cain be sho‘;m that the above integral is the sum of two integrals .
Igtla 5 (A9)
where, Jg has the same form as I , and Ji; is given by :

(A.10)

a.y =y
L --K'l|-(l+llﬂf] I..m,“vv-"' .

where
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(g +m)H,FT(G)
T Tk -N(g+d)A4

G and 4 are defined in (3.3) . His defined in (3.9) and H; is defined in (3.13).

Note here that accordmg to condition w,H> 0 It can be proved that
L= Py,
where P4’ is delined in equauon (3.14) . It thus follows that P'isas given
by (3.14).

4: Derivation of equation (3.19)

Accordmg to condition (vi) , P can be expressed as
P =Irtly ,
where /7 has the form as /s or I; which is the sum of /;; and I}, defined in
equallon" (A.1) and (A.2) respectively .
Iy = Iyt .
Ig1 has the same form as J5; given by (A.5) and Iz, is defined by equation (A.10).
Notmg, : that /7, <0 according to condition (vi) , It can be shown that :
18“ I’ h .
where Ps’ is defined in equation (3.19).Hence equation (3.19) is obtained.

5: Derivation of cquation (3.20) .

Suppose that condition (i) in section 3.2 is satis{ied . For the case u> 0
and -o< v< In zg , the probability defined by (3.2) is given by (3.11). Since
(a+n)> /K , zo<wand H;>0, it follows that -In zq (a+n-1/K) which is
a lower bound for the left hand side of (3.11) will always be greater than the
right hand side of the same inequality . Hence (3.11) is always satisfied . For
'values of #> 0 and In z9<v<co, the probability given by (3.2) is also always
satisficd when p < (4/(4+1)) . -

6:Derivation of equation (3.21)

Quppme that p < (4/(4+1)) and (a+n-(l/K)) <0 as described in condition
(ii) in section 3.2 . In this case P" can be written as follows :

P =h+he+h; (A1) -

where

1, = _[ _[ f(v,u)lxlm,s)dvdu

(rp)eR,

Io= _[ If(v,u)lx(|,,s)dvdu
(van)eRy,

and
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Iy = j' j' Sy, s)dvedu

(v)ely

Rq is the region of (>0, -0 <v< In zp ) values satisfying (3.2) , R;o is the region of
(u >0, Inzo<v < In w) values satisfying (3.2). Ry is the regionof (v>0.v> Inw)
values satisfying (3.2) . For values of ( #>0, -0 <v< In z;) satisfying (3.2) requires
satisfying the incquality given by (3.11) . In this case the region R, will be as given in
figure A9 .

V=inz,
" pan(n)
Ry
U=0
Flgure AS : Region R, satisfylog v 2 wy(n)
L= f ]:;) j(wl,r(,, s)dvedn
" It can be shown that
4l
e (1Y [1-l1- K@i (A.12)
® " a+nim) [7A . "

For values of In zg <v<Inw ,sincep < (4/(4+1)), (3.2) will always be satisfied .
Hence J)p can be expressed as

Iy= l:. I: jﬁ'.nixm,s)dvdu

which is given by

ol 1
he ’_(..+:'.'+...)["[%] ] (A.13)

For values of v> In w

I,= r E_ _ﬂ'ﬂnix,,,.s)dvdu.

= nta
(a+n4-m)

(A.19)

hy
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Substituting (A.12) , (A.13) and (A.14) in (A.11), equation (3.21) is obtained .

7: Derivation of equation (3.22) )

Suppose that condition (jii) is satisfied . Since p > (A/(A+1)) , then for
- <v< In zy (3.2) is not satisfied . Fog In zp<v < Inw, (3.2) is given by equation-
(3.6) which can be put in the form

(@a+nrm)inzy d
1—Kgv § =2 Inp-!—Zlnx, +(n-d)Inx, : (A.15)

K5 i=l
where K5 and K; are defined in equations (3.22) and (3.23) respectively .
A lower bound for the left hand side of (A.15) is given by -K¢ In w . Note that this
lower bound is always greater than the right hand side of (A.15) , hence (A.15) will
not he satisfied . Applying a similar argument it can be shown that forv>Inw ,(3.2)
is also not satisfied . It thus follows that under condition (iii) of section 3.2 . equation
(3.22) is obtained .

8: Decrivation of equation (3.23)

Suppose that condition (iv) in section 3.2 is satisfied . For -00< v<In 2, (3.2) is not.
satisficd . For In z, < v<Inw, calculatmg (3.7) requires finding the values of (x,v)
satisfying (A.15) . It can be shown that in this case the probablhty given by the
following integral is obtained .

I, = J:’ _[::';) Jo, u)lx(,),s)dvdu

where

a-tn+m)inz
1y = Kg Inw—(——#—[

d .
Inp+2lnx,+(n-d)lnx,,]

Ks i=!
and _
(a +n+m)inzy
V= —| 42—+ + ) Inx, +(n-d)l
vy(w Kﬁ|: X, nu lz-l: nx, +(n-d)Inx, |

54 will be given by

hy =

m (ﬂ(‘. (k-lg +d)]+l’-,‘ (A.16)

(a+n+m\ flk-l,g+d)
where ;" and ¢y are defined in (3.23) .
For v> Inw , it can be shown that (3.7) is gwen by the following probability .

(@a+n) (Bk-lg +d) _p
(a+n+m)\ Blk-1,g+d) s

where Py’ is defined in (3.23) .

Combining (A.16) and (A.17) , equation (3.23) is obtained .

(A.17)

15 =
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