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Abstract.  Kolmogorov-Smironov statistic is rewritten using nearest
neighbors techniques and a characterization in terms of a Markov chain is
established.
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1. * Introduction '

Let X,Xy, ...... , Xo and Y|,Y2,....., Y, be independent random
samples in RY from distributions F(x) and G(x), respectively, with
corresponding continuous densities f(x) and g(x).

Construct the combined sample Z,,...., Zy, where N = n+m, such
that

x, , i=12..n
View » di=n+ln+2, . N

Let o} be the Euclidean norm, and define the K™ nearest neighbor to Z;
as that point Z; satisfying IIZ/' —Z,H < ||Z/ - Z,|| for exactly (k-1) values of

(0 £ <N, j #1,j). Ties are neglected, since they occur with
probability zero. Define also
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| if Z, and its k" nearest neighbor
,Z;,are from different sampfe.s;
h(i, j) =5
0 , otherwise

and fori=1,...,nandk=1,...., N-1, define

I:‘,k = Zh(la])

j=

Let us define the d-variate Kolmogorov-Smirnov statistic for the i
observation as

D= m’?xlDi,kl

where

Dy Dt b
ik

T on-1 m

sk = number of X observations for which the rank is <k,-and r, = number
of Y observations for which the rank is < k where the rank is with respect
to distance from the i™ observation.

2. A representation for Dy

To write D;y in terms of the value of Tjy, note thatin order to
satisfy the condition Tix = ry, the first k nearest neighbors in the
combined ordered arrangement of the two sammples must include r, Y’s
and (k-ry) X’s. Since k is the rank ofthe k™ nearest neighbor in the
combined ordered arrangement of the two samples, then in the first k
values we have r, Y’s with rank <k and (k-r;) X’s with rank <k..

Therefore,

D =Sk T
=
n-=1 m

k-n _n
n-1 m
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1

[mk -5, (N -1)]

m(n—1)
-4
So,
Dj can be written as
1
D, = Ak - (N -1}

3. A Markovian Property of Diy

-Theorem:

For every i(1 < i < n), the sequence {D;x; k =1,....,.N-1}isa
Markov chain, i.e., for every k < N-1

P(Dl.h—l =-’l'¢l/DlJ = f;; jSk) = P(Dl.hl - ’l.d/Dl,l = 'A')

Proof:

Let P be the set of all permutations of ({1,....,N} — {i}) satisfying
the condition {D, =#), oo Dy =n; } It is clear that for any p € P, Djsu

can only assume the valu(r,; +Tl—7) and (r,' —%). If {ay, ....... , ON} €

P, then the set {a,, ......., ax} has r, elements of the set {n+1, ...., N} and

(k-ry) elements of the set {1,....,n} — {i}.

Then we iay have either of the following:

I k+l e {ntl,..., N}. This happens with the (conditional)
probability

m-r,

N-1-k

ii. k+tl ¢ {n+l,....N). This happens with the (conditional)
probability
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m-n, _n-1-k+n

! N-1-k N-1-k

In case (i), Dix+1 can assume only the value k_—rl,_ - ﬂ"-':—l which is eqnal

to (:;' - —) with probability —"—'—1'1; while in case (ii), Djx+1 can assume

only the value Lﬂlll--:"; which is equal to (r,'+;!—l) with probability
n-— : -
n-l-k+n
N-1-k
Thus, the assumable values of Djy.(viz. n —7:;, n+ —l—) and their

respective (condmona!) probabilities (given the Dij, j <k) depend only on
the value 7, assutned by Dyy.

Noté that the distribution of D+ given D;x can be written in the form:

( m-r i

N-1-k , s=r——

m

n-1-k+r. .
P(D;,=s/D,=r)=1 N-1-k s-r+;——l-

0 , otherwise

Hence, from the distribution of {Djx+1 | D;x} we have

\ 1 m-r 1 Yn-1-k+r
E(D,../D,)=[r-1 r
(Ds1D,)) (' - N-l—k)+('+n-1 N-l-l;)

=[1+ N-1 ]D 5 k
| mr-1N-1-k)| ¥ (n-1YN-1-k)

where, k=1,...., N-1

Note: For i=ntl,...., N, the same resents are obtained but n and m are -
interchanged.
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