Kolmogorov-Smirnov Statistic and a Markov Chain Property

Ali S. Barakat

Department of Statistics, An-Najah National University, Nablus, West Bank, Palestine. Fax. +(972)9-2387982, E-mail: barakat@najah.edu

Abstract. Kolmogorov-Smironov statistic is rewritten using nearest neighbors techniques and a characterization in terms of a Markov chain is established.

Keywords. Nearest neighbors, Kolmogrov-Smirnov, Markov chain

1. ' Introduction

Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples in \mathbb{R}^d from distributions F(x) and G(x), respectively, with corresponding continuous densities f(x) and g(x).

Construct the combined sample $Z_1,, Z_N$, where N = n+m, such that

$$Z_{i} = \begin{cases} x_{i} & , & i = 1, 2, ..., n \\ \\ y_{i-n} & , & i = n+1, n+2,, N \end{cases}$$

Let $\| \bullet \|$ be the Euclidean norm, and define the K^{th} nearest neighbor to Z_i as that point Z_j satisfying $\| Z_j - Z_i \| < \| Z_j - Z_i \|$ for exactly (k-1) values of $j'(1 \le j' \le N, j' \ne i, j)$. Ties are neglected, since they occur with probability zero. Define also

$$h(i,j) = \begin{cases} 1 & \text{if } Z_i \text{ and its } k^{th} \text{ nearest neighbor} \\ & Z_j, \text{are from different samples} \\ 0 & \text{otherwise} \end{cases}$$

and for i = 1,..., n and k = 1,..., N-1, define

$$T_{i,k} = \sum_{i=1}^{k} h(i,j)$$

Let us define the d-variate Kolmogorov-Smirnov statistic for the ith observation as

$$D_i = \max_{k} \left| D_{i,k} \right|$$

where

$$D_{i,k} = \frac{S_k}{n-1} - \frac{r_k}{m}$$

 s_k = number of X observations for which the rank is $\leq k$, and r_k = number of Y observations for which the rank is $\leq k$ where the rank is with respect to distance from the ith observation.

2. A representation for Dik

To write $D_{i,k}$ in terms of the value of $T_{i,k}$, note that in order to satisfy the condition $T_{i,k} = r_k$, the first k nearest neighbors in the combined ordered arrangement of the two samples must include r_k Y's and $(k-r_k)$ X's. Since k is the rank of the k^{th} nearest neighbor in the combined ordered arrangement of the two samples, then in the first k values we have r_k Y's with rank $\leq k$ and $(k-r_k)$ X's with rank $\leq k$.

Therefore,

$$D_{i,k} = \frac{S_k}{n-1} - \frac{r_k}{m}$$
$$= \frac{k - r_k}{n-1} - \frac{r_k}{m}$$

RSSR, CAIRO UNIV., VOL., 45, NO.1, 2001

$$.=\frac{1}{m(n-1)}[mk-r_k(N-1)]$$

$$= r.$$

So,

Di can be written as

$$D_t = \frac{1}{m(n-1)} \max_{k} \left| mk - r_k(N-1) \right|$$

3. A Markovian Property of D_{Lk}

·Theorem:

For every i(1 \leq i \leq n), the sequence $\{D_{i,k}; k = 1,...,N-1\}$ is a Markov chain, i.e., for every $k \leq N-1$

$$P(D_{i,k+1} = r_{k+1}/D_{i,j} = r_j; \ j \le k) = P(D_{i,k+1} = r_{k+1}/D_{i,k} = r_k)$$

Proof:

Let P be the set of all permutations of $(\{1,...,N\} - \{i\})$ satisfying the condition $\{D_{i,1} = r_i, ..., D_{i,k} = r_k\}$. It is clear that for any $p \in P$, $D_{i,k+1}$ can only assume the values $\left(r_i + \frac{1}{n-1}\right)$ and $\left(r_k - \frac{1}{m}\right)$. If $\{\alpha_1, ..., \alpha_N\} \in P$, then the set $\{\alpha_1, ..., \alpha_k\}$ has r_k elements of the set $\{n+1, ..., N\}$ and $(k-r_k)$ elements of the set $\{1,...,n\} - \{i\}$.

Then we may have either of the following:

 k+1 ∈ {n+1,..., N}. This happens with the (conditional) probability

$$\frac{m-r_k}{N-1-k}$$

ii. k+1 g {n+1,....,N}. This happens with the (conditional) probability

$$1 - \frac{m - r_k}{N - 1 - k} = \frac{n - 1 - k + r_k}{N - 1 - k}$$

In case (i), $D_{i,k+1}$ can assume only the value $\frac{k-r_k}{n-1} - \frac{r_k+1}{m}$ which is equal to $\left(r_k - \frac{1}{m}\right)$ with probability $\frac{m-r_k}{N-1-k}$, while in case (ii), $D_{i,k+1}$ can assume only the value $\frac{k-r_k+1}{n-1} - \frac{r_k}{m}$ which is equal to $\left(r_k + \frac{1}{n-1}\right)$ with probability $\frac{n-1-k+r_k}{N-1-k}$.

Thus, the assumable values of $D_{i,k+1}(viz. \ r_k - \frac{1}{m}, \ r_k + \frac{1}{n-1})$ and their respective (conditional) probabilities (given the Dij, $j \le k$) depend only on the value r_k assumed by $D_{i,k}$.

Note that the distribution of Dik+1 given Dik can be written in the form:

$$P(D_{l,k+1}=s/D_{l,k}=r) = \begin{cases} \frac{m-r}{N-1-k} & , & s=r-\frac{1}{m} \\ \frac{n-1-k+r}{N-1-k} & , & s=r+\frac{1}{n-1} \\ 0 & , & otherwise \end{cases}$$

Hence, from the distribution of $\{D_{i,k+1} \mid D_{i,k}\}$ we have

$$E(D_{i,k+1}/D_{i,k}) = \left(r - \frac{1}{m}\right)\left(\frac{m-r}{N-1-k}\right) + \left(r + \frac{1}{n-1}\right)\left(\frac{n-1-k+r}{N-1-k}\right)$$
$$= \left[1 + \frac{N-1}{m(n-1)(N-1-k)}\right]D_{ik} - \frac{k}{(n-1)(N-1-k)}$$

where, k = 1, ..., N-1

Note: For i = n+1,..., N, the same resents are obtained but n and m are interchanged.

References:

- Bailey, N.T.J. (1964) The Elements of Stochastic Processes. Wiley, New York.
- Barakat, A.S., Quade, D., and Salama, I.A. (1996) "Multivariate homogeneity testing using an extended concept of nearest neighbors. "Biometrical Journal, 38, 5, 605-612.
- Bishop, Y.M.N., Fienberg, s.E., and Holland, P.W. (1976) Discrete Multivariate Analysis: Theory and Practice. MIT Press, Massachusetts.
- Gibbons, J.D. (1985) Nonparametric Statistical Inference. Marcel Dekker, New York.
- Randless, R.H. and Wolfe, D.A. (1979) Introduction to the Theory of Nonparametric Statistics. Wiley, New York.
- Sen, P.K. and Salama, I.A. (1983) "The Spearman footrule and a Markov chain property". Statistics and Probability Letters, 1, 285-289.