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ABSTRACT

Thiskpaper discusses the problem of predicting, on the basis of an incomplete
| sample from a two parameter Pareto distribution, the life time of the j-th item to
fail either in the same sample or in a future sample from the same distribution.
Prediction intervals are based on doubly censored data when lifetimes are left and
right censored, of which complete sampling and Type II censoring are special

cases, as well as the case when an extra observation is missing elsewhere.

1. INTRODUCTION

The life distribution under consideration in this study is the two parameter
Pareto distribution with probability density function
fha,0)=ac®x @ (x20) (L1)
where a >0 and 0 >0. |
The Pareto distribution has found wide spread use as a model for various
socio-economic phenomena; see, for example, Johnson et al. (1994). It has also

been used in reliability and lifetime modeling; see, for cxample, Davis and
Feldstein (1979).
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This article is concerned with prediction of the behavior of further
observations from the distribution (1.1). Censoring is common in life distribution
work because of time limits and other restrictions on data collection. Lifetimes
can be censored ecither on the left, on the right, or both; Lawless (1982).
Prediction of unknown observables will be considered under four different

sampling plans

One sample prediction
A) Suppose n items are simultaneously put on test and observed until there have

been r failures. However k—1 lifetimes are censored on the left. The actual

observed lifetimes are the middle r~k+1 observations. Denote by X, the
lifetime of the j-th item to fail. Prediction intervals will be derived for X,
(r<jsn).

B) Another sampling plan is considered when data is missing from both extremes,
left and right censored, and one extra observation is missing elsewhere. Prediction
intervals will be derived for X, (r <j<n) given the failures at X,), X,
ceer o)y Xparnt)s - X5 that is, X(,;,, is missing for /=1, 2, ...,
r-k-1.

Two sample prediction

A) Suppose n items are simultaneously put on test and only the middle » -k +1
observations were observed. Let V,, ¥,, ...., Y, be a second independent random
sample of size N of future observations from the same distribution (1.1).

Prediction intervals will be derived for ¥,, j=12,.....N, the lifetime of the j-th
item to fail in the future experiment given the failures at X, X405 o0 X)-

B) Data is missing from both extremes, lifetimes are left and right censored, and

one extra observation is missing elsewhere. Prediction intervals will be derived
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for ¥,y j=12,..,N given the failures at X,), X0y, oo Xpurmys Xgparanys -oon

X(',) forl=|,2, ceoey r—k—l.

Applications of lifetime distribution methodology range from investigations
into the endurance of manufactured items to research involving human diseases.
The following two applications can be thought of as applications for sampling

plans A and B respectively.

Manufactured items such as mechanical or electronic components are often
subjected to life tests in order to obtain information on their endurance. Some
types of manufactured items can be repaired should they fail. In this case one
might be interested in the length of time between successive failures of an item
and refer to these times as lifetimes. Suppose an item (for example a mechanical
or electronic component of an automobile or of a computer) is put into operation
and observed until it fails (ceases operating satisfactorily). If this component is
known to have failed twice for example before the beginning of our study (studies
will not always be performed on new cars or new computers etc.), then for these
first two life times (the length of time between successive failures referred to as
failure times in this case) only an upper bound on lifetime is available. Hence,

information available on their lifetimes is partial. The next failure time is treated

as the third lifetime denoted by X(,) where X, and X, are left censored. By

treating the third lifetime as the first observed lifetime X, some information is

lost as a result of treating the component of the automobile or of the computer in
this case as a new component first time to fail. Also, it may not be feasible to
continue experimentation until this mechanical or electronic component stops
work completely. It may take a very long time for this unit to completely fail
(could not be repaired any more) and it is deemed necessary to terminate the

cxperiment before this can happen. In this case some of the lifetimes are right
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censored and only a lower bound on lifetime is available. Hence, the information
available on their lifetimes are partial.

Sometimes the events of interest are deaths of individuals and lifetime here is
the actual length of life of an individual measured from some particular starting
point. In medical studies dealing with fatal diseases one might be interested in the
survival time of individuals with the disease, measured from the date of diagnosis
or some other starting point. For example, a study might focus on comparing the
effects of two chemotherapy treatments on advanced lung cancer patients in
prolonging survival time. Patients are randomly assigned to one of the two
treatments. Survival times from the start of treatment for each patient are
recorded. Suppose a patient in one of the groups died in an accident during the
period of the study (any cause other than lung cancer) his lifetime X,,,) cannot
be used in the study because it is not indicative of the treatment effect. However,
neglecting this lifetime totally leads to a loss of information because it is known
that the lifetime of this patient exceeded X, ,,_,), hence should be treated as a

missing observation.

A number of authors have considered prediction intervals for the two
parameter Pareto distribution within a Bayesian framework. Nigm and Hamdy
(1987) considered the problem of predicting X,y (r < j < n) given the failures at

Xgys Xgps ---n X, from the distribution (1.1). Geisser (1984) ind Amold and

Press (1989) considered the problem of predicting the fraction out of N future
observations that survive beyond a certain threshold, when the present and future
observations are Pareto distributed and where N is the size of the future sample.
Geisser (1985) extended the work of Geisser (1984) to predicting the fraction that
fall within a prescribed interval. Dunsmore and Amin (1998) presented a method
which incorporates a missing data approach within a Gibbs sampling routine to
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establish predictive densities for sums of the total amount of testing time that

remains until all the items have failed given the failures at X Xaps - Xy

from the distribution (1.1) as well as the total amount of testing time up to the j*

failure in a future sample from the same distribution. Al-Hussaini (1999)
proposed a general class of distributions that includes the Pareto, among others, as
the population model and obtained the predictive density under a proper general

prior density, imposing type IT censoring on the informative sample. Soliman
(2000) considered the problem of predicting X, (r < j < n) given the failures at
Xop Xy - Xy from the distribution (1.1) where the sample size n is a

random variable having a Poisson or Binomial distribution.

2. BAYESIAN MODELS FOR THE PARETO DISTRIBUTION

When both @ and o are unknown, a natural conjugate prior for (@,0) was

first suggested by Lwin (1972) and later generalized by Amold and Press (1983)

to include broader classes of prior distributions. The generalized Lwin prior or the
Power-Gamma prior, denoted by PG(v, 4, u,0), is given by

gla,o0)x o’ 'a'u™ (a>0,0<0<0) (2.1)
where u, @, v and A are positive constants, and §* < u. Such a prior specifies

g(a) as Ga(v,lnu-AIn@) and g(a'ia) as a power function distribution

PF(1a,8) of form Aac**"'67** (0 <o <0).
Vague prior information about @ and o is specified through v=-1, 1=0,
=1 and § - .

Under double censoring where k-1 lifetimes are left censored and n—-r
lifetimes are right censored, the r-k+1 middle observations are the actual
observed lifetimes. The likelihood for this data configuration assumes the form
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Applying the power gamma prior given in (2.1), the corresponding posterior density

under this sampling plan is given by

A~ a ™ g(" l} 1) g lesasi-teide- .(m(’) xmnxw)_.
gla.ofx ’)- r(,-+v-k+|)§(k-l) S E—rv—

(n+a2+j-k+1)
(@>0,0<w) (22

where X =(X,,), X400 s Xy ), w=min(g, X)) and

A(j)=2':lnx(,)+Inp+(n—r)lnx(,)+jlnx(,) —(n+A+ j~k+1)inw for

I=k

j=0],..k-1.

3. ONE SAMPLE PREDICTION

This section considers the problem of predicting X,), < j <n, based on the
failures at X,), X, ---n X{,) from the distribution (1.1). The predictive

density function of X, given X C-te) - (x @) X et X)) is given as

Hrlet=)
% I""] i {“"’*‘""*"’*""‘%

-

i (n+l+i-k+l)

Ai-r, n-,+|) '] ()] V) A

(r+a+i-k+))
ko >x) 6D
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A Bayesian interval (a,,a,) X(,) Sa, <a, of cover 1-y could then be derived
where a, and a, are the solutions of

I rleopl )y =1-7

That is the solutions of

P{Ai)+(n-j+m+l)lng'—}w‘. |
gZ(ki- IJ-:;-|)(n+1+i-l(¢-:&:—j+m+T)i ‘{,(i)+(u-j+ml)ll}w
] —

Hj-rn=i +|),.., i )(n+1+i-k7|)mw

=l—y
(y<a,<a,) 2
In practice a, and a, should be chosen such that a, - 4, is shortest.

When k=1, (3.1) and (3.2) reduce to the case of Type I1 censored data, the
results derived by Nigm and Hamdy (1987).

Now prediction intervals for X(,, r < j<n, are considered in the case of
incomplete data; that is, where data is miing from both extremes, left and right
censored, and one extra observation is missing elsewhere. Hence, the problem
considered is the problem of predicting X()» r<jSn based on the ordered
mﬁgﬁc’ Xt =(X @) X (“,,.....,X (,,,.,,.X (,,,,,,,....,X (,)); that is, X(‘.,) is

missing for /=12, ...., r=k-1.
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The posterior density of (a,0) is given by

e l - -
8(0.011( ")= ma et (‘(m-.) = x(nm))
k=l k -1 r N
Z[ )(" Yo ‘"‘"’"'""[I“(f)'x(n)n*o)]
]

g=0 q

g(k'; l) TS tA.('”)"""‘(m--))"m-” "(A'(m)HnXamn))'("H,}

(r+2+m-k+1)

(@>0,0< w)
where w=min(0,xm) and
A’ (m)= ilnx(,)+lny+(n-r)lnx(,,+mlnx(,,—(n+)l+m—_k+l)|nw
ink
Y
form=0,1, ..., k1.
The predictive density of X, given X**) is given by

St ’)' (Hv ) )" X0y

-r,n—-j+

22001 ')(..+§1'1'" =

(A'(p)-i-(n -j+q +l)lnfﬂ+lnx(m.,,

[.4 @) +(n- j+q+l)ln-x-(:)-+hx¢,,,,,

[ ]-(m-m) )

]-(uv-m)

r 8

=l

) > x)) B3I

E(k . l) (r+a2+m- k + l) t“ (m)+In I(w-l)).(*-‘ (A (m)+ 'nx(‘“"’)-(M)}
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A Bayesian interval (a,,a,) of cover 1-y could then be derived where a, and
a, (t(,) €a, < a,) are the solutions of
1

+A+m-k+1)

)- .
p(/_,-.,. -j+ |)§ ("( tA'(m)+ In x(,,,_,,)'(m'" -(A'(m)+ In x(,,,,.,)'(m-"}

~frov-a) )
(Ao(p).'_(n—j"'q"")ln;a'l-"'n x(.“_“]

()

\ ~{rov-t)

.
( j_r-|}-|Y" - A.(P)"'("‘.I""Q"'l)l“'ﬂ'""“x(hm)
L x(r) /

g &~ (n+1+p—k+an-j+q+l) PN |

>

r
\ *

Y

{rev-2)

,
+ A'(p)+(n-j+q+l)lna—’+lnx(,,,,,,
|\ X(-) J

=l-y. (.4)

4. TWO SAMPLE PREDICTION

Let X,, X,, ..., X, be a random sample from the distribution (1.1). The
items have been tested simultancously and only the r—k+1 life times
X440 o (X, Xgppne X)) for (£ < < 1) are observed. The interest now lies
in predicting ¥,y (/ =1.2,...,N) where ¥,, ¥, ..., ¥, is a set of N independent

observations from (1.1).
The probability density function of the life time of the j-th item to fail is given by

f(V(, )h")' w’Nl_ ” |) acV1r y(-’SN-m)--l {] -(—y-:;)].} (ym > a‘).

The predictive density function for ;) (j=12....N) given x¢~*! is then
expressed as
f(?ml"’““’)' Hf("uﬂ"v"h("-""w"))'da ' ()’u) >0,0 <w).

Two cases are considered separately ¥, <w and ¥, 2 w:
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Ym <w
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(et

~ (n+a+i-k+1)

.1
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g(k '- I) - 1(;:): il ) R

4.2)

A Bayesian interval (a,,a,) of cover 1-y could then be derived where a, <w

and a, > w are the solutions of

(i, N- J+|)z ( } y (A e

Snea+i-k+1)
( A( p) ~{rev-b41)

%3 (k |I )(')"' ("”*:"“') -{A(p)-("up-k;|)|.."_‘;}WM

a0 gu n(N j+q+n+1+p-—k+7

_ I {A(p)+(~- j+q+)in ‘;’}
‘N ~-jt+q+ li
_( A( p))-(uv-lol) J
=]- y.
4.3)

FFor k =1 the results of (4.1) to (4.3) reduce to the case of Type I1 censored data.
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The interest now lies in predicting Yo (j=l,2,....,N) in the case of

incomplete data. Data are left and right censored and one extra observation is

missing elsewhere. The predictive density function for Y, (/ = l,2,..‘.,N) given
x"*) is expressed as

Hyal )= [[rbule.okle.olxboda  (y)> 0.0 <w).

Two cases are considered separately Y, <w and ¥, 2 w:

YU)<W

, -k
thols")- ;.;lv— _le

[ “Arev-nst) 7
(k 'I } |)'*' {A (p)- (n+,1+p k+|)|n +lnx(,‘, ,)}

,..,..(N —jtq+n+iA+p- k+2)

~(rev-tet)
{A'( p)-(r+2+p-k+)in2% +1n x(,m,)}
w

-

k~1 - rev- ., -{rev-d
i( )(_._1(4_' k+)xA (l)+|nx(“,_,))( .)"(A (')“"“x(hm))( )}

i=0

(4.4)

YU)ZW

f("mlx(m’) (r+v k)

BU.N-j+1) Yor

{rov-tet) 7
(k = |Ii" '}_ 1) {A° (P)+(N-j+g+1)in y_:_,_ +in "(M-l)}

~j+qtn+i+p- -k+2)

$50

y ~{rev-tet)
{A'(p)-’-(N -j+q+ |)In 20 44y x(m,,,}
w
P

k-1 - . rev- . rev
i( i )("+l(+:‘)-'-k+l){" “’"""X(n.:-.))-‘ ”"(A m"""’hohﬂy _‘,}

[

(4.5)

A Bayesian interval (a,,a,) of cover 1-y could then be derived where a, <w
and a, > w are the solutions of '
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1
pUN-] +'>§(‘ﬂ(nﬁi.)h«mmx«,..,w-(a-«»h«.....,r'--'}
(

(N-jrq+nti+p-k+2) ("(P)"""‘(M--)r'md,
(0424 p-k+1fN=j+q+1) ) +inxgun)t ™
}4'"-!)

( } ) o | [{A‘(p)-(uup-k+|)|n%+|nx(..,_.,

,t.;z.. N-j+qg+ +A+ -k+2 +A4+p-k+l frov-b)
=P-gease g ) ('l P )l- A'(P)-(n+al+p—k+I)ln%-o-ln-"(mu)}
ror-b)
A (p)+(N-J+q+I)In—l+lnx(.,,_,,}
IN + +$ “rov-t)
j ) A(p)+(N—j+q+I)lng‘:-+lnxu“,,)}

=1l-y | (4.6)
Another interval which is more relevant for higher order statistics is of the form

(a,',a,') where w<a, <a, then a, and a, are the solutions of

pli.N- ,+|)ﬁ( ) 1y KA‘(.')+|nx(,,,_,,)*'”"’-(A'(i)+|nx(,.,..,)“"""}

(n+a+i-k+1)

o

. R ~{rov-t)
{A.(p)+(N_j+q+l)ln%+ln x(,.,..,}

o - . {rev-t)
» (k;lI]q—I}_nm -{,4°(p)+(N- j+q+l)ln-i—+lnxu,,.,,}
gg(N-j+q+n+l+p-k+2XN—j+q+|) 5 (rov-t)
..{A'(P)+(N—j+q+I)ln%—-i-lnxu,,_,)}

| . {rov-)
_{A'(p).o-(lv-j+¢+|)ln-¢—"v-+lnx(..m)}

=l-y.

Again a,” and a, should be chosen such that a, - a, is shortest.

The Egyptian Statistical Journal, Vol. 46, No.1, 2002




Bayesian Prediction of Future Lifetimes From The Pareto Model With Incomplete Data 88

S. NUMERICAL EXAMPLE

Consider a life test where 20 units whose lifetimes follow the same Pareto
distribution (1.1) are put on test simultaneously. The times of failure of the third

to the elevnth items measured in an informative experiment are shown in Table 1.

Table 1 Times of failure of the third to the elevnth items
10.425 10.757 10.946 11.433 11.663
11.945 14.712 15.279 16.121

The results of section (3) are used with n =20, k =3 and » =11 and assume

little is known a priori about (a,a'); that is, results of these sections are used
under the settings v=-1, A=0, y=1and 8 5> « (w = x(,,).
The predictive density function of X(s) given X ©) derived from (3.1) under

these settings is shown in figure (1) below.

FIG. (1) Predictive density I’ung;on of X (15)

given X

0.12
0.1
0.08
s 0.08
0.04
0.02
0

[} w 2 » © L]

From (3.2), a 95% Bayesian interval for X,,,, based on X is given by (16.121,
42.8307).

Suppose now the fifth observation, X, is missing, that is,
X® = (X ). Xiaps Xy Xgyy)- The predictive density function of X, given
X® derived from (3.3) is shown in figure (2) below.
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From (3.4), a 95% Bayesian interval for X,,;) based on X is given by (16.121,
42.7596).

Consider now the same life test where 20 units whose lifetimes follow the
same Pareto distribution (1.1) are put on test simultaneously. The times of failure
of the third to the elevnth items measured in the informative experiment are

shown in Table 1. However, the interest now lies in predicting the life time of the

first item to fail, ¥, in a future independent sample of size 15 from the same

distribution (1.1).

The results of section (4) are used with n=20, k=3, r=11, N=15 and
j=1 and assume little is known a priori about (a,a); that is, results of that

section are used under the settings v=-1, A=0, y=1and § > » (w = x‘,)).
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The predictive density function of ¥, given X ®) derived from (4.1) and (4.2)

under these settings is shown in figure (3) below.

FI1G. (3) Predictive density function of Y«)
given y0)
ar
0s
[ X ]
0.4 4
03
02
01
o - + e - e — -~
[ ] 2 4 8 ] 10 7 "
Yo

From (4.3), a 95% Bayesian interval for ¥, based on X ©) is given by (7.8799,
11.8134).

When the fifth observation is missing, the predictive density function of ¥,

given X® derived from (4.4) and (4.5) is shown in figure (4) below.

FIG.(4) Predictive density function of

0.7 ; given - (8)
0.6 1
05 |
04 ]
g 03
0.2 1

0.1 1
0

0 L] 10 18
L)

From (4.6), a 95% Bayesian interval for ¥) When the fifth observation is missing
is given by (7.8759, 11.7894).
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