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Abstract

This paper provides a new generalization of the Generalized exponential geometric distribution that
introduced by Bidram et al. [6]. The new distribution is referred to as exponentiated linear exponential
geometric distribution (ELEGD). The new model contains life time distributions as special cases such
as new generalization of the Generalized exponential geometricNGEG): linear falire rate and
exponential distributions, among others.The properties of the new model are discussed and the
maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for

the moments and examine the order statistics. This model is capable of modeling various shapes of
aging and failure criteria.

Keywords: exponentiated, Reliability Function, Order Statistics, Maximum Likelihood Estimation.

1. Introduction :

The Linear Exponential distribution LED has many applications in applied
statistics and reliability analysis. Broadbent[7],uses the (LED) to describe the service
of milk bottles that are filled in a dairy, circulated to customers, and returned empty to
the dairy. The Linear exponential model was also used by Carbone et al. [8], to study
the survival pattern of patients with plasmacytic myeloma. The linear exponential
distribution is also known as the Linear Failure Rate distribution, having exponential
and Rayleigh distributions as special cases, is a very well-knowndistribution for

modeling lifetime data in reliability and medical studies. It is also models phenomena
with increasing failure rate.

Merovci and Elbatal [13], introduced the Kumaraswamy linear exponential
distribution. - Bidram et al. [6], introducedgeneralized exponential geometric
distribution. Ebraheim [8], introduced exponentiated transmuted Weibull distribution.

Louzada et al. [12], introduced the complementary exponential geometric
distribution, which is complementary to the exponential geometric model proposed by
Adamidis and Loukas [2], based on a complementary risk problem (Basu and
Klein[5], in presence of latent risks, in the sense that there is no information about
which factor was responsible for the component failure but only the maximum
lifctime value among all risks is observed. Louzada et al. [13], introduced
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complementary exponentiated exponential geometric distribution which considered a
generalization to the complementary exponential geometric distribution. Tojeiro et al.
[19], introduced the complementary Weibull geometric (CWG) as a complementary
distribution to the Weibull geometric (WG) model proposed by Barreto-Souza et al.

[4].

A random variable X is said to have the linear exponential distribution with
two parameters A and B, if it has the cumulative distribution function

B
F(x,A,B)=1- (e'(’“‘*?"z)), x>0,1,8>0. 1)
and the corresponding probability density function (pdf) is given by
B
fEa ) = @+po) (e ), x> 045> 0 @

In this paper we provide mathematical formulation of the exponentiated linear

“exponential geometric distribution (ELEGD)and some of its properties. The rest of the

paper is organized as follows. In Section 2 we demonstrate the subject distribution. In
Section 3, we find the reliability function, hazard rate and cumulative hazard rate of
the subject model. The Expansion for the pdf and the cdf Functions is derived in
Section 4. In section 5, The statistical properties include quantile functions, median ,
moments and moments generating function are given,. In Section 6, order statisticsare
discussed . In Section 7, we introduce the method of likelihood estimation as point
estimation and the confidence interval as an interval estimation of the unknown
parameters. Finally, we fit the distribution to two real data sets to examine it and to
suitability it with nested and non-nested models.

2. Exponentiated Linear Exponential Geometric Distribution (ELEGD)

In this section,we propose the exponentiated linear exponential geometric
distribution (ELEGD). The exponentiated linear exponential distribution with
parameters 4, 8 and « if its cumulative distribution function (cdf) is defined as

F(x,A,8,a) = {1 - (e‘(‘x+§"2))}a, x>0,A4,8,a> 0. 3)

And the pdf
f(x,2,8,a) = a(d+ Bx) (e'("x"‘zq"z)) (1 _ e—(u+§x2))a—1,x, A,B,a>0.

4)

Now, let X,, X,, ..., Xp,be N iid random random variables from the GE distribution,
where N has a geometric distribution with the probability mass function

PN=n)=1-pp™! n=123..()
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and is independent of X;'s . If we define V = max{X;}).,, then by a
conditional argument, the pdf of V is given by,

(-p)a(i+ ﬂx)( Ax-l—Exz ( Ax-l-ﬁxz )

A

fV(x; Ar B' Q, p) =

the cdf of is given by

(1-—p)(1—e"("‘+§"2))

F,(x,A,B,a,p) = = x>0. (7
Y 1-p(l-e~(lx+gx2))

Where A4, 8,a > 0 and p € (0,1). The random variable V with the density

function (6) is said to have a exponentiated linear exponential geometric distribution
(ELEGD).

Figures 1 and 2 illustrates some of the possible shapes of the pdf and cdf of

the ELEGD distribution for selected values of the parameters 4, #, a and p
respectively.

25
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. Figure 1: Probability Density Function of the ELEGD.
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Figure 2: Distribution Function of the ELEGD.

3. Reliability Analysis

' The characteristics in reliability analysis which are the reliability function
(RF), the hazard rate function (HF) and the cumulative hazard rate function (CHF) for

the ELEGD are introduced in this section.

3.1 Reliability Function

The reliability function (RF) also known as the survival function, which is the
probability of an item not failing prior to some time t, is defined by R(x) = 1 — F(x).
The reliability function of the ELEGD denoted by Rgiggp(%,4,8,,p), can be a
useful characterization of life time data analysis. It can be defined as

Rereep(X, A4, B, @,p) = 1 — Fgreep (%, 4, B, @, p),

the survival functionis given by
a

_(1-e~(3+55%)
1 (1 - )a,x>0. 8)

RELEGD (X, A, B' a, p) =
1—p(1—e—(u+gx2))

Figure 3 illustrates the pattern of the exponentiated linear exponential
geometric distribution (ELEGD) reliability function with different choices of

parameters A, 8, a and p.
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Figure 3: Reliability Function of theELEGD.
3.2 Hazard Rate Function

The other characteristic of interest of a random variable is the hazard rate
function (HF).The exponentiated linear exponential geometric distribution also
known as instantaneous failure rate denoted by hg gep(X), is an important quantity
characterizing life phenomenon. It can be loosely interpreted as the conditional
probability of failure, given it has survived to the time t. The HF of the exponentiated
linear exponential geometric distribution is defined by hggep(X4,8,a,p0) =
feLeep (%, 4, B, @, p)/ReLecp (%, 4, B, @, ),

. a-1
(l—p)a(A+Bx)(e_(M+gxz))(1—e—(u+gxz))

hgLgep(x.4, B, @, p) = <= A
) ey

, x>0, 9

Figure 4 illustrates some of the possible shapes of the hazard rate function of
the exponentiated linear exponential geometric distribution for different values of the
parametersA, §, a and p.

7
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Figure 4: Hazard Rate of the ELEGD.
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3.3 Cumulative Hazard Rate Function

The Cumulative hazard function (CHF) of exponentiated linear exponential
geometric, denoted by Hg ggp (X, 4, B, @, p), is defined as Hgpggp(X, 4, B, @, p) =

X
J heLeep(®, 4, B, @, p)dx = —~InRgLgep (%, 4, B, @, p),
0

Hggep(x,4,8,a,p) = — InRg gep(*, 4, B,a,p) =In

x> 0.
(10)

Figure 5. illustrates some of the possible shapes of the cumulative hazard rate
of the exponentiated linear exponential geometric for different values of the
‘parametersA, 8, @ and p.
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Figure 5: Cumulative Hazard Rate of the ELEGD.

4. Expansion for the pdf and the cdf Functions

In this section we introduced another expressions for the pdf and the cdf
functions using.

The Maclaurin expansion to simplifying the pdf and the cdf forms.
t.\ Expansion for the pdf Function

From equation (6) and using the expansion

(1-2)*=Fp, 0502y

Which holds for |z| < 1 and k > 0. Using (11) in Equation.(6) yields,
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(—1D)¥™r( + 2)!T(a)
m!i! T((j — i + 1))[(a — m)

fV(x:A'Bi a'p) = Z

Jiim=0

*w; a(1 + fx) (e‘("‘*g"z)(‘“’“m“)) , x> 0,(12)

Therefore

fxABap) = )

Jjimk=0

*[(Ax +g;x2) (la +m+ 1)]k.x > 0.(13)

_(F1)HmkmirG 4 2)r(a)
miKIT(( — 1 + D)@ —m) a(d + Bx)

Where w; = (1 —p)p’.
4.2 Expansion for the cdf Function

Using expansion (11) to Equation (7) ,then the cdf function of the
exponentiated linear exponential geometric can be written as:

v (CDHTIG+ DI +1) a(e_(mgxz)aam))

Fv(x, A, ﬁ: a, P) = i 1 Y
ko FrG+1-Dl(a—m+1)
Therefore
) ) (_1)i+m+k—1r(i + 1)]"(05 +1)
Fy(x,4,B,a,p) = ji;roi!m!k! rG+1-Dlf(@a—m+1) wja

k
. [(Ax +£x%) (iz + m)| x> 0.14)
S. Statistical properties
In this section we discuss few statistical properties of the ELEGD distribution.

5.1 Quantiles and median
The quantile function is obtained by inverting the cumulative distribution (14), where the

p-th quantile x,, of the ELEGD model is the real solution of the following equation:

2“’ (_1)t+m+k—1 rG+1)r(a+1)
JAMK=0 {miKIF(j+1-) (@-m+1)
. 0sqs1

w;j a(ia + m)* [(Atp + gtpz)]k -p=0

An expansion for the median M follows by taking p = 0.5.
5.2 Ceatral and Non-Central Moments

The r*®non-central moments or (moments about the origin) of the ELEGD under

using equation (12) is given by:
The Egyptian Statistical Journal Vol.59, No.1, 2015
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AF(2k + 1+ 1) Br(2k + r + 2)

= E(X") = A.. A + ] a5
- l;-o " O m e ) (a4 m+ D)

where Aj.p,, is a constant term given by

(=1)"*™m+Er( 4+ 2)[(a)(ia + m + 1)*BK
m!ilk! 2k(i + 1)!T(( — i + 1)) (a — m) W@

'k =

The n'*"central moments or (moments about the mean) can be obtained easily from
ther'® non-central moments throw the relation:

my = EX= k)" = ) (~0)""E(X").
r=0

Then the n*"central moments of the ELEGD is given by:

_ AT2k+r+1) Br(2k + r + 2)
My = Z (_.“)'l rA’:k % % 2k+r+1 + . 2k+r+2}t (16)
JAmRr=0 (AGia + m + 1)) (A(ia + m + 1))

5.3The Moment Generating Function

The moment generating function,M, (t) can be easily obtained from the r'" non-
central moment through the relation

a0 tr
Mx(t) = Z;Tu,r'
r=0

Then, the moment generating function of the ELEG distribution is given by,

a0

t Ar(2k+r+1) Br(2k +r+2)
Mx(t) = +r+ +
, MZ:M, r! (AGa + m+ 1)) ™" (AGta +m + 1))

6. Order Statistics

The order statistics and their moments have great importance in many
statistical problems and they have many applications in reliability analysis and life
testing. The order statistics arise in the study of reliability of a system. The order
statistics can represent the lifetimes of units or components of a reliability system. Let
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Y;,Y2,...,Y, be a random sample of size n from the ELEGD((y,4,8,a,p)) with
cumulative distribution function (cdf), and the corresponding probability density
function (pdf), as in (6) and (7), respectively. Let Y(1),Y(2),...,Yn) be the
corresponding order statistics. Then the pdf of Y., 1 < r < n,denoted by fi..,(¥).is
given by,

,;"n("') = CrmeCWG(y: a, B! Y, 6) [FTCWG (y» a, B: Y, 8)]T—I[RTCWG (y' a, B: Y, 6)]11—1',

@ -pata+ gy (e ®+27) (1 o))"

frn () = Crn- —2 X
(1-+{a-e =) )
a-p (1= x
1-p (1 - e-(Ax+§x2))“
1- (1 - e'("” *’g"z))a . an

1-p (1 - e—('l""'"g"z))ar |

n!

whereC,., = m.

Therefore, the pdf of the largest order statistic Y,is given by:
n(1-p)a(A + By) (e'('ly +&y z)) (1 _ (w4 2))‘1—1
(- )Y

a. n-1
a-p)(1-e @)

e Ax-l-gxz))a

X

f ()=

1-p (1 _
While, the pdf of the smallest order statistic Yis given by:
(1 - p)ata + ) (6 @*H)) (1- e )
(1-5(2- e'(*"“‘%’f’))“)z
1-(1- e'(”%”))“ "
1-p(1- e‘(‘"gx’))“
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7. Estimation of the Parameters

In this section, we introduce the method of likelihood to estimate the parameters
involved and use them to create confidence intervals for the unknown parameters.

The maximum likelihood estimators (MLEs) for the parameters of the
exponentiated linear exponential geometric distribution (ELEGD)(x,4,8,a,p) is
discussed in this section. Consider the random sample xi,X5,...,%, of size n
fromELEGD(x, 4, B, @, p) with probability density function in (6), then the likelihood
function can be expressed as follows

n
L(xi' X2s+00, X, /1,,3, Qa, p) = n fELEGD(xil l, ,3, a, p)'
i=1

a-1

(a-p)a)* ili(l+ﬁx,-)(e—(ui+§x"z))(1—e—(3xi+§x‘2))

yemey

Then, the log-likelihood function ¥ = InL becomes:

L=

¥ =n(n(1 - p) +1na) + T, In(A + fx) - 1, In (Ax, +£x2)) |
+@ =D, In(1- e-(*xﬁf-xzt)) - 23, In(1-p(1- e-(*xféx"t))“). (18)

Differentiating Equation (18) with respect to 4, 8, @ and p then equating it to zero, we
obtain the MLEs of 1, 8, @ and p as follows,

—(Axi+§x2 i)

a_\; _ Za +1ﬁxi _ Z x + (a— 1)2 (1xiee_(m+§x2t))

- 8
+2apz 5 = 0(19)
& (1-p(1- o BB
¥ = X; . X2 4 (a—1) i x2 e"(’“‘i’“?‘zi)
dB = A+ Bx; bt 2 2 £ (1 e_(lxﬁﬁle))
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n lee_()‘x‘*'gxz‘) (1 - e"("""""g‘tzl))a-1
=1 (1 ~-p (1 - e’("‘t“g""))a)

+ap

=0, (20)

W n v (1"3-(M+§xz‘))a

= + =
ap 1 = p i=1 (1 - p (1 - e—(lxl'*‘gle)) )

We can find the estimates of the unknown parameters by maximum likelihood
method by setting these above nonlinear system of Equations (19) - (22) to zero and
solve them simultaneously. These solutions will yield the ML estimators 2, B, &, and
p. For the four parameters exponentiated linear exponential geometric distribution
ELEGD(x,A,8,a,p)pdf all the second order derivatives exist. Thus we have the

inverse dispersion matrix is given by

A [ /2 Vi Pz Tz P \]
B\ N B | Ver Vo2 Vs Vi
& |\\a)' (Vs Uiz P53 P3|
p i Vor Pz Vaz Pus/ |

V-l=—E

Equation (23) is the variance covariance matrix of

theELEGD(x, A, B, a, p) where
vy %y o’y o’y
“w=37 Y=z "3 "o
vy Py vy
Vaz = ‘a'p—z‘vza = 3p oa Ve = 3 op
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0%y *Y

V53 = 57 % ~ Gadp
i 4

Vag = a—p-’-

By solving this inverse dispersion matrix, these solutions will yield the

asymptotic variance and covariances of these MLEs for 1, 8, &, and . Approximate
100(1 — ¢)% confidence intervals for A, 8, @ and p can be determined as:

A1 Zo\011, B + Zo\[Vy5,8 + Zo[Vzand P + Z/ Vs,
2 2 2 2

where Z is the upper ¢th percentile of the standard normal distribution.
2

These non-linear can be routinely solved using Newton’s method or fixed-point
iteration techniques. The subroutines to solve non-linear optimization problem are
available in R 18,software namely optim (), nlm () and bbmle () etc. We used nlm ()

package for optimizing (18). -

8. Applications

In this section, we use two real data sets to to see how the new model works in
practice.compare the fits of the ELEG distribution with others models. In each case,
the parameters are estimated by maximum likelihood as described in Section 7, using
the R code.

8.1 Data Set 1

The first data set represents the ages for 155 patients of breast tumors taken from
(June-November 2014), whose entered in (Breast Tumors Early Detection Unit,
Benda Hospital University, Egypt). ,
In order to compare the two distribution models, we consider criteria like KS
(Kolmogorov Smirnov),—2£ AIC (Akaike information criterion), AICc (corrected
Akaike information criterion), and BIC (Bayesian information criterion) for the data
set. The better distribution corresponds to smaller KS,—2£ AIC and AICc values:

AIC = =-2L + 2k,
2kn
Alce = —2¢ +(-—p—)
and
BIC = —2L + klog(n),
where L denotes the log-likelihood function evaluated at the maximum likelihood
estimates, k is the number of parameters, and n is the sample size.
Also, for calculating the values of KS we use the sample estimates of A, 8, @ and
p. Table 2 shows the parameter estimation based on the maximum likelihood and
gives the values of the criteria AIC, AICc, BIC, and KS test. The values in Table 2
indicate that the ELEG distribution leads to a better fit over all the other models.

Table 1: the ages for 155 patients of breast tumors
46 32 50 46 44 42 69 31 25 29 40 42 24 17 35
48 49 50 60 26 36 56 65 48 66 44 45 30 28 40
40 50 41 39 36 63 40 42 45 31 48 36 18 24 35
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30
50
48
50
38
40

58

36

40 48 50
45 50 S0
32 45 42
40 50 50
38 42 50

38 50 50

45 35 38
43 40 45

60 52 47
50 53 55
36 30 28
50 60 39
40 36 38
50 40 65
32 35 38
36

50 49
38 40
38 54
34 28
38 50
38 40
34 43

38 30
42 42
9 80
18 60
50 31
38 58
40 35

52 52
32 40
60 45
50 20
59 40
35 60
54 60

12 48
50 58
40 50
40 50
42 38
90 48
33 35

Table 2. MLEs the measures AIC, AIC: and BIC, and KS test to 155 patients of breast tumors

data for the models
Model Parameter —loglL AIC AlICc BIC KS
Estimates
ELEG A1 =0.0243 603.68986 | 1215.38 | 1215.539 | 1227.553 | 0.09722351
B = 0.00160
& =8.006694
P = 0.08999
TEE A= —-0.779 606.38793 | 1218.776 | 1218.935 | 1227.906 | 0.1010722
B = 21.8864
& = 0.09525
EE B = 0.0865 611.244 1226.489 | 1226.568 | 1232.576 | 0.1134637
& = 25.598
/4 3 = 3.68710 610.29668 | 1224.593 | 1224.672 | 1230.68 0.1351548
A= 0.02078
E ﬁ = 0.02290 740.3172 | 1482.634 | 1482.661 | 1485.678 | 0.4089441
LE 1=6.210.10"5 650.626 1305.252 | 1305.331 | 1311.339 | 0.2696026
B =9.732.10*
. LE
) —— Exponential
-—  Weibull
—— EED
— — ELEG
= TEED
= _
= 4

000 001 002 003 004 005 006 007

Data set 1

Figure 6:Estimated densities of data set 1. |
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Figure 7:Empirical, fitted ELEG, Exponential, Weibull, Exponentiated exponential,
Linear exponential and Transmuted Exponentiated exponential distributions of data
set 1.
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Figure 8: Probability plots for the fits of the ELEG, Exponential, Weibull,
exponentiated exponential, Linear exponential and Transmuted Exponentiated
exponential distributions of data set 1.

8.2 Data Set 2

The second data set represents failure time of 50 items reported in Aarset [1].
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Some summary statistics for the failure time data are as follows:
Min. 1¥Qu. Median Mean 3“Qu. Max

0.10 13.50 48.50 45.67 81.25 86.00
Table 3. MLEs the measures AIC, AIC: and BIC, and KS test to failure time data for the models

Model | Parameter —loglL AIC AICc BIC KS
Estimates

ELEG | 1=0.84+10"5 | 206.4957 | 420.9914 | 421.5132 | 428.6395 | 0.1543141
B =169»10"*
& = 0.30966

p = 0.09240 |

TEE =~3.21+10"5 | 238.6896 | 483.3793 | 483.9011 | 489.1154 | 0.1662423
f=614+10"5
@ =223+10"3

EE = 0.01870912 | 239.9733 | 483.9467 | 484.2021 | 487.7708 | 0.1843086
& = 0.77984131

w = 0.94895018 | 240.9795 | 485.9592 | 486.2145 | 489.7832 | 0.1729689
A = 0.02227629

E B =0.02189828 | 241.0677 | 484.1354 | 484.2187 | 486.0474 | 0.1712294

A= 0.01364528 | 238.04883 | 480.0977 | 480.353 | 483.9217 | 0.1570382

6

B = 0.00023990

These results indicate that the ELEG model has the lowest AIC and AICc,KS and BIC

values among the fitted models. The values of these statistics indicate that the ELEG
model provides the best fit to all of the data.
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Figmfe 9:Estimated densities of data set 2.
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Figure 10:Empirical, fitted ELEG, Exponential, Weibull, Exponentiated exponential,
Linear exponential and Transmuted Exponentiated exponential distributions of data
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Figure 11: Probability plots for the fits of the ELEG, Exponential, Weibull,
exponential, Linear exponential and Transmuted Exponentiated exponential

distributions of data set 2.
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8. Conclusions

There has been a great interest among statisticians and applied researchers in
constructing flexible lifetime models to facilitate better modeling of survival data.
Consequently, a significant progress has been made towards the generalization of
some well-known lifetime models and their successful application to problems in
several areas. In this paper, a new lifetime distribution is provided and discussed. We
refer to the new model as the ELEGD distribution and study some of its mathematical
and statistical properties. We provide the pdf, the cdf and the hazard rate function of
the new model, explicit expressions for the moments. The model parameters are
‘estimated by maximum likelihood. The new model is compared with some of models
and provides consistently better fit than other classical lifetime models. We hope that

the proposed life time distribution attract wider applications in statistics.
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