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Abstract: To compute and test the significance of the Spearman rank correlation coefficient, the
differences between ranks are used, and the Spearman correlation coefficient is used as a test statistic.
This study has introduced an efficient rank correlation formula like the method earlier derived by
Spearman. The formula is based on a new statistic that depends on the sum of the ranks rather than
their difference, as in Spearman’s formula. The formula was derived and tested with real data. Hence,
if there are no ties in the data, the result shows that the formula gives the same result as Spearman’s
formula. The formula is simple to use and does not include a negative sign during calculation. we
clarify the relationship between the new test statistic and the Spearman rank correlation coefficient and
establish the exact distribution of the new test statistic using the exact distribution of the Spearman
rank correlation coefficient. When there are no ties, it is advised to follow this formula.
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1. Introduction

One of the earliest applications of non-parametric statistics that most social scientists have learned
about is Spearman’s rho. It is widely available in most statistical software packages, has an intuitive
conception as the Pearson correlation between two ranking variables, and offers an immediate replace-
ment when the distributional assumption of normality is questioned.
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The rank correlation coefficient as proposed by [1], whegl there are no ties, is defined as follows:
n
oo 22D (L.1)
n(n?-1)

where D? = [R(X;) = R (Y;)]? are the squared rank differences between variables X and Y and n is the
total number of measured units (i.e., the sample size). This is the most commonly used computational
formula to obtain the Spearman correlation and perhaps the most easily recognized one among intro-
ductory statistics textbooks in the social sciences. Its standard error and sampling distribution were
extensively studied by [2], who found that, for the null case, 1/ Vn — 3 and the normal distribution are
respectively good approximations as the sample size grows arbitrarily large. For the non-null case,
most work has relied on computer simulations, which can be reviewed in [3, 4, 5].

In rank correlation analysis, it is common to test the null hypothesis that there is no correlation
in the population between the paired ranks. There are numerous tables of critical values for r,, and
if ry is greater than the relevant critical value, the null hypothesis is rejected. The “Hotelling-Pabst
test” used Y, Dl.2 as the test statistic for rank correlation testing rather than r,. (See [6]). Critical
values for various sample sizes, n, and levels of significance are provided in published tables. The
most comprehensive ry tables are those of [7, 8].

Tables of the exact distribution of r; and Y, D? are available in the literature. The table of the exact
quantiles of r; for sample sizes 4 through 30 was prepared by [9, 10], who also gave tables of the
probability function of Y D?.

The purpose of this paper is to develop an alternative approach for computing and testing the signif-
icance of the rank correlation coefficient. We used the sum of ranks instead of the differences between
ranks for this purpose, and a new test statistic is introduced. if there are no ties in the data, the result
shows that the new formula based on the new statistics gives the same result as Spearman’s formula.
The formula is simple to use and does not include a negative sign during calculation. We show the
relationship between the new test statistic and r;. We construct the exact distribution of the new test
statistic using the exact distribution of r;. The significance of r; is tested using the critical values that
we will get for the new statistics in a numerical example.

The notion on which the proposed approach is based is the following: for a set of n pairs of R (X)
and R (Y), let T be the sum of the ranks of the two random variables X and Y as follows:

rs

T,':R(X,')+R(Y[).

When two rankings of X and Y are identical, the situation in which r; reaches its maximum value 1,
o* (T), the variance of T, will take on its maximum value @ This is because the totals of ranks in
this case would be some permutations of 2,4,6,...,2n. On the other hand, when one ranking is the
reverse of the other, in the situation in which r, reaches its minimum value of -1, the variance o (T)
will take on its minimum value of zero (in this case, 7; = n+1 fori = 1,2, ...,n). Thatis, o (T) varies
from zero to (n:—_]) Zero signifies perfect negative disagreement, whereas 1 signifies perfect positive
agreement. This may indicate, as a point of interest, that a relationship between o (T) and r; might
be investigated. In other words, the rank correlation coefficient r¢ may be defined in terms of the value
of o (T) which, in turn, can be used as an indicator of the strength of association between X and Y
(as measured by r; ). Hence, the totals of ranks, rather than the differences between ranks are to be
considered.

For example when n = 5, we can obtain the probability distribution of T as follows:
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T 2 3 4 5 6 7 8 9 10
g(T) | 1/25 |2/25 |3/25 |4/25 |5/25 |4/25 |3/25 |2/25 |1/25

So, we can conclude that the distribution of 7" (the sum of all possible sets of pairings of R (X) and
R (Y) ) is defined as

1 T=23,....n+1
_ n2 s~ ’
g(T)—[ —(2";?4 T=n+2,n+3,....2n ° 1.2)
and hence ,
ST(T 1) X Ti[Qn+ 1) =T
E(T) = 4 .
2n(n+1)(n+2) 4dnn+1)(n-1)
E(T) =
) 6n? 6n?
It follows after some simplification that
E(T)=n+1. (1.3)
Similarly,
“TAHT —-1) X T2[2n+ 1) =T
2\ _ i L i i
E(r?)=), "5+, P
i=1 n i=n+1 n
nn+1D)n+2)Bn+S5 nr+1)Aln+10)(n-1)
E(T?) =
(%) 12 " 2
which leads to ( N 5)
n+ n+
E(T?) = . 1.4
(1?) - (1.4)
It follows from (1.3) and (1.4) that
2
-1
Var(T) = = - (1.5)

It should be noted that 0% (T') concerns one set of pairings of R (X) and R (Y), whereas Var (T) concerns
all possible different sets of pairings of R (X) and R (Y).

This paper is organized as follows. In Section 2, the relationship between r, and 0% (T) is presented.
Section 3 described the exact distribution of o (T'). An alternative way for obtaining the mean and
variance of o (T') is discussed in Section 4. Section 5 provides tests for the significance of r, for small
and large samples. The conclusion will be covered in Section 6.

2. The relationship between r, and o (T)

For a given set of untied rankings for X and Y, a possible relationship between r; and o (T') can be
investigated in the following manner:
The variance o> (T) can be expressed in terms of R (X) and R (Y) as follows:

n n 2
O'Q(T):%;Tf—%(;ﬂ),
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2
1 © 1 [<&
=~ ) [RX)+R (YD) - ;{ [R(X;) +R (Y»]} :

i=1 i=1

Since Y7 R? (X;) = Y1, R? (Y;) = “beneD

then
T =2 Y Rex) Ry - LEDEED) )
n 4 3
and since Y., D? = ¥, [R (X)) - R(Y)T,
=Y (R &)+ R (1)) -2 > RXIR(Y)),
i=1 i=1
then
- DQC2n+1 -
ZD?:"('” )(2n + )—2ZR(Xi)R(Y,~). 2.2)
i=1 3 i=1
From (2.1) and (2.2) we find
n n (n2 — 1)
> D= ——5— (1), (2.3)
i=1
Now, substituting equation (2.3) into equation (1.1), we get
6 2
rs=|— o (T)-1. (2.4)
n*—1

3. The Exact distribution of ¢ (T)

The exact distribution of o (T') can be obtained by enumerating all possible permutations of the n
untied ranks for the two variables. This provides n! distinct sets of pairings of R (X) and R (Y), and
hence provides a set of n! values for o (T). These values can be used to obtain the exact distribution
of o (T). The n! distinct sets of pairings of R (X) and R (Y) are determined by keeping the R(X) s fixed
and permuting the R(Y)/s with equal probabilities (n!)~!. The variance o (T) can then be found for
each pair of R(X) and R(Y). However, it is much easier to obtain the exact distribution of o (T') in this
case by using its relationship with r; whose exact distribution is known. Tables of the exact distribution
of ry and 3, D? are available in the literature. The table of the exact quantiles of r, for sample sizes
4 through 30 was prepared by [9, 10], which gives tables of the probability function of Y, D*. In this
paper, the exact distribution of o (T') is constructed (Table 1) using the exact distribution of r, and the
relationship between o (T') and r, as defined in (2.4). Table 1 shows the values of o (T) for selected
quantiles, under the assumption of independence, for sample sizes ranging from 4 to 30.

To obtain the corresponding lower quantiles for o (T), let us first consider the mean and variance
of o (T). Since the mean and variance of r, (see [11]) are given by:

E(r)=0 & Var(ry) = ﬁ 3.1
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Table 1. Exact quantiles for o (T)

n | P=0.900] P=0.950] P=0.975| 0.990 | 0.995 0.999
4 4500 |4.500
5 6800 |7.200 |7.600 | 7.600

6 |9.333 10.333 | 10.667 | 11.000 | 11.334
7

8

9

12.286 | 13.429 | 13.960 | 14.857 | 15.143 | 15.714
15.750 | 17.000 | 18.000 | 19.000 | 19.500 | 20.250
19.556 | 21.111 | 22.444 | 23.556 | 24.223 | 25.333
10 | 23.800 | 25.600 | 27.001 | 28.559 | 29.400 | 30.801
11 | 28.364 | 30.546 | 32.182 | 34.000 | 34.910 | 36.728
12 | 33.333 | 35.667 | 37.666 | 39.833 | 41.167 | 43.334
13 | 38.615 | 41.384 | 43.537 | 46.001 | 47.538 | 50.145
14 | 44.285 | 47.427 | 49.858 | 52.715 | 54.428 | 57.427
15 | 50.400 | 53.868 | 56.668 | 59.733 | 61.734 | 65.199
16 | 56.873 | 60.626 | 63.750 | 67.252 | 69.377 | 73.376
17 | 63.648 | 67.766 | 71.294 | 75.058 | 77.530 | 81.998
18 | 70.780 | 75.334 | 79.221 | 83.334 | 85.999 | 91.000
19 | 78.420 | 83.370 | 87.474 | 91.998 | 94.950 | 100.422
20 | 86.297 | 91.697 | 96.099 | 101.100| 104.299| 110.297
21 | 94.666 | 100.379| 105.241| 110.572| 113.997| 120.670
22 | 103.273| 109.456 | 114.640| 120.452| 124.179| 131.360
23 | 112.350| 118.958 | 124.520| 130.698 | 134.693 | 142.437
24 | 121.747| 128.752| 134.751| 141.335| 145.667 | 154.004
25 | 131.518| 138.965 | 145.361| 152.402| 157.040| 166.005
26 | 141.615] 149.614 | 156.307| 163.845| 168.773 | 178.380
27 | 152.152| 160.597 | 167.707| 175.703| 180.969 | 191.185
28 1162.994| 171.934| 179.424| 187.933| 193.505 | 204.363
29 | 174.202| 183.582| 191.590| 200.480| 206.416| 217.938
30 | 185.793| 195.667 | 204.073 | 213.527| 219.731| 231.927

The mean and variance of o (T') are defined by taking the means and variances on both sides of (2.4),
and then by (3.1) we find:

n:—1
E [0’2 (T)] = (3.2)
and )
Var|o? (T)| = (n — 1)3(6” o 3.3)

Note: the corresponding lower quantiles are obtained from the following equation:

n? -1

3

o1 p(T) = — 03 (T).
In view of the symmetry of the distribution of r; about zero with variance ﬁ, it follows from (2.4)
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nz— . . .
that the distribution of o (T') is symmetric about % with the variance defined in (3.3). Conse-
quently, for r; = 0, the value of o (T) will be equal to ( ) . As aresult, the closer the value of o (T)
2_
is to (n ) , the weaker the association between X and Y (as measured by r;), and vice versa.

2_
Now since the distribution of o (T) is symmetric about (1) , the corresponding lower quartile
o1_p (T) for a given upper quantile o5 (T) can then be determlned by using the folowing formula:

2 _
3

For example: for n = 24, the 0.01 and 0.1 quantiles for o (T') are given as follows:

="t 2 (34)

24)? — 1
o2 (T) = % _ 141.335 = 50.332

Similarly,
o%, (T) =191.667 — 121.747 = 69.92

4. An alternative way for obtaining the mean and variance of o> (T)

Since o (T) is given by

n\2
o> (T) = ZTZ— —(Z J :
i=1
then, the mean and variance of o (T) can be defined using the mean and variance of Y, T; and
pora Ti2 . To define the mean of o (T), the distribution of T as given in (1.2) can be used, and hence

the n! distinct sets of pairings of R (X) and R (Y) should be considered.
LetZ;= Y, Tijand S; = i, T7 for j = 1,2,3,...,n!

where T;; represents the i observation for T (i = 1,2,...,n) on thej”’ set(j=1,2,...,n!).
Now,
E[ZT,-)_—_ZZ 4.1
i=1 i=1 j=1
Since E(T) = ;" ! n(n,), then, by (1.3) and (4.1), we find:

E(Z Tl-] =n(n+1), (4.2)

i=1

or

+F

ZR(X) ZR(Y)

i=1 i=1 j=1

=nn+1).

)

[n(n+1) +n(n+1)
2
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2
Since E (T?) = 3, X%, 25, then, by (1.4) and (4.3), we get:
- nn+1)(7n+5)
E| Y T |= 4.4
[Zl , ] 6 (4.4)

For example, if n = 3, then, there are 3! distinct sets of pairings of R (X) and R (Y) are determined by
keeping the R(X)"* fixed and permuting the R(Y)"* as follows:

RX) |1 2 |3
R(Y; |1 2 |3
T; 2 |4 |6

3 3
Zy= ) Ty =12,81= ) Tu®=(4+16+36) = 56.
i=1 i=1

RX)[1 |2 [3
RY) |1 |3 |2
T, |2 |5 |5

3 3
Z, = ZT,Q - 12,8, = ZT,.ZZ = (4 +25+25) = 54.
i=1 i=1

RX;) |1 2 |3
RY) |2 1 3
T; 3 13 |6

3 3
23:2T,~3 = 12,8, :ZTi32:(9+9+36):54.
i=1 i=1

RX) |1 2 |3
RY) |2 |3 1
T; 3 |5 |4

3 3
Zi = ZT,-4 = 12,85, = ZT,-42 = (9 +25+16) = 50.
i=1

i=1

R(X;) |1 2 |3
R |3 I |2
T; 4 |3 |5

3 3
Zs = ZT,-S =12,85 = ZT,-SZ = (16 +9 +25) = 50.
i=1 i=1

RX)[1 [2 [3
R(Y) |3 |2 |1
To |4 |4 |4
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3 3
Zs = ZT[(, = 12,84 = ZT,-62 = (16 + 16 + 16) = 48.

i=1 i=1

Then,
n=3
E[ T,]: oy D L
i=1 i=1 j=1
or
n=3
E[ZT,.J:3(3+1): 12.
i=1
3 3 3! T2
, _ (56+54+54+50+50+48)
E[Z T,.] ZZ . ! _s.
Or

3
E[ZTZ] w 52.
i=1

It can also be proven that Var (Z:’ 1 T.2) = Var (Z?:l Dl.z),
: nom n*(n— 1)(n+1)
Since Var( 1 Dl.) === (See [12]).

It follows that )
- n”m-Dm+1)
1% T? | =
ar(z ) o

i=1

Now, we are prepared to find the mean and variance of o> (T)

n n 2
E|o*(D)] = lE[Z T}] - 12E[ T,] .
o\ R
From (4.2) and (4.4) we get

E[O'Z(T)] _ l nn+1)(7n+5)

2
z —(n+1).

It follows after some simplification that

n? -1
=

E [0'2 (T)] =

nLT? nT)) n T2 no)?
Var [0'2 (T)] = Var[ i:’i L (Zizlle) } = Var(—’:1 L )+ Var(—(z’:lzT’) )

n n n

Since, EL ) = r)’
Var|o® (T)] Var( ) and by (4.5), we get

18 a constant, then,

(n—1)(n+ 1)
36 ’
which agrees with the results obtained before in (3.2) and (3.3).

Var [0'2 (T)] =

4.5)
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5. Testing the significance of r,

A common desire in rank correlation analysis is to test the null hypothesis that there is no cor-
relation in the population between the paired ranks, i.e., we wish to test the two-tailed hypotheses
Hy : ry =0vs. Hy : ry # 0. There are many tables of critical values for ry, and if r; is greater than the
relevant critical value, then H, is rejected. The use of )}, Dl.2 instead of r, as the test statistic for rank
correlation testing is sometimes called the ”Hotelling-Pabst test”. (see [6]). i, Dl.2 is small when r, is
large, and H, is rejected if Y.", D? is less than the critical value. Published tables offer critical values
for various sample sizes, n, and levels of significance, @. The most extensive of such tables for r, are
those of [8] and, with slight improvements, of [7].

5.1. Small Samples

For small samples (n < 30), the exact probability distribution of o> (T') given in Table 1 is used to
test the significance of r,. That is , o (T) is used as a test statistic to test for independence between X
and Y. The hypotheses take the form:

A Hy:ry=0versus H; : ry #0
B.Hy:r,=0versus H; : r; >0
C.Hy:rg=0versus H; : r;, <0

For a given significance level «, and using Table 1, the Hy in B is rejected if the observed value of
o2 (T) exceeds the 1 — « quantile. The H, in C is rejected if the observed value o (T') is smaller than
the o quantile, and the Hy in A is rejected if the observed value of o (T') exceeds the 1 — a/2 quantile
or if % (T) is less than the /2 quantile.

Example: Apply the preceding hypotheses (A,B, and C) to the following rankings for X and Y, using
a = 0.05.

RX)|[3 |6 |8 |1 [4 |7 |2 [5 |9
RY)|1 [8 [9 [3 [2 |6 [4 [7 |5

The values of T; in this example are: 4, 14, 17, 4, 6, 13, 6, 12, and 14. Thus, o (T) equals 22. From
table 1, and for n = 9, we find:

The 0.95 and 0.975 quantiles for o (T') are 21.111 and 22.444 respectively. The corresponding lower
quantiles for o (T) can be obtained using formula (3.4). That is, the 0.05 and 0.025 quantiles for
o2 (T) are, respectively, (26.667 —21.111 = 5.556) and (26.667 — 22.444 = 4.223).

Since the observed value of 22 for o (T') is larger than the value of the 0.95 quantile for 0% (T), then
the Hy in B is rejected at the significance level of 0.05. The H, in C is accepted at the significance level
of 0.05 because the observed value of o2 (T') is larger than the 0.05 quantile for o (T'). Finally, the H,
in A is accepted at the significance level of 0.05 because the observed value of o (T') lies between the
two values of the 0.025 and 0.975 quantiles (note that: 4.223 < 22 < 22.444).

It should be pointed out that the test statistic o (T') gives results as if the r, test statistic was used.

5.2. Large Samples:

When the sample size is greater than 30, we cannot use table 1 to test the significance of r;. In this
case, it is probably accurate enough to use the normal approximation of the o (T') distribution.
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For n > 30, ry Vn — 1 is distributed approximately as the standard normal distribution (See [10]). As a
result of (2.4), it follows that

_em-

(n—=1)(n+1)>
\/ 36
(n*-1)

is also distributed as the standard normal. That is, testing o> (T) = ~—— Is equivalent to testing r; = 0.
Thus, the associated probability under H, of any value as extreme as an observed value of o (T') may
be determined by computing the Z associated with that value using formula (5.1) and then determining
the significance of that Z by referring to the table of the standard normal distribution.

Example: Suppose we have: n = 40 and o (T') = 375.

Test: Hy : ry = 0 versus H; : ry > 0, using @ = 0.01.

In this example, using formula (5.1) we get Z = 2.542. From the table of the standard normal dis-
tribution, we find the significance level associated with 2.542 is @ = 0.0039. Since @ < 0.01, then
Hj is rejected at @ = 0.01. Alternatively, from the table of the standard normal distribution, we find

Zogy = 2.326. Since 2.542 > Z; 49, We can reject Hy at @ = 0.01.

(5.1)

6. Conclusions

In this paper, we developed an alternative approach for computing and testing the significance of
the rank correlation coefficient. To compute and test the significance of the Spearman rank correlation
coefficient, we used the totals of ranks, instead of the differences between ranks for this purpose, and
a new test statistic is introduced. we showed the relationship between the new test statistic and r;. We
constructed the exact distribution of the new test statistic (Table 1) using the exact distribution of r;.
The new test statistic is used in testing the significance of the rank correlation coefficient and gives
identical results to those obtained by the Spearman correlation coefficient test statistic.

Finally, in the next work, it is aimed to develop the new statistic in nonparametric correlation
analysis so it can both negate the impact of ties as well as offer a closer approximation to the parametric
Karl-Pearson’s product-moment correlation coefficient. In addition, we will demonstrate that the new
rank correlation coefficient formula has a direct link with Kendall’s coefficient of concordance.

Conflict of interest: The authors state that they have no financial or other conflicts of interest to
disclose with connection to this research.
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