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Abstract: To compute and test the significance of the Spearman rank correlation coefficient, the
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Spearman. The formula is based on a new statistic that depends on the sum of the ranks rather than
their difference, as in Spearman’s formula. The formula was derived and tested with real data. Hence,
if there are no ties in the data, the result shows that the formula gives the same result as Spearman’s
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clarify the relationship between the new test statistic and the Spearman rank correlation coefficient and
establish the exact distribution of the new test statistic using the exact distribution of the Spearman
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1. Introduction

One of the earliest applications of non-parametric statistics that most social scientists have learned
about is Spearman’s rho. It is widely available in most statistical software packages, has an intuitive
conception as the Pearson correlation between two ranking variables, and offers an immediate replace-
ment when the distributional assumption of normality is questioned.
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The rank correlation coefficient as proposed by [1], when there are no ties, is defined as follows:

rs = 1 −
6
∑n

i=1 D2
i

n
(
n2 − 1

) , (1.1)

where D2
i = [R (Xi) − R (Yi)]2 are the squared rank differences between variables X and Y and n is the

total number of measured units (i.e., the sample size). This is the most commonly used computational
formula to obtain the Spearman correlation and perhaps the most easily recognized one among intro-
ductory statistics textbooks in the social sciences. Its standard error and sampling distribution were
extensively studied by [2], who found that, for the null case, 1/

√
n − 3 and the normal distribution are

respectively good approximations as the sample size grows arbitrarily large. For the non-null case,
most work has relied on computer simulations, which can be reviewed in [3, 4, 5].

In rank correlation analysis, it is common to test the null hypothesis that there is no correlation
in the population between the paired ranks. There are numerous tables of critical values for rs, and
if rs is greater than the relevant critical value, the null hypothesis is rejected. The ”Hotelling-Pabst
test” used

∑n
i=1 D2

i as the test statistic for rank correlation testing rather than rs. (See [6]). Critical
values for various sample sizes, n, and levels of significance are provided in published tables. The
most comprehensive rs tables are those of [7, 8].

Tables of the exact distribution of rs and
∑

D2 are available in the literature. The table of the exact
quantiles of rs for sample sizes 4 through 30 was prepared by [9, 10], who also gave tables of the
probability function of

∑
D2.

The purpose of this paper is to develop an alternative approach for computing and testing the signif-
icance of the rank correlation coefficient. We used the sum of ranks instead of the differences between
ranks for this purpose, and a new test statistic is introduced. if there are no ties in the data, the result
shows that the new formula based on the new statistics gives the same result as Spearman’s formula.
The formula is simple to use and does not include a negative sign during calculation. We show the
relationship between the new test statistic and rs. We construct the exact distribution of the new test
statistic using the exact distribution of rs. The significance of rs is tested using the critical values that
we will get for the new statistics in a numerical example.

The notion on which the proposed approach is based is the following: for a set of n pairs of R (X)
and R (Y), let T be the sum of the ranks of the two random variables X and Y as follows:

Ti = R (Xi) + R (Yi) .

When two rankings of X and Y are identical, the situation in which rs reaches its maximum value 1,
σ2 (T ), the variance of T , will take on its maximum value (n2−1)

3 . This is because the totals of ranks in
this case would be some permutations of 2, 4, 6, . . . , 2n. On the other hand, when one ranking is the
reverse of the other, in the situation in which rs reaches its minimum value of -1, the variance σ2 (T )
will take on its minimum value of zero (in this case, Ti = n+1 for i = 1, 2, . . . , n). That is, σ2 (T ) varies
from zero to (n2−1)

3 . Zero signifies perfect negative disagreement, whereas 1 signifies perfect positive
agreement. This may indicate, as a point of interest, that a relationship between σ2 (T ) and rs might
be investigated. In other words, the rank correlation coefficient rs may be defined in terms of the value
of σ2 (T ) which, in turn, can be used as an indicator of the strength of association between X and Y
(as measured by rs ). Hence, the totals of ranks, rather than the differences between ranks are to be
considered.
For example when n = 5, we can obtain the probability distribution of T as follows:
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T 2 3 4 5 6 7 8 9 10
g (T ) 1/25 2/25 3/25 4/25 5/25 4/25 3/25 2/25 1/25

So, we can conclude that the distribution of T (the sum of all possible sets of pairings of R (X) and
R (Y) ) is defined as

g (T ) =
[ T−1

n2 T = 2, 3, . . . , n + 1
(2n+1)−T

n2 T = n + 2, n + 3, . . . , 2n
, (1.2)

and hence

E (T ) =
n∑

i=1

Ti (Ti − 1)
n2 +

2n−1∑
i=n+1

Ti [(2n + 1) − Ti]
n2 .

E (T ) =
2n (n + 1) (n + 2)

6n2 +
4n (n + 1) (n − 1)

6n2

It follows after some simplification that

E (T ) = n + 1. (1.3)

Similarly,

E
(
T 2

)
=

n∑
i=1

T 2
i (Ti − 1)

n2 +

2n−1∑
i=n+1

T 2
i [(2n + 1) − Ti]

n2 ,

E
(
T 2

)
=

n (n + 1) (n + 2) (3n + 5)
12n2 +

n (n + 1) (11n + 10) (n − 1)
12n2

which leads to
E

(
T 2

)
=

(n + 1) (7n + 5)
6

. (1.4)

It follows from (1.3) and (1.4) that

Var (T ) =
n2 − 1

6
. (1.5)

It should be noted thatσ2 (T ) concerns one set of pairings of R (X) and R (Y), whereas Var (T ) concerns
all possible different sets of pairings of R (X) and R (Y).

This paper is organized as follows. In Section 2, the relationship between rs and σ2 (T ) is presented.
Section 3 described the exact distribution of σ2 (T ). An alternative way for obtaining the mean and
variance of σ2 (T ) is discussed in Section 4. Section 5 provides tests for the significance of rs for small
and large samples. The conclusion will be covered in Section 6.

2. The relationship between rs and σ2 (T)

For a given set of untied rankings for X and Y , a possible relationship between rs and σ2 (T ) can be
investigated in the following manner:
The variance σ2 (T ) can be expressed in terms of R (X) and R (Y) as follows:

σ2 (T ) =
1
n

n∑
i=1

T 2
i −

1
n2

 n∑
i=1

Ti

2

,
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=
1
n

n∑
i=1

[R (Xi) + R (Yi)]2
−

1
n2

 n∑
i=1

[R (Xi) + R (Yi)]


2

.

Since
∑n

i=1 R2 (Xi) =
∑n

i=1 R2 (Yi) = n(n+1)(2n+1)
6 ,

then

σ2 (T ) =
2
n

n∑
i=1

R (Xi) R (Yi) −
(n + 1) (n + 2)

3
, (2.1)

and since
∑n

i=1 D2
i =

∑n
i=1 [R (Xi) − R (Yi)]2,

=

n∑
i=1

{
R2 (Xi) + R2 (Yi)

}
− 2

n∑
i=1

R (Xi) R (Yi),

then
n∑

i=1

D2
i =

n (n + 1) (2n + 1)
3

− 2
n∑

i=1

R (Xi) R (Yi). (2.2)

From (2.1) and (2.2) we find
n∑

i=1

D2
i =

n
(
n2 − 1

)
3

− nσ2 (T ) . (2.3)

Now, substituting equation (2.3) into equation (1.1), we get

rs =

(
6

n2 − 1

)
σ2 (T ) − 1. (2.4)

3. The Exact distribution of σ2 (T )

The exact distribution of σ2 (T ) can be obtained by enumerating all possible permutations of the n
untied ranks for the two variables. This provides n! distinct sets of pairings of R (X) and R (Y), and
hence provides a set of n! values for σ2 (T ). These values can be used to obtain the exact distribution
of σ2 (T ). The n! distinct sets of pairings of R (X) and R (Y) are determined by keeping the R(X)

′

s fixed
and permuting the R(Y)

′

s with equal probabilities (n!)−1. The variance σ2 (T ) can then be found for
each pair of R(X) and R(Y). However, it is much easier to obtain the exact distribution of σ2 (T ) in this
case by using its relationship with rs whose exact distribution is known. Tables of the exact distribution
of rs and

∑
D2 are available in the literature. The table of the exact quantiles of rs for sample sizes

4 through 30 was prepared by [9, 10], which gives tables of the probability function of
∑

D2. In this
paper, the exact distribution of σ2 (T ) is constructed (Table 1) using the exact distribution of rs and the
relationship between σ2 (T ) and rs as defined in (2.4). Table 1 shows the values of σ2 (T ) for selected
quantiles, under the assumption of independence, for sample sizes ranging from 4 to 30.

To obtain the corresponding lower quantiles for σ2 (T ), let us first consider the mean and variance
of σ2 (T ). Since the mean and variance of rs (see [11]) are given by:

E (rs) = 0 & Var (rs) =
1

n − 1
(3.1)
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Table 1. Exact quantiles for σ2 (T )

n P=0.900 P=0.950 P=0.975 0.990 0.995 0.999
4 4.500 4.500
5 6.800 7.200 7.600 7.600
6 9.333 10.333 10.667 11.000 11.334
7 12.286 13.429 13.960 14.857 15.143 15.714
8 15.750 17.000 18.000 19.000 19.500 20.250
9 19.556 21.111 22.444 23.556 24.223 25.333
10 23.800 25.600 27.001 28.559 29.400 30.801
11 28.364 30.546 32.182 34.000 34.910 36.728
12 33.333 35.667 37.666 39.833 41.167 43.334
13 38.615 41.384 43.537 46.001 47.538 50.145
14 44.285 47.427 49.858 52.715 54.428 57.427
15 50.400 53.868 56.668 59.733 61.734 65.199
16 56.873 60.626 63.750 67.252 69.377 73.376
17 63.648 67.766 71.294 75.058 77.530 81.998
18 70.780 75.334 79.221 83.334 85.999 91.000
19 78.420 83.370 87.474 91.998 94.950 100.422
20 86.297 91.697 96.099 101.100 104.299 110.297
21 94.666 100.379 105.241 110.572 113.997 120.670
22 103.273 109.456 114.640 120.452 124.179 131.360
23 112.350 118.958 124.520 130.698 134.693 142.437
24 121.747 128.752 134.751 141.335 145.667 154.004
25 131.518 138.965 145.361 152.402 157.040 166.005
26 141.615 149.614 156.307 163.845 168.773 178.380
27 152.152 160.597 167.707 175.703 180.969 191.185
28 162.994 171.934 179.424 187.933 193.505 204.363
29 174.202 183.582 191.590 200.480 206.416 217.938
30 185.793 195.667 204.073 213.527 219.731 231.927

The mean and variance of σ2 (T ) are defined by taking the means and variances on both sides of (2.4),
and then by (3.1) we find:

E
[
σ2 (T )

]
=

n2 − 1
6
, (3.2)

and

Var
[
σ2 (T )

]
=

(n − 1) (n + 1)2

36
. (3.3)

Note: the corresponding lower quantiles are obtained from the following equation:

σ2
1−P (T ) =

n2 − 1
3
− σ2

P (T ) .

In view of the symmetry of the distribution of rs about zero with variance 1
n−1 , it follows from (2.4)
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that the distribution of σ2 (T ) is symmetric about (n2−1)
6 with the variance defined in (3.3). Conse-

quently, for rs = 0, the value of σ2 (T ) will be equal to (n2−1)
6 . As a result, the closer the value of σ2 (T )

is to (n2−1)
6 , the weaker the association between X and Y (as measured by rs), and vice versa.

Now, since the distribution of σ2 (T ) is symmetric about (n2−1)
6 , the corresponding lower quartile

σ2
1−P (T ) for a given upper quantile σ2

P (T ) can then be determined by using the folowing formula:

σ2
1−P (T ) =

n2 − 1
3
− σ2

P (T ) (3.4)

For example: for n = 24, the 0.01 and 0.1 quantiles for σ2 (T ) are given as follows:

σ2
0.01 (T ) =

(24)2
− 1

3
− 141.335 = 50.332

Similarly,
σ2

0.1 (T ) = 191.667 − 121.747 = 69.92

4. An alternative way for obtaining the mean and variance of σ2 (T)

Since σ2 (T ) is given by

σ2 (T ) =
1
n

n∑
i=1

T 2
i −

1
n2

 n∑
i=1

Ti

2

,

then, the mean and variance of σ2 (T ) can be defined using the mean and variance of
∑n

i=1 Ti and∑n
i=1 T 2

i . To define the mean of σ2 (T ), the distribution of T as given in (1.2) can be used, and hence
the n! distinct sets of pairings of R (X) and R (Y) should be considered.
Let Z j =

∑n
i=1 Ti j and S j =

∑n
i=1 T 2

i j for j = 1, 2, 3, . . . , n!,
where Ti j represents the ith observation for T (i = 1, 2, . . . , n) on the jth set ( j = 1, 2, . . . , n!).
Now,

E

 n∑
i=1

Ti

 = ∑n!
j=1 Z j

n!
=

n∑
i=1

n!∑
j=1

Ti j

n!
. (4.1)

Since E (T ) =
∑n

i=1
∑n!

j=1
Ti j

n(n!) , then, by (1.3) and (4.1), we find:

E

 n∑
i=1

Ti

 = n (n + 1) , (4.2)

or

E

 n∑
i=1

Ti

 = E

 n∑
i=1

R (Xi)

 + E

 n∑
i=1

R (Yi)

 = E
[
n (n + 1)

2
+

n (n + 1)
2

]
= n (n + 1) .

E

 n∑
i=1

T 2
i

 = ∑n!
j=1 S j

n!
=

n∑
i=1

n!∑
j=1

T 2
i j

n!
, (4.3)
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Since E
(
T 2

)
=

∑n
i=1

∑n!
j=1

T 2
i j

n(n!) , then, by (1.4) and (4.3), we get:

E

 n∑
i=1

T 2
i

 = n (n + 1) (7n + 5)
6

(4.4)

For example, if n = 3, then, there are 3! distinct sets of pairings of R (X) and R (Y) are determined by
keeping the R(X)

′s fixed and permuting the R(Y)
′s as follows:

R (Xi) 1 2 3
R (Yi) 1 2 3
Ti1 2 4 6

Z1 =

3∑
i=1

Ti1 = 12, S 1 =

3∑
i=1

Ti1
2 = (4 + 16 + 36) = 56.

R (Xi) 1 2 3
R (Yi) 1 3 2
Ti2 2 5 5

Z2 =

3∑
i=1

Ti2 = 12, S 2 =

3∑
i=1

Ti2
2 = (4 + 25 + 25) = 54.

R (Xi) 1 2 3
R (Yi) 2 1 3
Ti3 3 3 6

Z3 =

3∑
i=1

Ti3 = 12, S 3 =

3∑
i=1

Ti3
2 = (9 + 9 + 36) = 54.

R (Xi) 1 2 3
R (Yi) 2 3 1
Ti4 3 5 4

Z4 =

3∑
i=1

Ti4 = 12, S 4 =

3∑
i=1

Ti4
2 = (9 + 25 + 16) = 50.

R (Xi) 1 2 3
R (Yi) 3 1 2
Ti5 4 3 5

Z5 =

3∑
i=1

Ti5 = 12, S 5 =

3∑
i=1

Ti5
2 = (16 + 9 + 25) = 50.

R (Xi) 1 2 3
R (Yi) 3 2 1
Ti6 4 4 4
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Z6 =

3∑
i=1

Ti6 = 12, S 6 =

3∑
i=1

Ti6
2 = (16 + 16 + 16) = 48.

Then,

E

 n=3∑
i=1

Ti

 = ∑3!
j=1 Z j

3!
=

3∑
i=1

3!∑
j=1

Ti j

3!
= 12.

or

E

 n=3∑
i=1

Ti

 = 3 (3 + 1) = 12.

E

 3∑
i=1

T 2
i

 = ∑3!
j=1 S j

3!
=

3∑
i=1

3!∑
j=1

T 2
i j

3!
=

(56 + 54 + 54 + 50 + 50 + 48)
6

= 52.

Or

E

 3∑
i=1

T 2
i

 = 3 (4) (26)
6

= 52.

It can also be proven that Var
(∑n

i=1 T 2
i

)
= Var

(∑n
i=1 D2

i

)
,

Since Var
(∑n

i=1 D2
i

)
=

n2(n−1)(n+1)2

36 , (See [12]).
It follows that

Var

 n∑
i=1

T 2
i

 = n2 (n − 1) (n + 1)2

36
(4.5)

Now, we are prepared to find the mean and variance of σ2 (T )

E
[
σ2 (T )

]
=

1
n

E

 n∑
i=1

T 2
i

 − 1
n2 E

 n∑
i=1

Ti

2

.

From (4.2) and (4.4) we get

E
[
σ2 (T )

]
=

1
n

[
n (n + 1) (7n + 5)

6

]
− (n + 1)2.

It follows after some simplification that

E
[
σ2 (T )

]
=

n2 − 1
6
.

Var
[
σ2 (T )

]
= Var

∑n
i=1 T 2

i

n
−

(∑n
i=1 Ti

)2

n2

 = Var
(∑n

i=1 T 2
i

n

)
+ Var

(∑n
i=1 Ti

)2

n2

 .
Since, (∑n

i=1 Ti)2

n2 is a constant, then,

Var
[
σ2 (T )

]
= Var

(∑n
i=1 T 2

i
n

)
, and by (4.5), we get

Var
[
σ2 (T )

]
=

(n − 1) (n + 1)2

36
,

which agrees with the results obtained before in (3.2) and (3.3).
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5. Testing the significance of rs

A common desire in rank correlation analysis is to test the null hypothesis that there is no cor-
relation in the population between the paired ranks, i.e., we wish to test the two-tailed hypotheses
H0 : rs = 0 vs. H1 : rs , 0. There are many tables of critical values for rs, and if rs is greater than the
relevant critical value, then H0 is rejected. The use of

∑n
i=1 D2

i instead of rs as the test statistic for rank
correlation testing is sometimes called the ”Hotelling-Pabst test”. (see [6]).

∑n
i=1 D2

i is small when rs is
large, and H0 is rejected if

∑n
i=1 D2

i is less than the critical value. Published tables offer critical values
for various sample sizes, n, and levels of significance, α. The most extensive of such tables for rs are
those of [8] and, with slight improvements, of [7].

5.1. Small Samples

For small samples (n ≤ 30), the exact probability distribution of σ2 (T ) given in Table 1 is used to
test the significance of rs. That is , σ2 (T ) is used as a test statistic to test for independence between X
and Y . The hypotheses take the form:
A. H0 : rs = 0 versus H1 : rs , 0
B. H0 : rs = 0 versus H1 : rs > 0
C. H0 : rs = 0 versus H1 : rs < 0

For a given significance level α, and using Table 1, the H0 in B is rejected if the observed value of
σ2 (T ) exceeds the 1 − α quantile. The H0 in C is rejected if the observed value σ2 (T ) is smaller than
the α quantile, and the H0 in A is rejected if the observed value of σ2 (T ) exceeds the 1 − α/2 quantile
or if σ2 (T ) is less than the α/2 quantile.
Example: Apply the preceding hypotheses (A,B, and C) to the following rankings for X and Y , using
α = 0.05.

R (Xi) 3 6 8 1 4 7 2 5 9
R (Yi) 1 8 9 3 2 6 4 7 5

The values of Ti in this example are: 4, 14, 17, 4, 6, 13, 6, 12, and 14. Thus, σ2 (T ) equals 22. From
table 1, and for n = 9, we find:
The 0.95 and 0.975 quantiles for σ2 (T ) are 21.111 and 22.444 respectively. The corresponding lower
quantiles for σ2 (T ) can be obtained using formula (3.4). That is, the 0.05 and 0.025 quantiles for
σ2 (T ) are, respectively, (26.667 − 21.111 = 5.556) and (26.667 − 22.444 = 4.223).

Since the observed value of 22 for σ2 (T ) is larger than the value of the 0.95 quantile for σ2 (T ), then
the H0 in B is rejected at the significance level of 0.05. The H0 in C is accepted at the significance level
of 0.05 because the observed value of σ2 (T ) is larger than the 0.05 quantile for σ2 (T ). Finally, the H0

in A is accepted at the significance level of 0.05 because the observed value of σ2 (T ) lies between the
two values of the 0.025 and 0.975 quantiles (note that: 4.223 < 22 < 22.444).

It should be pointed out that the test statistic σ2 (T ) gives results as if the rs test statistic was used.

5.2. Large Samples:

When the sample size is greater than 30, we cannot use table 1 to test the significance of rs. In this
case, it is probably accurate enough to use the normal approximation of the σ2 (T ) distribution.
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For n > 30, rs
√

n − 1 is distributed approximately as the standard normal distribution (See [10]). As a
result of (2.4), it follows that

Z =
σ2 (T ) − (n2−1)

6√
(n−1)(n+1)2

36

(5.1)

is also distributed as the standard normal. That is, testing σ2 (T ) = (n2−1)
6 is equivalent to testing rs = 0.

Thus, the associated probability under H0 of any value as extreme as an observed value of σ2 (T ) may
be determined by computing the Z associated with that value using formula (5.1) and then determining
the significance of that Z by referring to the table of the standard normal distribution.
Example: Suppose we have: n = 40 and σ2 (T ) = 375.
Test: H0 : rs = 0 versus H1 : rs > 0, using α = 0.01.
In this example, using formula (5.1) we get Z = 2.542. From the table of the standard normal dis-
tribution, we find the significance level associated with 2.542 is α̂ = 0.0039. Since α̂ < 0.01, then
H0 is rejected at α = 0.01. Alternatively, from the table of the standard normal distribution, we find
Z0.99 = 2.326. Since 2.542 > Z0.99, we can reject H0 at α = 0.01.

6. Conclusions

In this paper, we developed an alternative approach for computing and testing the significance of
the rank correlation coefficient. To compute and test the significance of the Spearman rank correlation
coefficient, we used the totals of ranks, instead of the differences between ranks for this purpose, and
a new test statistic is introduced. we showed the relationship between the new test statistic and rs. We
constructed the exact distribution of the new test statistic (Table 1) using the exact distribution of rs.
The new test statistic is used in testing the significance of the rank correlation coefficient and gives
identical results to those obtained by the Spearman correlation coefficient test statistic.

Finally, in the next work, it is aimed to develop the new statistic in nonparametric correlation
analysis so it can both negate the impact of ties as well as offer a closer approximation to the parametric
Karl-Pearson’s product-moment correlation coefficient. In addition, we will demonstrate that the new
rank correlation coefficient formula has a direct link with Kendall’s coefficient of concordance.
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