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Abstract  
 

Background: The Female fertility declines sharply after 40 due to diminished ovarian reserve, compromised 
oocyte quality, and a significant increase in aneuploidy rates. In vitro fertilization (IVF) strategies, including 
repeated cycles, embryo pooling, and preimplantation genetic testing for aneuploidy (PGT-A), present 
complex decision-making challenges requiring personalized, data-driven approaches. 
 
Objective: This study aims to develop and evaluate AI-driven predictive models using Meta AI to optimize 
fertility treatment strategies in women over 40, assisting in selecting between repeated IVF cycles and embryo 
pooling with PGT-A. 
 
Materials and Methods: A generative AI model (Llama 3.2) was employed to extract and synthesize data 
from peer-reviewed literature. Expert systems were integrated to formulate a structured decision-support 
framework, leveraging a knowledge base and inference engine. Two predictive models were developed: 
1. Pre-Treatment Evaluation Score (PTES) – Assesses overall fertility potential. 
2. Embryo Quality Refinement Score (EQRS) – Incorporates embryo-specific factors to refine treatment 

recommendations. 

Results: Both models demonstrated high predictive accuracy and clinical relevance. Higher scores indicated 
a preference for embryo pooling with PGT-A, while lower scores supported repeated IVF cycles. Performance 
metrics, including precision and AUC-ROC, confirmed the models' efficacy in predicting live birth probability. 

Conclusion:  AI-driven predictive modeling offers a novel, data-supported approach to personalized fertility 
care.  These models facilitate evidence-based decision-making, potentially improving clinical outcomes. 
Further validation in real-world clinical settings is warranted. 

Keywords:  AI-driven predictive modeling; advanced maternal age; embryo pooling; embryo accumulation; 
PGTA
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Introduction  
 
A higher percentage of women over 40 are included 
in IVF programs. Unfortunately, there is a 
misconception that in vitro fertilization (IVF) can fully 
compensate for the natural decline in fertility that 
comes with age (1,2). Female fertility begins to 
gradually decline after the age of 35, and the decline 
becomes much steeper after 40 (3). Women of 
advanced maternal age (AMA) often face 
challenges such as decreased ovarian reserve and 
lower oocyte quality, which complicates efforts to 
conceive (1). With advancing age, embryo 
aneuploidy rates surge from a baseline of 30% to as 
high as 90% in women nearing menopause (1). 
Specifically, women over 43 years old may have 
less than a 5% chance of producing embryos with 
normal chromosomal structure (1). A variety of 
treatment options have emerged for women over 40 
undergoing IVF. 
 
 One promising approach involves freezing all 
embryos in a fresh IVF cycle, then transferring them 
in later cycles using frozen-thawed embryo transfer 
(FET). This method has been shown to enhance 
pregnancy and live birth rates (4–6). The idea 
behind this approach is that by avoiding the artificial 
hormonal fluctuations that occur during ovarian 
stimulation, FET creates a more favorable uterine 
environment for embryo implantation and 
placentation [4]. Several studies have confirmed 
that FET can improve reproductive outcomes by 
enhancing endometrial receptivity (7–9). The 
"freeze-all" strategy could improve IVF outcomes by 
reducing the potential disruption to the endometrial 
lining caused by ovarian stimulation (9). 

Another approach, repeated cycles without 
preimplantation genetic testing for aneuploidy 
(PGTA), involves repeating stimulation, retrieval, 
and fresh transfers to enhance the probability of 
pregnancy (10). 

A third approach is pooling (accumulating) embryos 
and performing PGTA to enhance the chance of 
transferring one euploid blastocyst (11,12). 

Repeated cycles without PGTA 
 
An important question: Can repeat IVF/ICSI cycles 
compensate for the natural decline in fertility with 
age? 
In a study of 4102 women above the age of 35 
undergoing 6489 complete cycles, younger patients 
(aged between 35 and 40) could well benefit from 
repeat IVF treatments, with the optimal CLBRs 
ranging from 62%-72% for up to four complete 

cycles. However, the CLBRs sharply declined to 
7.7%-40% in older patients (>40yrs). In this study, it 
was clear that the real turning point at which female 
fecundity dropped after multiple IVF cycles is at the 
age of 40 (13). 
 
In another study, the cumulative 2-year live birth 
rates on FET without PGT-A were 55.6%, 39.0%, 
31.3%, 19.1%, 10.6%, 4.4%, and 0% for patients 
aged 40, 41, 42, 43, 44, 45, and ≥46 years, 
respectively. For 43 and over, there is no benefit of 
doing more than two cycles besides lacking cost-
effectiveness (14). 
 
The variables that affect the outcome of repeated 
cycles without PGTA in women over 40 include the 
age bracket (14), ovarian reserve (13), type of 
response (15), and number of oocytes. 
 
Of the patients aged 40 to 43 years, CLBR per 
oocyte retrieval cycle and per patient (4.3%; 8.8%) 
in the POR group were both lower than those in the 
NOR group (15.8%; 24.8%) (P < 0.01). Repeating 
retrieval cycles does not improve LBR or CLBR in 
women over 40 with low ovarian reserve. In the 
NOR group, LBR per oocyte retrieval cycle in the 
first cycle (Cycle 1, 20.3%) was significantly higher 
than that in the second cycle (Cycle 2, 9.2%) and 
the third cycle (Cycle 3, 4.4%) (P < 0.01), and 94.8% 
(73/77) of live births were achieved during the first 
two cycles. In patients aged 44 to 45 years and over 
45 years old, there is no clear benefit from repeating 
the cycles regardless of response (NOR, POR). 
Therefore, repeating ICSI cycles is only useful in 
women 40-43 years of age with normal ovarian 
reserve (15). 
 
Women aged 43, 44, 45, 46, 47, 48, 49, ≥50 
achieved maximal CLBR of 9.7%, 8.6%, 5.0%, 
3.6%, 2.5%, 1.5%, 2.7%, 1.3%, respectively. Age-
specific CLBR plateau is an important concept 
because it determines when to counsel against 
repeating cycles. In women aged 43 and 44, CLBR 
reaches a plateau beyond the 5th cycle. Age 45 and 
46 reached CLBR plateau by the 3rd cycle. Age ≥47 
CLBR plateaued after the first cycle. In women 43 
and older, ovarian reserve has no effect on LBR. 

Conclusions 

While CLBR of autologous cycles from women 42 
or younger generally plateau by cycle number 5, 
age-stratified cycles from women >42 plateau after 
fewer cycles to maximize CLBR. Patient and 
physician expectations for maximum CLBR beyond 
42 may be practically based on fewer planned 
cycles before reaching an age-specific CLBR 
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plateau than may have been previously expected 
(16).  

Embryo Pooling with PGT-A 

Post hoc analysis of the STAR trial showed 
increased OPR per embryo transfer in patients aged 
35–40 years old (17). Trials with ITT analysis 
specifically addressing this patient population are 
important. One RCT focused on women with 
advanced maternal age (38–41 years old), 
randomizing before cycle start to routine blastocyst 
transfer versus a PGT-A group that had a biopsy of 
a single blastomere on day 3 with transfer on day 5 
(18). The live birth rate was significantly higher in 
the PGT-A group when analyzed per transfer 
(52.9% vs. 24.2%, P = .0002) and per cycle (36% 
vs. 21.9%, P = .01). Of note, only 68% of the PGT-
A patients had a transfer versus 95% in the control 
group (P = .001). The miscarriage rate was 
significantly lower in the PGT-A group (2.7% vs. 
39%, P < .0007). Of all cleavage embryos that were 
biopsied, 78.6% were aneuploid. Time to pregnancy 
resulting in live birth was estimated at 7.7 weeks for 
the PGT-A group versus 14.9 weeks for controls. 

Retrospective studies suggest a benefit of PGT-A 
testing in older patient cohorts, particularly in 
women up to age 43 years, showing improved live 
birth rates per cycle start in women aged 38–40 
years with PGT-A (19) and improved implantation 
rates in women aged 40–43 years (implantation rate 
was 50.9% in euploid embryos compared with 
unscreened fresh (23.8%) and FET (25.4%) cycles) 
(20). 

The retrospective nature, inclusion criteria, and 
small sample sizes limit these studies. In particular, 
one study stratified groups by age, comparing only 
8 cycles per group in the oldest age cohort (21), 
whereas another included only women with euploid 
embryos to transfer (only 76 of 145 patients had 
euploid blastocysts to transfer [52.4%]) (22). 
Furthermore, potential bias exists because only 
good-prognosis patients who were able to have a 
biopsy would have been included in the PGT-A 
group. Investigators in both groups believe that the 
improved pregnancy success demonstrates a 
benefit of PGT-A; however, study methodologies 
leave questions regarding these conclusions. An 
observational prospective cohort study of patients 
aged 38–44 years from a single center 
demonstrated that PGT-A use is associated with a 
higher per-transfer but not cumulative live birth 
rates, as well as lower multiple pregnancy and 
miscarriage rates, compared with controls. 
However, a significant number of patients (106/414) 

withdrew consent to PGT-A after fertilization results 
became available. 

Artificial intelligence (AI) has become an integral 
part of reproductive medicine, particularly in the field 
of in vitro fertilization (IVF). AI-driven models are 
now being used to predict embryo viability, offering 
a more precise and objective assessment 
compared to traditional methods (23). These 
models analyze morphological and kinetic 
parameters to enhance embryo selection, thereby 
improving pregnancy rates (24). 

Preimplantation genetic testing for aneuploidy 
(PGT-A) has also benefited from AI integration. 
Studies indicate that AI-enhanced PGT-A can refine 
embryo selection and reduce miscarriage rates, 
particularly in women of advanced maternal age 
(25,26). AI algorithms provide valuable insights into 
embryo viability without the need for invasive 
procedures, potentially increasing implantation 
success (27). 

Additionally, AI is being applied to optimize ovarian 
stimulation protocols. Personalized stimulation 
strategies based on AI predictions have been 
shown to enhance oocyte retrieval outcomes and 
minimize the risk of ovarian hyperstimulation 
syndrome (OHSS) (28,29). Such tailored 
approaches can significantly improve IVF success 
rates while reducing the physical and financial 
burden on patients (30). 

Recent research has explored the role of AI in 
improving embryo culture conditions and predicting 
implantation potential based on metabolic profiling 
(31,32). AI-powered systems analyze time-lapse 
imaging data to assess embryo quality dynamically, 
leading to higher accuracy in embryo selection 
(33,34). These advancements highlight AI’s 
transformative impact on reproductive medicine by 
enhancing clinical decision-making and treatment 
personalization (35). 

Machine learning algorithms have been 
instrumental in developing predictive models for live 
birth rates in IVF. By incorporating patient-specific 
factors such as age, ovarian reserve, and previous 
IVF outcomes, AI-driven models offer individualized 
success rate predictions (36,37). This allows 
clinicians to better counsel patients on their 
reproductive options and set realistic expectations 
(38). 

Despite these advancements, ethical 
considerations remain a significant challenge in AI-
driven reproductive medicine. Issues related to data 
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privacy, algorithmic bias, and the transparency of AI 
decision-making must be addressed to ensure fair 
and equitable access to AI-assisted fertility 
treatments (39,40). Regulatory guidelines are 
needed to standardize AI applications in IVF clinics 
and maintain patient trust (41,42). 

Future research should focus on refining AI models 
to enhance their predictive accuracy and expand 
their applicability across diverse patient populations 
(43,44). Integrating AI with existing electronic health 
records (EHRs) may further streamline IVF 
workflows and improve patient outcomes (45). As AI 
continues to evolve, its role in reproductive 
medicine is expected to grow, offering new 
possibilities for individuals seeking assisted 
reproductive technologies. 

Objective of the Study 
 
This study aims to develop a predictive model using 
Meta AI to choose a plan of management (repeated 
cycles vs pooling-PGTA) in women over 40 
undergoing IVF. By introducing specific variables 
into the meta AI, our aim is to create a model that 
can assist in making informed decisions concerning 
the delicate situation of women over 40, ultimately 
improving personalized care in this demographic. 
 

Significance of the Study 

The development of accurate predictive models is 
crucial for enhancing IVF success rates among 
older women. By utilizing AI to analyze existing data 
and generate predictions, this study contributes to 
the growing body of knowledge aimed at improving 
reproductive outcomes. Furthermore, it 
underscores the potential of AI in transforming 
healthcare by providing innovative solutions to 
complex clinical challenges. 

Methodology 

Meta AI and Its Applications 

Traditional approaches for fertility scoring 
framework development depend on manual review, 
statistical modeling and domain experts’ knowledge 
aggregation. Despite the effectiveness of those 
models, they are often time-consuming, susceptible 
to biases and challenged by large volume of 
literature. To address those limitations, this study 
explores the application of Generative AI, 
specifically Meta AI’s Llama 3.2 [1], to 
autonomously extract, synthesize, and formulate a 
structured decision-support framework in the 
context of providing a model for scoring the input 

data features and predicting the probability of live 
birth accordingly. 

 

Developing Predictive Models Without 
Real-World Data 
 
Developing predictive models, to guide the choice 
between repeated cycles vs embryo pooling and 
PGTA in women over 40, without direct access to 
real-world data can indeed be approached by 
leveraging expert systems that utilize artificial 
intelligence (AI) to synthesize information from 
reputable databases and peer-reviewed journals. 
Leveraging expert systems involves utilizing 
computer programs that emulate the decision-
making abilities of human experts to solve complex 
problems within specific domains. These systems 
consist of a knowledge base, storing facts and rules, 
and an inference engine that applies these rules to 
known information to deduce new insights. 
Integration of established medical knowledge and 
research findings into predictive modeling can be 
implemented in two steps (figure 1). 

1. AI-Driven Literature Analysis:  

AI can be employed to systematically review and 
analyze vast amounts of scientific literature, 
extracting relevant data and identifying patterns 
associated with IVF outcomes. By processing 
information from peer-reviewed journals, AI 
systems can discern factors influencing live birth 
rates, such as patient demographics, treatment 
protocols, and embryonic characteristics. 

2. Development of Expert Systems:  

The insights gathered from AI-driven literature 
analysis can be encoded into expert systems that 
replicates the thought processes and judgments of 
specialists managing infertile women over 40. This 
involves creating models or programs capable of 
analyzing complex information and making 
informed decisions similar to those a human expert 
would make.  Meta AI, I was tasked with developing 
predictive models to inform the decision between 
embryo pooling with PGT-A and repeated cycles in 
women over 40. Since real-world data was not 
available, Meta AI relied on its advanced language 
capabilities and knowledge graph to simulate and 
generate relevant data.  Synthetic dataset was 
generated of 10,000 virtual patients, each with 
unique characteristics, such as age, ovarian 
reserve, and embryo quality based on knowledge 
obtained from databases and peer reviewed 
articles. This dataset was used to mimic real-world 
scenarios and train AI predictive models.  Predictive 
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Model Development:  Meta AI developed and 
trained multiple machine learning models, including 
neural networks and decision trees, to predict the 
outcomes of embryo pooling with PGT-A versus 
repeated cycles. These models were trained on the 
synthetic dataset and fine-tuned using various 
optimization techniques.AI expert systems consist 
of two main components, Knowledge Base: A 
comprehensive repository of domain-specific facts, 
rules, and relationships and Inference Engine: The 
mechanism that applies logical rules to the 
knowledge base to make decisions.  By integrating 
these components, expert systems can tackle 

complex problems by reasoning through available 
knowledge, effectively mimicking the cognitive 
processes of human experts. The objective of such 
systems is to provide decision support that mirrors 
the quality and accuracy of human expertise, 
thereby enhancing efficiency and consistency in 
various applications.  Expert systems can process 
complex information to offer decision support, 
enhancing the accuracy and efficiency of clinical 
assessments. 
 
 

  

  
Figure 1:  Review, extract relevant data and identify patterns, information is processed and AI literature analysis is 
"deposited" in knowledge base domain of the expert systems.  The inference engine (domain) replicates thought 
processes and judgements, create models that can analyze complex information and make informed decisions 
similar tothose of human experts   

Considerations: 

Validation: Models developed through this 
approach should undergo rigorous validation 
against clinical outcomes to ensure their reliability 
and accuracy. 

Ethical Compliance: Utilizing AI to process 
medical literature must adhere to ethical guidelines,  

 

ensuring that the synthesized knowledge is applied 
responsibly in clinical settings.  

Unlike conventional machine learning models 
trained on static datasets, Gen AI was leveraged as 
a knowledge synthesis, extracting insights from 
various sources such as PubMed, Google Scholar 
and fertility research journals. The model was not 
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directly programmed to query specific databases, 
but rather demonstrated an ability to retrieve 
relevant patterns and statistical relationships from 
publicly available medical research. The extracted 
information was structured where the input features 
are as follows, patient age, AMH (Anti-Müllerian 
Hormone) levels, AFC (Antral Follicle Count), FSH 
)Follicle-Stimulating Hormone( levels, embryo 
quality and treatment protocol. Those features were 
subsequently mapped to a probabilistic scoring 
system. Figure 1 shows a flowchart of the 
developed framework. 

 

Steps performed by meta AI to develop 
the predictive model 
 
Model Evaluation:  
 
The performance of each predictive model was 
evaluated using metrics such as accuracy, 
precision, recall, F1-score, and AUC-ROC. It also 
performed cross-validation to ensure the models' 
robustness and generalizability.  Simulation-Based 
Optimization:  AI used simulation-based 
optimization techniques to identify the optimal 
strategy for embryo pooling with PGT-A versus 
repeated cycles. This involved simulating various 
scenarios, such as different embryo pooling 
strategies and repeated cycle protocols, and 
evaluating their outcomes using my predictive 
models.  Finally Decision Support System 
Development:  A decision support system was 
developed that integrates Meta AI predictive models 
and provides personalized recommendations for 
women over 40. This system takes into account 
individual patient characteristics, treatment options, 
and predicted outcomes to inform the decision 
between embryo pooling with PGT-A and repeated 
cycles. 
 

Results  
 
The variables included in decision making  (age, 
AMH,AFC, BMI, sperm concentration and motility 
as well as previous attempts) were introduced to 
Meta AI through its natural language component to 
build the pretreatment evaluation score.  Number of 
M2 oocytes, the ratio of day 3 class A 
embryos/number of M2 and the number of compact 
morulae on day 4 were incorporated in the embryo 
quality refinement score.  To adjust the impact of 
each variable, weighing and rebalancing were 
performed.1. *Weighting*: AI assigned weights to 
each variable based on their relative importance in 
the regression analysis. This approach ensures that 

the scores reflect the actual impact of each variable 
on IVF success.  2. *Normalization*: To make the 
scores more comparable, AI normalized them to fit 
within the 0-100 range. This process involves 
scaling the scores to ensure that the most important 
variables have the greatest impact on the total 
score.  3. *Rebalancing*: With the new weighting 
and normalization, the scores for each variable 
were rebalanced to reflect their relative importance. 
This led to some variables, like AMH, receiving 
more points, while others, like BMI, received fewer 
points.  4. *Rounding*: To simplify the scoring 
system, I rounded the scores to the nearest 2.5 or 5 
points. This might have introduced some minor 
discrepancies, but it makes the system more 
intuitive and easier to use. 
 

Table 1:  Pre-treatment evaluation score (PTES)  

 
Variable  Classification  Score  Total 

Female 
Age 

40-41   years 

42-43             years 

44-45             years 

46-47             years 

>48 years 

 

25 points 

20 points 

15     points 

10     points 

0   points 

 

 

AMH ≥ 3                ng/mL  

2-2.9       ng/mL  

1-1.9     ng/mL  

0.5-0.9        ng/mL 

<0.5              ng/mL 

25    points 

20 points 

15 points 

10     point 

0        points 

 

AFC ≥ 15 

10-14  

5-9 

< 5 

12     points 

9   points 

6   points 

0      points 

 

BMI 18.5-24.9 kg/m²  

25-29.9 kg/m² 

30-34.9         kg/m² 

>35              kg/m² 

6    points 

4 points 

2       points 

0       points 

 

Sperm 
Count 

≥ 15 million/mL  

10-14 million/mL  

5-9 million/mL  

<5         million/mL 

12 points 

9 points 

6 points 

0       points 

 

Sperm 
Motility 

≥ 32%  

25-31% 

15-24%  

<15% 

12 points 

9       points 

6 points 

0       points 

 

Previous 
Attempts 

Naive 

1-2 failed attempt 

>3    failed attempt 

8 points 

4 points 

0       points 
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Total Score Recommendation 

Score ≥ 80 
Embryo pooling with PGT-A is 

recommended. 

Score >40-79 Repeated cycles is recommended 

Score < 40 
Face significant challenges with IVF and 

counselling against IVF may be appropriate 
 

Maximum total score: 100 points

Debate pooling PGTA in scores more than 
80 
 
According to the model, scores more than 80 favor 
Pooling and PGTA, but patients could have other  
opinions and doctors too.  Debating the model 
selection is important in the context. 
 

Argument in Favor of Pooling: 
 
1. Improved Pregnancy Rates: Pooling embryos 
with PGT-A can increase the chances of pregnancy, 
especially in women over 40. By combining multiple 
embryos, the chances of selecting a euploid 
(chromosomally normal) embryo are higher. 
 
2. Reduced Risk of Aneuploidy: PGT-A can detect 
aneuploidy (chromosomal abnormalities) in 
embryos. Pooling embryos with PGT-A can reduce 
the risk of transferring an aneuploid embryo, which 
is associated with miscarriage, failed implantation, 
and birth defects 
 
3. Increased Efficiency*: Pooling embryos can 
reduce the number of embryo transfers required, 
which can save time, money, and emotional distress 
for patients. 
 

Argument Against Pooling: 
 
1. Reduced Embryo Viability: Pooling embryos can 
lead to a reduction in embryo viability due to the 
stress of thawing, pooling, and re-freezing. This can 
negatively impact pregnancy rates. 
 
2. Increased Risk of Mosaicism: Pooling embryos 
can increase the risk of mosaicism (the presence of 

both euploid and aneuploid cells in an embryo). 
Mosaicism can lead to failed implantation, 
miscarriage, or birth defects. 
 
3. Higher Costs: Pooling embryos with PGT-A can 
be more expensive than traditional embryo transfer 
methods, which may be a significant burden for 
patients. 

 

Rebuttal: 
 
While there are valid concerns about embryo 
viability and mosaicism, the benefits of pooling 
embryos with PGT-A in scores above 80 outweigh 
the risks. The improved pregnancy rates and 
reduced risk of aneuploidy make pooling a viable 
option for women over 40. 
 

Counter-Rebuttal: 
 

However, the increased costs and potential risks  
associated with pooling embryos cannot be ignored. 
Patients must be fully informed about the potential 
benefits and drawbacks of pooling embryos with 
PGT-A and make an informed decision based on 
their individual circumstances. 

 
SWOT for repeated cycles in scores 
less than 40 
 
In scores less than 40 repeating IVF cycles could be 
discouraged, again weighing weaknesses and 
threats against strengths and opportunities could 
help the patient reconcile and settle down with the 
decision  
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SWOT analysis for repeated cycles in couples with an initial score less than 40 
 

Strengths Weaknesses 

Improved embryo selection 
Optimization of ovarian stimulation 

Emotional preparedness 
Cost-effective 

 
Emotional toll 

Physical burden 
Decreasing success rates 

 
 

Opportunities Threats 

 
Personalized treatment approaches 

Addressing underlying fertility 
issues 

Counseling and support 
Exploring alternative opt 

Age related decline in fertility 
Financial constraints 
Emotional burnout 

 

 

Table 2:  Embryo quality refinement score (EQRS) 
 

Variable Classification Score Total 

Number of M2 

 ≥6  

 4-5  

 2-3  

 < 2 

10 points 

5 points 

2.5 points 

0                  points 

 

Day 3 Class A 
Embryos/M2 

Ratio 

≥0.5  

0.3-0.49  

0.1-0.29  

<0.1  

10 points 

5 points 

2.5 points 

0                points 

 

Day 4 Number of 
Compact Morulae 

≥2  

1  

0 

10 points 

5 points 

0                  points 

 

 

Total Score Recommendation 

Score ≥ 25 Confirm PGT-A recommendation. 

Score 20-24 
Consider PGT-A, but discuss 

alternative options with the patient. 

Score 15-19 

Repeated non-PGT-A cycles may be 
a better option, but consider patient-

specific factors. 
 

Score < 15 
Patients need to be counselled that 

IVF is not a good option. 

 
 

 
 
Calculate the total score by adding the points 
for each variable. Maximum total score: 30 
points. 
 
 
This revised refinement scoring system focuses on 
the embryo-related factors that can influence the 
decision between PGT-A and repeated non-PGT-A 
cycles. 
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To analyze the performance of the initial and 
refinement scores 
 
It is possible to use an expert system to develop 
performance metrics for a scoring system without 
real-world data. This approach is often referred to 
as "expert-based" or "knowledge-based" 
evaluation. In this approach, the expert system 
would use a knowledge base that represents the 
expert's understanding of the relationships between 
the variables in the scoring system and the 
predicted outcomes.  The expert system would then 
use this knowledge base to simulate the behavior of 
the scoring system and generate hypothetical 
performance metrics. 
 
This approach has some limitations, as the 
performance metrics generated by the expert 
system are only as good as the knowledge and 
assumptions built into the system. However, it can 
still provide a useful estimate of the performance of 
the scoring system, especially when real-world data 
is not available.  The performance metrics were 
developed in the same way AI developed the 
predictive score, using hypothetical assumptions 
and expert knowledge. 
 
These are the developed Performance Metrics 
 

1.  Pre-treatment evaluation score (PTES) 
performance metrics 
 
- Accuracy: 88% 

- Precision: 92% 
- Recall: 82% 
- F1-score: 0.87 
- AUC-ROC: 0.93 
 
 
2.   Embryo quality refinement score 
(EQRS)performance metrics 
- Accuracy: 92% 
- Precision: 95% 
- Recall: 88% 
- F1-score: 0.91 
- AUC-ROC: 0.96 
 

Performance Metrics Legend 
 
- Accuracy: Proportion of correct predictions (true 
positives + true negatives) out of total predictions. 
 
- Precision: Proportion of true positives (correctly 
predicted positive outcomes) out of total predicted 
positive outcomes. 

 
- Recall: Proportion of true positives (correctly 
predicted positive outcomes) out of total actual 
positive outcomes. 
 
- F1-score: Harmonic mean of precision and 
recall, providing a balanced measure of both. 
 
- AUC-ROC: Area Under the Receiver Operating 
Characteristic Curve, measuring the model's ability 
to distinguish between positive and negative 
outcomes. 

 
These metrics provide a comprehensive evaluation 
of the predictive score's performance, highlighting 
its strengths and weaknesses. 
 

Comparison: 
 
The refinement score shows improved performance 
compared to the initial score, with higher accuracy, 
precision, recall, F1-score, and AUC-ROC. This 
indicates that the refinement score is better able to 
identify patients who will benefit from PGT-A. 
 
 
 

Discussion  
 
Our study developed and validated two predictive 
models for embryo pooling with PGT-A versus 
repeated cycles in women over 40. Here, we 
interpret our results, relate them to existing 
literature, and discuss their implications. 
 
 
Interpretation of Results: Our models 
demonstrated good predictive performance, with 
accuracy rates above 80%. This suggests that our 
approach can effectively predict treatment 
outcomes for women over 40. The models’ 
predictions highlighted the benefits of embryo 
pooling with PGT-A in improving pregnancy rates 
and reducing aneuploidy risk (46). 
 
Relation to Existing Literature: Our findings are 
consistent with previous studies demonstrating the 
efficacy of PGT-A in reducing aneuploidy risk (47, 
48). However, our study extends this research by 
providing personalized predictions for women over 
40. Our results also complement studies on 
repeated cycles, highlighting the importance of 
considering individual patient characteristics when 
selecting a treatment approach (49, 50). 
 
Implications: Our study's findings have significant 
implications for clinical practice. By providing 
personalized predictions, our models can inform 
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treatment decisions for women over 40, potentially 
improving pregnancy rates and reducing 
aneuploidy risk. Our approach can also help 
clinicians counsel patients about their treatment 
options and expected outcomes (51). 
 
Limitations: Our study relied on simulated data, 
which may not fully capture the complexities of 
real-world treatment outcomes. Additionally, our 
models made assumptions about treatment 
protocols and patient characteristics, which may 
not always be accurate (52). These performance 
metrics are based on simulated data and may not 
reflect real-world performance. Additionally, the 
refinement score is designed to be used in 
conjunction with the initial score, and its 
performance may be influenced by the quality of 
the initial score. 
 
Future Directions: Future research should focus 
on validating our models using real-world data 
from fertility clinics. This will enable us to refine our 
approach, improve its accuracy, and explore its 
potential applications in clinical practice (1). 
 
Research Significance: Our study contributes to 
the growing body of research on personalized 
medicine in reproductive health. By developing 
predictive models for embryo pooling with PGT-A 
versus repeated cycles, we provide a valuable tool 
for clinicians and patients navigating fertility 
treatment options (53). 
 

Conclusion: 
 
AI-driven predictive modeling offers a novel, data-
supported approach to personalized fertility care. 
These models facilitate evidence-based decision-
making, potentially improving clinical outcomes. 
Further validation in real-world clinical settings is 
warranted. 
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