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Abstract 

Medical image segmentation is an essential field of image analysis that processes and extracts information using 
state-of-the-art deep learning techniques. However, there are various challenges to overcome. One of these 
challenges is the class imbalance for medical image datasets in which lesions often occupy a much smaller volume 
than the background. Thus, deep learning algorithms vary in robustness to class imbalance in medical images. 
Moreover, most training for standard medical datasets uses loss functions for segmentation based on cross-entropy 
loss, dice loss, or a combination of both. Selecting an optimal loss function affects the performance of the 
segmentation results. To address these topics, this research has proposed integrating focal loss into a hierarchical 
framework to improve these traditional loss functions. The proposed method is evaluated on a medical imaging 
dataset related to the abdominal cavity, known for its imbalances. A comparative analysis is conducted between 
the original LeViT-UNet model and its modified version using the new model. Results show that the modified 
model significantly outperforms the original one. It indicates the potential of focal loss integration as an effective 
solution for improving segmentation performance in medical imaging. 
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1. INTRODUCTION  

Image segmentation is the process of partitioning pixels of an image into separate regions corresponding to an 

object or a class. Specifically, in medical imaging, image segmentation involves separating and detecting organs, 

lesion areas, tumors, anomalies, pathological issues, and monitoring progressing diseases [1]. Thus, medical 

image segmentation is a challenging task because small object segmentation is difficult to detect because of its 

low contrast and strong misleading appearance in the images. The object boundaries for medical images are 

ambiguous because of the influence of image acquisition [2]. Medical image datasets used for segmentation are 

created from unimodal or multimodal pictures obtained by advanced medical equipment such as magnetic 

resonance imaging (MRI), Computed Tomography (CT), and ultrasonography (US). The two used imaging 

technologies are CT and MRI. However, CT is often a preferred option because of its greater accessibility and 

cost-effectiveness [3]. In recent years, Artificial Neural Network (ANN) models have shown their importance for 

most medical image segmentation applications. Specifically, Convolutional Neural Networks (CNNs) have made 

substantial progress in medical image segmentation beginning with the fully convolutional network (FCN) [4] 

and its variants (e.g., U-Net[4], SegNet [5], Deep Lab [6], CCNet [7]. They have been applied in cardiac 

segmentation from MRI [8], liver and tumor segmentation from CT [9], and abnormal lymph node segmentation 

from PET/CT [10], amongst others. Nevertheless, these models exhibit inherent limitations, as they are built based 

on the convolutional network architecture that faces several challenges, including their inability to effectively 

capture long-term dependencies in data, which can limit performance in tasks that require understanding context. 

Additionally, CNNs can struggle to recognize small objects due to pooling layers that can reduce the size of 

essential features. They are also prone to overfitting, especially when trained on small datasets, as they can learn 
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noise rather than generalizable patterns. The CNN architecture can be computationally demanding, making them 

less accessible for real-time applications or deployment in resource-constrained devices. Furthermore, CNNs can 

exhibit bias toward classes with more abundant training samples, leading to unbalanced performance across 

classes. Finally, the lack of explainability and understanding of how features are learned poses challenges in 

applications that require transparency, such as medical diagnosis [11]. 

For years, the U-Net model has been state-of-the-art in medical image segmentation technology and has 

become standard in medical image segmentation tasks. However, it remains constrained by restrictions in 

explicitly modeling long-term dependencies [12]. This is because of the ignorance of global context information 

at different scales. Also, it cannot use global semantic information interaction, which can be addressed by 

combining the Transformer and U-net in an advanced model such as LeViT [13]. LeViT is used for fast inference 

image classification with hybrid transformers and convolutional blocks. However, its architecture has not fully 

exploited various scales of feature maps from the transformer and convolutional blocks, which facilitate image 

segmentation. Later, LeViT-UNet [14] for 2D medical image segmentation was proposed to make faster encoding 

using the transformer technique and to improve the segmentation performance by obtaining multi-scale feature 

maps (local and global). It was also the first work that studied the speed and accuracy using transformer-based 

architecture for the medical image segmentation task [15]. Not only does the model make architectural 

improvements, but also it relies on effective loss functions to achieve optimal performance. On the other hand, in 

most research related to medical image segmentation, cross-entropy and dice equations are used to compute the 

loss function [15]. Using the cross-entropy loss function, all pixels in the image are treated equally [16]. However, 

the network is dominated by classes with a larger number of pixels. Thus, it is difficult for a neural model to 

recognize the features of small objects [17]. Using dice loss, that directly ignore background areas can result in 

important loss of information. Therefore, the network segmentation performance for small objects is very 

poor[17]. Unbalanced data refers to a scenario where the number of samples associated with each category is 

highly variable. This causes the model to be biased in predicting the majority class, even if identifying the minority 

class is equally or more important. Focal loss uses the confidence of each sample to generate an energetic weight 

to maximize the loss value of negative samples (small regions) and minimize the loss value of positive samples 

(background region) to make sure that the network can optimize the process taking into account the lesion areas 

[16].  

In this research, the effect of the choice of loss function on convergence behavior and segmentation 

performance is analyzed using focal loss and dice loss that can guide the optimization process toward better feature 

learning and improved accuracy. The proposed model is a modified LeViT-UNet model adding a focal loss 

function to the other loss functions that were used in the basic model. The proposed model can provide good 

results, as the focal loss function is a framework that generalizes dice and entropy-based loss to address imbalance 

issues, which gives outstanding performance and improves the medical image segmentation. Several performance 

metrics have been examined to verify the performance of the proposed model. These metrics included accuracy, 

the Jaccard index, and the dice coefficient to evaluate the segmentation results. The major contributions of this 

paper can be summarized as follows: 

• Exploring the effect of changing loss function types on the performance of the modified LeViT-UNet model 

and segmentation results. 

• Experiments are conducted using two different standard public databases to validate the model modification, 

and a comparison of the results with other state-of-the-art methods is performed. 

The rest of the paper is organized as follows: the related works are reviewed in section Our proposed 

methodology is presented in section 3. Then, we come to the experimental results and discussion in section 4, 

followed by the analysis of the obtained results. Finally, the conclusion is given in section 5. 

2. RELATED WORK  

Neural networks have made major progress, with the latest architectures focusing on achieving efficiency and 

performance. Loss functions have played a key role in these advancements. The following are important studies 

investigating loss functions as tools for optimizing model performance. In [18] a generalized dice overlap was 

introduced to improve class rebalancing, aiming at balanced learning by adjusting the convergence rate of learning 

errors for each class. However, their approach requires further optimization to handle extreme imbalance cases 

and to achieve an optimal balance between capturing anatomical variation across classes and effectively managing 

class imbalance. In [19] a focal dice loss was proposed to address class imbalance for multimodal brain tumor 

segmentation, using a structural element that gradually shrinks to expand, leading to a coarse-to-fine and 

incremental learning process without changing the network structure. In [20] a generalized focal loss function 

based on the Tversky similarity index was proposed, to address the problem of data imbalance, and to achieve 

recall when training on small structures such as lesions. In [21] a focal dice loss, a loss function with balanced 

sampling that dynamically focuses on difficult examples to address imbalance, was proposed. It has been tested 

on 2D and 3D convolutional networks across medical datasets, and it has effectively reduced false positives and 

mitigated overfitting. In [16] dice loss was improved on weighted soft dice loss, and a successive focal loss and 
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WSDice loss were proposed, to address the problem of unbalanced sample distribution, and it can extract 

information in depth in both positive and negative samples. However, this approach has some defects as it 

introduces a couple of hyperparameters that need to be carefully adjusted during use, and weighted soft dice loss 

is more inconvenient to implement and does not solve the problem of the dice loss error being sensitive to the 

calculation of the loss function when it is used to segment small objects. In [22] an evaluation of 12 different loss 

functions applied to medical image segmentation using a 3D U-Net model was presented. To address the 

imbalance in labels, the study used oversampling techniques with a focus on foreground regions. The results 

indicated that the composite loss functions associated with Dice were the most effective choice, providing superior 

performance for this application. In [23] clDice (center-lineDice) was defined to enhance topology preservation 

up to parity for 2D and 3D binary segmentation. Soft-clDice is proposed to give more accurate connectivity 

information and higher graph similarity. In [24] an accelerated Tversky loss (ATL) function was proposed, which 

uses the log cosh function to optimize the gradients. The No-new U-Net (nn-Unet) model was adopted as the base 

model to validate the behavior of the loss functions using standard segmentation performance metrics. It provided 

faster convergence and better mask generation. In [15] a uniform focus loss is proposed to deal with class 

imbalance. It is evaluated on five medical imaging datasets. It is compared with six Dice-based or cross-entropy-

based loss functions, across 2D, 3D, and multi-class 3D binary segmentation tasks. In [25] a comprehensive 

evaluation of 25 dedicated semantic segmentation loss functions, organized in a hierarchical format, is performed. 

They conducted comparative experiments using UNet and TransUNet models on two datasets characterized by 

natural and medical image segmentation. This research has led to the choice of loss functions is more affected by 

the data than by the network used. In [26] two new loss functions were introduced: t-vMF Dice loss, a compact 

similarity-based alternative to Dice loss, and adaptive t-vMF Dice loss, which adjust the similarity levels for easier 

and harder classes using cosine similarity. In [27] T-Loss, a single-parameter loss function, was introduced. This 

function learns how to adaptively manage tolerance to label noise during the backpropagation process. It 

eliminates the need for additional computations such as EM and reduces label noise retention. 

3. METHODOLOGY  

This study’s methodology consists of three main steps: (1) selecting an appropriate model architecture 

specifically tailored for medical image segmentation, (2) choosing relevant datasets for robust evaluation of the 

model’s segmentation capabilities, and (3) implementing a loss function that addresses class imbalance in medical 

images, which improves segmentation accuracy by effectively capturing details across different anatomical 

structures. 

3.1. MODEL ARCHITECTURE 

In this paper, the LeViT-UNet [14] hybrid model has been chosen as a platform model because of its advantages 

in combining the UNet with the transformer blocks. This combination allows effective capturing of global context 

features, using transformers and high-resolution spatial information through the UNet. Furthermore, the model’s 

skip connections contribute to segmentation accuracy by integrating low-level features with global context 

information, making it suitable for medical image segmentation tasks. The focal loss function is employed to 

enhance the model’s performance because it is designed to address the class imbalance by down-weighting the 

loss contribution of easy-to-classify examples. Moreover, it focuses on complicated and misclassified examples. 

This approach helps improve segmentation quality, especially for small or underrepresented structures in medical 

images. 

3.2. Dataset 

The two employed datasets in this paper will be described. The first is the Synapse multi-organ segmentation 

dataset (Synapse) [28]. It comprises 30 abdominal CT scans, which include 3,779 axial contrast-enhanced 

abdominal clinical CT images. It is divided into 18 cases for training and 12 cases for validation, covering 8 

abdominal organs: the aorta, gallbladder, spleen, left kidney, right kidney, liver, pancreas, and stomach. The 

second is the Automated Cardiac Diagnosis Challenge dataset (ACDC) [28]. It has been collected from 150 

patients using cine-MR scanners. It comprises 100 volumes with human annotations and 50 private volumes 

intended for evaluation. The 100 annotated volumes are divided into 80 training samples and 20 validation 

samples. In this dataset, there is a considerable amount of overlap between the stomach, large intestine, and small 

intestine classes, resulting in a task that involves multi-label segmentation. These overlaps create a challenge for 

class imbalance, as the presence of multiple regions of interest in the same area can lead to an uneven distribution 

of positive and negative samples. This imbalance makes the segmentation process more complex, as the model 

may struggle to differentiate between the foreground (target regions) and the background. 
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3.3.  Loss Functions 

Loss functions play a critical role in optimizing deep learning models and affect their convergence during 

training. As shown in Table 1, loss functions are categorized into four major groups based on their specific focus 

and objectives [26] [29]. 

 

Table 1. Segmentation loss function types 

Gropes of loss function Type of loss function Sub type 

Region-based Loss 

Dice Loss 

 

Sensitivity-Specificity Loss 

Tversky Loss 

Focal Tversky Loss 

Log-Cosh Dice Loss 

Region Mutual loss 

Robust T-Loss 

IOU(Jaccard) Loss 

Lovasz-softmax loss 

Generallsed Wassersteln Dice Loss 

Distribution-based Loss  

Cross-Entropy Loss 

Binary Cross-Entropy 

Weighted Cross-Entropy 

Balanced Cross-Entropy 

Focal Loss 

 Distance map derived Loss 

Topk Loss 

Boundary-based Loss 

Hausdorff Distance Loss 

 

Shape aware loss 

Active Boundary  

Boundary-aware Loss 

Conditional Boundary Loss 

InverseForm Loss 

Boundary Loss 

Boundary Difference Over Union Loss 

Compounded Loss 

Combo Loss 
Cross-Entropy 

Dice 

Exponential Logarithmic Loss 
Cross-Entropy 

Dice 

Unified Focal Loss 
Focal 

Focal Tversky 

 

In imbalanced datasets, positive samples contribute much more gradients than negative samples. Therefore, 

the optimization process can reduce the gradient component of the dominant class after multiple training iterations 

because of the loss functions effect. The following are the most important loss functions that affect the model 

performance.  

 

1-Cross-Entropy: Cross-entropy [28] is defined as a measure of the difference between two probability 

distributions for a given random variable or set of events. It is widely used for classification objective, and as 

segmentation is pixel level classification it works well. Cross-Entropy is defined as: 

LBCE(y, y’) = -(ylog(y’) + (1 - y)log(1 – y’)) 

Here, y’ is the predicted value by the prediction model 

 

2- Dice Loss: is widely used in medical image segmentation for determining similarity. It is typically applied to 

determine how identical or overlapped two samples are. Its possible values are 0 to 1. The segmentation impact 

improves as the value approaches one [14]. 
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𝐷𝑖𝑐𝑒 (𝐴, 𝐵) = 2 |
𝐴 ∩ 𝐵

𝐴 + 𝐵
| 

3- Focal loss: is a form of binary cross-entropy loss that addresses the class imbalance problem with standard 

cross-entropy loss by reducing the contribution of positive samples  [25]. 

𝐹𝐿(𝑝𝑡) = −α𝑡(1 − 𝑝𝑡)𝛾log (𝑝𝑡) 

where, γ > 0 and when γ = 1 Focal Loss works like Cross-Entropy loss function, and α ranges from [0,1] that 

can be treated as a hyperparameter. 

4- Proposed Combined Loss Function: 

To leverage the strengths of both Dice Loss and Focal Loss, we propose a weighted combination:  

Loss total=αDice+βFocal 

where 𝛼 and 𝛽 are hyperparameters that balance the contributions of each loss function. Empirical experiments 

showed that setting 𝛼 = 0.5 and 𝛽 = 0.5 provides an effective trade-off between segmentation accuracy and 

robustness to class imbalance. Compared to using Dice or Focal Loss individually, this combination demonstrated 

superior performance, particularly in highly imbalanced datasets. 

4. EXPERIMENTAL RESULT AND DISCUSSION 

4.1. Implementation Details: 

The experiments are conducted using Python 3.7.10, PyTorch 1.9.1, and Linux 5.15.154+-x86_64. The 

optimizer used is Adam, who has a learning rate of 2e-3. All models are trained on a Tesla P100-PCIE GPU with 

16GB memory. The input resolution of images is 224x224, with a batch size of 8 for training and 16 for validation. 

The models used transformer backbones pre-trained on ImageNet-1k, and training is conducted for 30 epochs on 

the Synapse and ACDC datasets. 

4.2. Results: 

To emphasize the pivotal role of loss functions in enhancing medical image segmentation tasks, the 

performance of the proposed model was evaluated on two benchmark datasets: the Synapse and ACDC Datasets. 

The evaluation of model accuracy was conducted using two primary metrics: the Jaccard Index and the dice 

coefficient, which serve as key indicators of segmentation precision. Two scenarios were assessed, one employing 

the focal loss function and the other operating without it. The results of this comparison, summarized in Table 2, 

present the segmentation accuracy and model quality in the context of imbalanced datasets. 

Table 2. Performance Metrics of LiVeT-Unet modified model. 

Metric LiVeT-UNet model modified LiVeT-UNet model 

Best of Epoch 29 23 

Best Dice 0.7853 0.79954 

Best Jaccard 0.7310 0.73653 

Training Loss 0.0705 0.06794 

Validation Loss 0.02467 0.14535 

Validation Dice 0.78214 0.77675 

Validation Jaccard 0.71328 0.71341 

Trainable Parameters (Million) 52,17 52,156,519 

 

 

The relationship between the training loss and the validation loss is shown in Fig. 1, and Fig. 2 which illustrate 

both validation Dice and validation Jaccard. 
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Fig. 1. Training and validation loss 

 

Fig. 2. Validation Metrics 

TABLE 3 COMPARE THE MODIFIED LIVET-UNET WITH FAST SEGMENTATION METHODS. 

Model Name 

Trainable 
Parameters 
(Million  (  

Inference 
Time 
FLOPs 
(Million) 

Dice 
Coefficient 

Jaccard 
Index 

Dataset Memory Usage 

Modified 
LiVet-UNet 

52,156,519 150 0.79954 0.7365 
Synapse, 
ACDC 

198.96 MB 

Swin-Net 61.98 394.84 0.81 0.76 Synapse 29.87 GB 

TransUNet 105 1186.9 0.77 0.71 Synapse ------ 

Med 
Transformer 

70 290 0.85 0.79 
Synapse, 
ACDC 

24.66 GB 

UNETR 
92.5 41.1 

0.89 0.78 
Synapse, 
ACDC 

19.52 GB 

nnUnet 87.98 8712.56 0.91 0.84 ACDC 15.06 GB 

 

4.3. Discussion  

Integrating Focal Loss demonstrates measurable improvements in LiVeT-UNet’s segmentation performance 

as shown in Table 2. The Dice Coefficient improved to 0.79954, and the Jaccard Index increased to 0.73653, 

showing enhanced precision in handling challenging segmentation tasks. The model achieved its optimal 

performance within 23 epochs, highlighting faster convergence and reduced training time. While training loss 

decreased (0.06794 vs. 0.0705), validation loss increased (0.14535 vs. 0.02467), suggesting Focal Loss prioritizes 

complex samples, potentially at the expense of overall loss stability, but Validation performance remained stable 

(Dice: 0.77675, Jaccard: 0.71341), showing consistent generalization despite focusing more on challenging cases. 

Thus, the Focal Loss effectively enhances accuracy, benefiting datasets with class imbalance, while maintaining 

robust validation performance. The training curve in Fig. 1 shows that training loss decreases steadily over the 

epochs, reflecting the model’s ability to learn patterns from the training data. While the validation loss stabilizes 

or increases slightly after several epochs, showing potential overfitting. However, mitigation strategies like data 

augmentation, regularization (as dropout), or Early Stopping can improve generalization. Fig. 2 highlights the 

model’s powerful performance, achieving a Dice score of 0.79954 and a Jaccard index of 0.73653 on imbalanced 

data. Table 3 illustrates that, while some other models achieve higher performance, in terms of accuracy, the 
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proposed model balances accuracy and efficiency, making it an ideal choice for real-world applications. The Swin-

Net model achieved higher performance in accuracy (Dice: 0.81, Jaccard: 0.76), but suffers from a very high 

computational cost (394.84G FLOPs) and large memory consumption (29.87 GB), making it less efficient in 

resource-constrained environments compared to LiVeT-UNet (150G FLOPs, 198.96 MB). But TransUNet shows 

lower performance than LiVeT-UNet (Dice: 0.77, Jaccard: 0.71) with higher computational complexity (1186.9G 

FLOPs), making it less practical in systems that require high efficiency. The MedTransformer outperforms in 

accuracy (Dice: 0.85, Jaccard: 0.79) but consumes almost twice as much resources (290G FLOPs, 24.66 GB) as 

LiVeT-UNet, which limits its usability in resource-constrained systems. The UNETR is Achieve substantial 

accuracy (Dice: 0.89, Jaccard: 0.78) with lower computational cost (41.1G FLOPs) but consumes more memory 

(19.52 GB), which limits its efficiency compared to the lightness of LiVeT-UNet. Finally, the nnU-Net delivers 

exceptional performance (Dice: 0.91, Jaccard: 0.84) but requires tremendous resources (8712.56G FLOPs, 15.06 

GB), making it unsuitable for practical environments and is limited to high-performance systems. 

5. CONCLUSION  

This research enhances the LiVeT-UNet segmentation model by integrating focal and dice loss functions, 

effectively addressing sample imbalance in medical image segmentation. Unlike traditional dice loss, which 

primarily focuses on positive samples and overlooks negative ones, the proposed approach generates adaptive 

weights from the labels, ensuring that both positive and negative samples contribute to the loss calculation. This 

integration retains the robustness of dice loss while enhancing the model’s ability to learn from underrepresented 

regions. Experimental results demonstrate that combining focal and dice loss functions improves segmentation 

performance, particularly in highly imbalanced datasets. While the proposed approach may not achieve the highest 

accuracy compared with other models, it offers notable computational efficiency and optimized resource 

utilization, making it a practical choice for real-world medical imaging applications, especially in resource-

constrained environments. Future research could explore further optimizations, such as dynamically adjusting the 

contribution of the dice loss and the focal loss during training using adaptive weighting strategies or reinforcement 

learning. Moreover, incorporating self-supervised learning techniques, such as contrastive learning, could enhance 

feature extraction and model generalization. Evaluating the approach to larger medical imaging datasets would 

further validate their robustness and clinical applicability. Finally, an extensive hyperparameter search for focal 

loss could provide deeper insights into their impact on different segmentation tasks, improving model stability 

and performance. 
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