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INTRODUCTION  

 

In recent years, the accumulation of heavy metal ions in natural aquatic 

ecosystems has grown to be a major worldwide concern (Aziz et al., 2023). In such 

ecosystems, heavy metals, such as lead, cadmium, copper, arsenic, mercury, and iron 

normally exist at low concentrations (Mireji et al., 2008). However, they are considered 

carcinogenic and toxic when their concentrations increase beyond certain levels (Liaqat 

et al., 2023). Heavy metals can accumulate in the tissues of plants, insects, and mammals, 

resulting in many health consequences, including organ damage, cancer, and 

developmental disorders (Singh & Kalamdhad, 2011). Natural activities, including wind 

erosion, forest fires, volcano eruptions, and biogenic processes release these pollutants 
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      Metal pollution is one of the most prevalent human pollutants to which 

mosquito larvae are subjected in agricultural and urban environments. Culex 

pipiens are rapidly adapted to polluted environments. The present research 

investigated the impact of exposure of Cx. pipiens larvae to copper chloride 

(CuCl2) and cadmium chloride (CdCl2) on the biochemical, genotoxic, and 

molecular responses. Various concentrations of CuCl2 and CdCl2 were 

evaluated for toxicity against late third-instar Cx. pipiens larvae. The larvae 

were treated for 24hr with the LC50 of CuCl2 and CdCl2. Copper chloride 

significantly accumulated in the Cx. pipiens larval tissues compared to CdCl2. 

Biochemical studies revealed that these heavy metals increased total protein 

content, and catalase and peroxidase activities. Glutathione S-transferase, α-

esterase, and β-esterase activities were reduced in CuCl2 treatment while 

increased in case of CdCl2 treatment. All parameters of the comet assay, viz., 

% of damage, tail length, DNA % in the tail, tail moment, and olive tail 

moment increased with varying levels relative to the control. Gene expression 

studies demonstrated significant down-regulation of pollution-biomarker 

genes, acetylcholiesteras (AChE) and cytochrome P450 (CYP450), and 

significant up-regulation of heat shock protein (HSP), superoxide dismutase 

(SOD) and metallothionein (MT) genes. In conclusion, Cx. pipiens larvae can 

be considered an effective bioindicator for heavy metal pollution, facilitating 

regular studies on metal pollution in aquatic ecosystems. 

http://www.ejabf.journals.ekb.eg/
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(Zaynab et al., 2022). Moreover, human activities, such as mining, industry, and 

agricultural practices, including the application of inorganic fertilizers and pesticides 

share to introduce heavy metals into the environment (Tariq et al., 2016; Lekfeldt et al., 

2017). This ultimately affects invertebrates that reproduce in polluted aquatic 

environments (Sowa & Skalski, 2019).  

Some metals, such as copper, iron, and zinc have important physiological and 

biochemical roles in organisms. Copper plays an essential role in sustaining the structures 

of organisms but its deficiency disrupts critical metabolic processes, while increased 

exposure leads to toxicity (Schwartz et al., 2003). Cadmium is a heavy metal that has no 

essential biological role even in small concentrations and is found as potentially toxic at 

low levels (Kabata-Pendias, 2000). In Egypt, water resources are increasingly polluted 

by hazardous chemical compounds, especially heavy metals due to the proliferation of 

human activities near water sources (Akhtar et al., 2021). Aquatic insects accumulate 

heavy metals and serve as efficient bioindicators of metals in aquatic ecosystems, 

reflecting the levels present in their environment (Mebane et al., 2020). Culex pipiens 

(Diptera: Culicidae) is a notably prevalent mosquito species among water insects in 

Egypt. It serves as the principal vector of Wuchereria bancrofti, which is responsible for 

filariasis (elephantiasis) in humans, as well as transmitting Rift Valley fever virus and the 

West Nile virus infections (Nebbak et al., 2022).  

The physiological and biochemical changes in the organism are linked to the 

negative impacts stemming from susceptibility to a contaminant or a pollutant (Lai et al., 

2011). Biomarkers are employed in laboratory and field investigations as a method for 

assessing ecosystem health and quantifying biological impacts (Dalzochio et al., 2016). 

Antioxidant biomarker enzymes, such as superoxide dismutase (SOD), catalase (CAT), 

and peroxidase (Pox) have demonstrated their effectiveness as markers of pollution in 

many organisms (El-Samad et al., 2019). Glutathione transferases (GSTs) function as 

detoxification enzymes that are essential for the degradation of both internal and foreign 

toxic substances. They serve as important indicators for assessing the quality of 

freshwater environments, as their catalytic properties and gene regulation in aquatic 

organisms are closely associated with different ecological stresses (Yang et al., 2023). 

The level of acetylcholinesterase (AChE) is a critical neuro-behavioral metric utilized to 

validate the mechanical impacts of pollutant exposure in organisms (Tilton et al., 2011). 

The cytochrome P450 (CYP450) enzyme is crucial for xenobiotic detoxification and drug 

metabolism across nearly all organisms and serves as a biomarker for evaluating their 

health state (Han & Lee, 2021). Heat shock proteins (HSPs) exhibit an essential function 

in reacting to abiotic environmental stressors, such as heat and chemicals, hence 

preventing cell death in insects (King & MacRae, 2015). The heat shock protein 70 

(HSP70) serves as a highly effective biomarker for heavy metal pollution in insects (Hu 

et al., 2019). Tissue protection against metal stress is thought to be provided by 

metallothionein (MT) induction in the insects gut which is considered the main organ 
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where the MT protein is present in its cells (El-Gendy et al., 2020). In addition to high 

cysteine content in MT, it can protect the cells from reactive oxygen species (ROS)-

damaging impacts (You et al., 2002). The comet assay is a microgel electrophoresis 

method that identifies DNA damage at the single-cell level. It stands out as one of the 

prominent, quick, and highly sensitive genotoxic indicators widely employed for 

evaluating environmental risks, including heavy metals in insects (Ceschi-Bertoli et al., 

2020). 

The current work was designed to explore the probability of using larvae of Cx. 

pipiens as a sensitive bioindicator for copper and cadmium pollution, in terms of assaying 

certain biochemical, molecular, and genotoxic parameters. 

MATERIALS AND METHODS  

 

1. Rearing of Culex pipiens  

Mosquitoe larvae were collected from the breeding sites in Qena City, Egypt 

(Latitude: 26◦ 09′ 60.00“ N; Longitude: 32◦ 42’ 59.99” E). They were raised in the 

insectary of the Zoology Department, Faculty of Science, South Valley University. 

Morphological identification of emerging adults was performed using taxonomic keys 

developed by Harbach (1985). The adult mosquito colony was maintained under 

controlled laboratory conditions of 27±2°C and 65 ± 5 % relative humidity. 

2. Heavy metals tested  

The heavy metal salts utilized in this study were copper chloride (CuCl2) and 

cadmium chloride (CdCl2). Each salt was solubilized in distilled water to prepare a 

1000ppm stock solution. The stock solution was subsequently diluted to set up different 

concentrations of CuCl2 (1, 2, 4, 5, 8, 10 and 12ppm) and CdCl2 (5, 50, 100, 200, 300 and 

400ppm). 

3. Experimental bioassay 

The toxicity of CuCl2 and CdCl2 to Cx. pipiens larvae was investigated using the 

above-mentioned concentrations. As recommended by the WHO protocol (WHO, 2005), 

20 late third-instar larvae (3-day-old) were released into a plastic cup (12cm in diameter 

and 7cm in height), containing 100ml of each heavy metal solution. A parallel control 

with 20 late third-instar larvae released into a cup containing 100ml of distilled water was 

also conducted. Each concentration as well as the respective control were replicated four 

times. Mortality was made 24h post-treatment, and then corrected versus that of the 

control using Abbottʼs formula (Abbott, 1925). Corrected mortality was then subjected to 

probit analysis (Finney, 1971) to estimate the LC50, 95% confidence limits, 

heterogeneity, and slope. 

4. Detection of heavy metal concentrations in Culex pipiens larval tissues 

The concentration levels of copper chloride and cadmium chloride were detected 

in Cx. pipiens third-instar larval tissues 24h post-treatment with the LC50 of these heavy 

metals employing atomic absorption spectroscopy (Berkin-Elmer model 2380), following 

the method outlined by Loring and Rantala (1992). 



Sebak et al., 2025 1634 

 

5. Biochemical studies 

5.1. Sample preparation  

The surviving larvae treated with the LC50 of copper chloride and cadmium 

chloride for 24h were collected individually. A glass Teflon tissue homogenizer (ST–2 

Mechanic-Preczyina, Poland) was utilized on ice-cold conditions to homogenize the 

freshly collected larvae (250mg) of 100 treated larvae in one ml of distilled water. Each 

homogenate was centrifuged at 5000 × g for 15min at 4°C utilizing a cooling centrifuge. 

After removing the pellets, each supernatant was divided into 0.5ml multiple aliquots. 

These aliquots were subsequently stored at −20°C for further biochemical analyses, 

including total protein content and enzymatic activity assessments. The control 

homogenate was also prepared using larvae that were not exposed to heavy metals. All 

treatment and control groups were triplicated. 

5.2. Determination of total protein content 

Bradford (1976) method was employed to estimate the total protein amount. The 

bovine serum albumin (Sigma-Aldrich, Germany) and Coomassie Brilliant blue (G-250, 

Sigma-Aldrich, Germany) were used as the standard and reagent, respectivly. The total 

protein content was measured spectrophotomerically at 595nm with a Jenway-7305 

UV/Vis spectrophotometer (Bibby Scientific Ltd., Staffordshire, UK).  

5.3. Determination of activities of antioxidant enzymes 

The activity of catalase (CAT) was determined using Biodiagnostic kit # CA 2517 

(Angstrom Biotech Pvt. Ltd., India) based on the protocol of Aebi (1984). The CAT level 

was determined at absorbance of  240nm, and measured in units (U)/mg protein. 

Hammerschmidt et al. (1982) procedure was used to measure the peroxidase 

enzyme (POX) activity. The enzyme activity was quantified at 420nm, and expressed as 

Δ optical density (O.D)/min/mg protein. 

5.4. Determination of detoxifying enzyme activities  

Glutathione S-transferase (GST) activity was measured following the methods 

described by Habig et al. (I974) using 1-chloro, 2, 4-dinitrobenzene as a reagent. The 

activity was measured at 340nm, and expressed as nanomole substrate 

conjugated/min/mg protein. 

Van Asperen (1962) method was used to measure α- and β-esterase activity using 

α- and β-naphthyl acetate substrates, respectively. The activity was measured 

spectrophotomerically at 600nm. 

6. Genotoxic studies 

A comet test (single-cell gel electrophoresis) was utilized to determine the 

damage on DNA according to Singh et al. (1988). The samples were homogenized and 

centrifuged at 100 × g for 10min. The formed pellet was gently embedded in 1ml of 

homogenizing buffer to extract nuclei. To prepare and visualize the comet slides, the 

methods outlined by Dua et al. (2013) were followed. The ethidium bromide-stained 
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slides were examined and assessed using a digital color camera and an Axio fluorescence 

microscope (CD75V1A Zeiss, Germany) set to 400× magnification. Comet Score 

software version 1.5 (TriTek Corporation, Sumerduck, VA) was used to measure the 

parameters of the comet test (damage percentage, tail length, tail moment, tail DNA 

percentage, and olive tail moment) for 100 cells per treatment. 

7. RNA extraction, cDNA synthesis, and quantitative PCR analysis (qPCR)  

 Total RNA was isolated from Cx. pipiens third-instar larvae by BIOZOL 

(Bioflux, Cat No. 10760055-1) 24 hours post-treatment with the LC50 of copper chloride 

and cadmium chloride, following the manufacturer's guidelines. One hundred ng of RNA 

was reverse-transcribed to create cDNA, using the GScript ULTRA First-Strand 

Synthesis Kit (GeneDireX, Inc.).  The relative expression of cytochrome P450 (CYP450), 

superoxide dismutase (SOD) and heat shock protein (HSP) were assessed according to 

Delhaye et al. (2016). The sequences of the used primers in the qPCR analysis are listed 

in Table (1). The reference gene was β-actin, and the 2-ΔΔCt technique was applied 

following Livak and Schmittgen (2001). 

 

Table 1. List of primer names and their nucleotide sequence 

 

8. Statistical analysis   

The Shapiro-Wilk test was initially used to check for normality in all datasets from 

the molecular, genotoxic, and biochemical investigations. A mean ± standard error (SE) 

was then used to express the data. One-way analysis of variance (ANOVA) and post hoc 

Tukey's tests for multiple comparisons were used to compare group means (Midway et 

al., 2020). A significant threshold of P<0.05 was established. IBM-SPSS Statistics v.25 

(IBM, Armonk, New York, USA) was utilized for all statistical computations. 

 

 

 

Gene Sequence (5'-3') Reference 

Acetylcholinesterase 

(AChE) 

Fwd: ATCTGCGAGTTTCCGTTCGT 

Rev: CTTCTCGTCGTCCTGGTAGC 

Acc#AY762905 

Cytochrome P450 

(CYP450) 

Fwd: TCCAAGATCACGTGGCGAAA  

Rev: GGTGTCTGTTCCGGGGATTT 

Acc # AY662654 

Heat shock protein 

(HSP) 

Fwd: CAAGCGAGCAAAGCACTAGC 

Rev: CGGTGCAAATCGCTTACGTT  

Acc#HQ881846 

Superoxide 

dismutase (SOD)  

Fwd: GCATTGCGAAAACTTCCTTC 

Rev: TGCCCAGATCATCAATTTCA 

Delhaye et al., 2016 

Metallothionein 

(MT) 

Fwd: GCAACTGTGCCAGCAAGAAG 

Rev: GACAAGGGAGATGCGTCCTAT 

Acc# AY433383 

β-actin Fwd: TGCGTGACATCAAGGAGAAGC 

Rev: CCATACCCAAGAAGGAAGGCT 

Tian et al., 2016 
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RESULTS  

 

1. Toxicological effects 

The results of the toxicity of copper chloride (CuCl2) and cadmium chloride 

(CdCl2) versus the third-larval instar of Cx. pipiens 24h post-exposure are shown in Table 

(2).  Data illustrate that the two tested metals were highly toxic. Copper chloride was the 

most toxic heavy metal, with LC50 of 6.69ppm (Fig. 1A), while cadmium chloride 

showed less toxicity, with LC50 value of 265.913ppm (Fig. 1B). The mortality 

percentages of the larvae were positively correlated with CuCl2 and CdCl2 

concentrations. Larval mortality percentage in copper chloride treatment increased 

gradually from 1.25% at 1ppm to 76.25% at 12ppm concentration. Whereas, it increased 

from 1.266%  at 5ppm to 65.823% at 400ppm for cadmium chloride application. In the 

control group, the larval mortality was 0% in both treatments. 

 

Table 2. Toxicity of copper chloride and cadmium chloride against the 3rd larval instar of 

Cx. pipiens 

 
Concentration 

(ppm) 

Mortality 

% 

LC50 

(ppm) 

95% 

Confidence 

limits (ppm) 

LCL – UCL 

Slope 

 ± SE 

χ2 (df) P 

Copper 

chloride   

1 1.25 

 

6.69 

 

 

 

 

5.26-8.998 

 

 

 

 

 

3.36±0.25 

 

 

 

 

33.47 (5) 

 

 

 

 

<0.05 

2 1.25 

4 22.5 

5 56.25 

8 61.25 

10 67.5 

12 76.25 

Control 0.0 

Cadmium 

chloride 

5 1.266 

 

265.913 

 

 

 

 

217.79-341.54 

 

 

1.55±0.19 

 

 

 

 

 

3.07 (5) 

 

 

 

 

<1.61 

50 11.392 

100 24.051 

200 41.772 

300 50.633 

400 65.823 

Control 0.0 

 
LCL: Lower confidence limit, UCL: Upper confidence limit. 
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Fig. 1. Concentration-mortality regression line for the 3rd larval instar of Cx. pipiens 

treated with variable concentrations of A) Copper chloride; B) Cadmium chloride 
 

2. Heavy metal concentrations in Culex pipiens larval tissues 

The concentrations of copper chloride and cadmium chloride in the tissues of Cx. 

pipiens larvae 24h post-exposure with LC50 are shown in Fig. (2). The results display that 

the concentrations of these two heavy metals were increased significantly in the treated 

larvae compared to those of the untreated larvae (P< 0.05). Moreover, copper chloride 

significantly accumulated in the Cx. pipiens larval tissues compared to cadmium chloride. 
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Fig. 2. Heavy metal concentrations (μg/g dry weight) in the 3rd larval tissues of 

Cx.pipiens 24h post-treatment with LC50 of copper chloride and cadmium chloride. 

Means with different letters are significantly different (Tukey's test: P<0.05) 
 

3. Heavy metal biochemical effects on Culex pipiens 3rd - larval instar  

3.1. Heavy metal effects on the total protein content  

Treatment with copper chloride and cadmium chloride significantly increased the 

content of the total protein in the third-larval instar of Cx. pipiens relative to control 

(P<0.05) by 43.66, and 13.23%, respectively (Fig. 3A). 

3.2. Heavy metal effects on the activity of antioxidant enzymes  

Fig. (3B) showed that CAT activity was significantly increased relative to control 

post-exposure to copper and cadmium chloride by 40.7 and 15.99%, respectively (P< 

0.05). Fig. (3C) illustrates a significant increase in POX activity by 212.94 and 52.14%, 

for the two metals respectively (P< 0.05) in Cx. pipiens larvae relative to control. 
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Fig. 3. Changes in (A) Total protein; (B) Catalase activity (CAT); (C) Peroxidase activity 

(POX) in the 3rd-instar larvae of Cx. pipiens 24h post-treatment with LC50 of copper 

chloride and cadmium chloride heavy metals. Means with different letters are 

significantly different (Tukey's test: P< 0.05)  

 

3.3. Heavy metal effects on the activity of detoxifying enzymes  

Treatment with copper chloride showed non-significant decrease in the GST 

activity of Cx. pipiens larvae relative to control by -8.26% (P> 0.05). Application of 

cadmium chloride significantly increased GST activity relative to control by 39.88% (P< 

0.05) (Fig. 4A).  

Data presented in Fig. (4B) indicate significant reduction in α-esterase activity in 

Cx. pipiens third-larval instar following exposure to copper chloride by -16.59% relative 

to control (P< 0.05). A significant increase was detected in larvae treated with cadmium 

chloride relative to control by 13.1% (P< 0.05).    

Treatment with copper chloride insignificantly decreased β-esterase activity of Cx. 

pipiens larvae relative to control by -3.23% (P> 0.05). Treatment with cadmium chloride 

significantly increased β-esterase activity relative to control by 29.09% (P< 0.05) (Fig. 

4C).  

 

Fig. 4. Changes in (A) Glutathione S-transferase activity (GST); (B) α-Esterase activity; (C) β-

Esterase activity in the 3rd - instar larvae of Cx. pipiens 24 h post-treatment with LC50 of copper 

chloride and cadmium chloride heavy metals. Means with different letters are significantly 

different (Tukey's test: P< 0.05). 
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4. Genotoxicity in Culex pipiens larvae  

Genotoxic effects were assessed by exposing Cx. pipiens third-larval instar to the 

LC50 of copper chloride and cadmium chloride, with DNA fragment migration analyzed 

via agarose gel-electrophoresis (Fig. 5A–C). After the treatment of larvae with the tested 

heavy metals, all parameters of the comet assay, viz., % of damage, tail length, DNA % 

in the tail, tail moment, and olive tail moment showed increases with varying degrees 

relative to the control (Fig. 6A-E). Exposure to copper chloride and cadmium chloride 

showed significant increase % of damage relative to control (P< 0.05) (Fig. 6A). Tail 

length (Fig. 6B) and tail moment (Fig. 6D) showed non-significant increase in the post-

treatment of Cx. pipiens larvae to the two tested heavy metals relative to control (P> 

0.05). DNA % in the tail (Fig. 6C) and olive tail moment (Fig. 6E) showed significant 

increase only in larvae treated with copper chloride relative to the control (P< 0.05). 

 

 

Fig. 5. Comet photomicrographs of DNA isolated from third-instar larvae of Cx. pipiens 

24h post-treatment with LC50 of the two tested heavy metals. (A) Control; (B) Larvae 

treated with copper chloride; (C) Larvae treated with cadmium chloride 
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Fig. 6. Changes in comet assay parameters for genotoxicity in Cx. pipiens third-instar 

larvae 24h post-exposure to LC50 of copper chloride and cadmium chloride. (A) % of 

damage; (B) Tail length; (C) DNA % in tail; (D) Tail moment; (E) Olive tail moment. 

Means with different letters are significantly different (Tukey's test: P< 0.05) 
 

5. Gene expression analyses of pollution-biomarker genes  

  Treatment of Cx. pipiens third-instar larvae with LC50 of copper chloride for 24h 

significantly decreased the relative expression of AChE (Fig. 7A) and CYP450 (Fig. 7B) 

but significantly up-regulated the relative expression of HSP (Fig. 7C), SOD (Fig. 7D) 

and MT (Fig. 7E) by 0.64, 0.15, 12.44, 1.51 and 1.84 folds, respectively, relative to the 

control (P< 0.05). Treatment with LC50 of cadmium chloride significantly decreased the 

relative expression of AChE (Fig. 7A) and CYP450 (Fig. 7B) but significantly up-

regulated the relative expression of HSP (Fig. 7C), SOD (Fig. 7D) and MT (Fig. 7E) by 

0.62, 0.76, 2.66, 8.54 and 1.62 folds, respectively, relative to the control (P<0.05). 
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Fig. 7. Changes in the relative expression in the 3rd-instar larvae of Cx. pipiens 24 h post-

treatment with LC50 of copper chloride and cadmium chloride. (A) Acetylcholinesterase 

(AChE); (B) Cytochrome P450 (CYP450); (C) Heat shock protein (HSP); (D) 

Superoxide dismutase (SOD); (E) Metallothionein (MT). Means with different letters are 

significantly different (Tukey's test: P<0.05) 

DISCUSSION 

 

Heavy metals represent a considerable risk to aquatic ecosystems and human 

health, rendering their widespread occurrence in water a significant environmental issue 

(Ahmadijokani et al., 2022). They are non-biodegradable and typically bioaccumulate 

within living organisms. Elevated metal concentrations in different organs of organisms 

serve as a critical indicator of metal pollution in aquatic environments (Mona et al., 

2019). In recent decades, ecotoxicological investigations have evaluated anthropogenic 

environmental toxins by identifying organisms with deposited heavy metals. Insects serve 

as bioindicators to estimate the heavy metal accumulation in their ecosystems, especially 

when there is direct contact with the environment (Chowdhury et al., 2023).  

The current findings indicated that copper and cadmium exposure greatly reduced 

the survival of Cx. pipenis larvae. As the concentration of the two heavy metals 

increased, the larval mortality also increased. Nonetheless, the current findings indicate 

that the toxic effects of the studied heavy metals differed significantly among the various 

metals when assessed against the larval stage. According to the LC50 values, copper 

exhibited the highest toxicity toward the larval stage, with cadmium following closely 

behind. These results align with those reported by Oliver and Brooke (2018), who found 
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higher toxicity of copper than cadmium and lead against Anopheles arabiensis. Hafez et 

al. (1999) also observed a significant decrease in the survivorship of Cx. pipiens larvae 

with increasing cadmium concentration. Salama (2002) demonstrated that the mortality 

rate in Cx. pipiens larvae increased with increasing concentrations of pollutants, 

specifically Cd, Hg, and Pb. The toxicity of heavy metals was also documented in various 

insect species. Pascoe et al. (1989) observed that increased mortality rate was prevalent 

in 1st -instar of Chironomus riparius (Meigen) larvae when exposed to cadmium, with 

mortality rates rising in correlation with increased cadmium concentration. The LC50 

value of copper for the heavy metals examined may align with those reported by El-

Sheikh et al. (2010) for Cx. pipiens larvae (5.09ppm).  

Accumulation of metals in organisms’ tissues resulted in acute and chronic 

impacts like developmental abnormalities and growth aberration (Sildanchandra & 

Crane, 2000). To understand the possible impacts of a heavy metal on living organisms, 

it is also necessary to evaluate the relation between environmental concentration and 

accumulation in organisms’ tissue (Krantzberg & Stokes, 1990). Aquatic organisms 

may be particularly susceptible as they could uptake copper from both water and diet 

(Clearwater et al., 2002). Copper might enter aquatic organisms’ tissues through the 

chitinous exoskeleton, especially at the permeable respiratory surfaces through a passive 

diffusion process (Simkiss & Taylor, 1989; Hare, 1992; Dutta et al., 2010). The present 

finding showed an accumulation of copper and cadmium metals in the tissues of Cx. 

pipiens larvae. This result follows Toto et al. (2024), who determined the accumulation 

of large quantities of heavy metals including Cd and Cu in the midgut tissues of Cx. 

pipiens larvae obtained from polluted water.  

The present finding revealed that the application of copper chloride and cadmium 

chloride significantly increased the total protein content in the third-instar larvae of Cx. 

pipiens. This result is in line with the findings of Hassan et al. (2011), who found that 

copper metal led to a significant increase in total protein content in Cx. Pipiens,  while 

recording a notable reduction in the total protein of female ovaries tested with cadmium.  
The cellular lipid peroxidation, enzymatic, and non-enzymatic antioxidants 

indicate the oxidative stress status of the organism and can be utilized to evaluate the 

environmental stress in aquatic organisms (Vukašinović et al., 2020). The oxidative 

stress, which is produced from increased cellular generation of reactive oxygen species 

(ROS), increases with exposure to environmental contamination (Win et al., 2018). 

Antioxidant enzymes, such as CAT and POX are the first defense line and can neutralize 

molecules that could become free radicals or cause more radicals to be triggered 

(Ighodaro & Akinloye, 2018). Heavy metals exposure affects the oxidative equilibrium 

by boosting ROS generation and changing the activity of antioxidant enzymes (Chen et 

al., 2020). The current results indicated a significant increase in CAT level in Cx. pipiens 

larvae treated with copper and cadmium chloride. Saleem and Afsheen (2022) indicated 

that water pollution with heavy metals increased the CAT level in three species of water 
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striders. Conversely, Toto et al. (2024) found that the CAT activity was significantly 

decreased in Cx. ppiens larvae from heavy metal-polluted water.  

The POX activity was also significantly increased in Cx. pipiens larvae treated 

with copper chloride and cadmium chloride. This finding aligns with the results of El-

Saad et al. (2017), who found a declining level of GPx activity in Apis mellifera 

inhabiting a contaminated environment. Additionally, Mese et al. (2022) found a 

reduction in G. mellonella's GPx level in all treated groups that were exposed to Cu and 

Zn.  

Our results showed an insignificant reduction in GST, α-esterase, and β-esterase 

activities in Cx. pipiens larvae treated with copper chloride, while treatment with 

cadmium chloride illustrated significant increases in their activities. These findings align 

with the results of Yang et al. (2023), who observed that GST level in Protohermes 

costalis was increased by cadmium exposure. Mechanisms of defense against oxidative 

stress after exposure to metal pollutants likely benefit adult mosquitoes in environments 

polluted with insecticides because it unintentionally increases the expression of specific 

insecticide resistance phenotypes through the increase of GSTs (Oliver & Brooke, 

2016). Results by Oliver and Brooke (2018) stated that the activity of GST was 

significantly reduced in Anopheles arabiensis females after exposure to different metals 

(cadmium, copper, and lead). On the other side, there was no significant change in α-

esterase or β-esterase activities. 

The strand breaks in DNA caused by various genotoxic agents have been studied 

in numerous aquatic animals using comet assay, demonstrating reliability and sensitivity 

as a biomarker (Park & Choi, 2009). Yousef et al. (2019) noticed a direct link between 

increased DNA damage and heavy metal exposure and ROS generation. Our findings 

indicated that treatment with copper and cadmium chloride showed a significant increase 

in the percentage of DNA damage, and DNA % in tail and olive tail moment showed 

significant increase only in larvae treated with copper chloride. These results is in 

accordance with Toto et al. (2024), who found a notable elevation in DNA damage in C. 

pipiens larvae obtained from polluted site. Lee et al. (2006) demonstrated that cadmium 

exhibits cytotoxic effects on Chironomus tentans larvae.   

In the current investigation, exposure of Cx. pipiens 3rd-instar larvae to LC50 of 

copper chloride and cadmium chloride significantly decreased the relative expression of 

AChE. Inhibition of acetylcholinesterase may result in post-synaptic cholinergic receptor 

hyperstimulation, leading to physiological dysfunction (Tilton et al., 2011). Results 

about the action mechanism of AChE inhibition in insects due to metal exposure remain 

ambiguous. It was assessed that metals may inhibit AChE in both vertebrates and 

invertebrates (Frasco et al., 2005). Amer et al. (2022) indicated that AChE concentration 

in Cx. pipiens larvae were elevated in both control and low copper conditions, but they 

significantly decreased under high concentrations.   

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/glutathione
https://journals.sagepub.com/doi/full/10.1177/0748233711422729?casa_token=fdmmq0f23SwAAAAA%3AK6hMXWw3y1_Neou25k1CJzv2O1gWi2m4oO7CZ6Xy3u53yd-eI8PCPfycWx2hBDD4184C5MP2iJ1-eQ#bibr22-0748233711422729
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All functions of CYP450s in the detoxification process are well known, also their 

charge in the oxidative metabolism of a wide range of endogenous and exogenous 

chemicals in insects (Monostory & Dvorak, 2011). Our results indicated that exposure 

of Cx. pipiens3rd -instar larvae to LC50 of copper chloride and cadmium chloride 

significantly decreased the relative expression of CYP450. This result is compatible with 

the outcome of Toto et al. (2024), who found that CYP450 activity in the polluted Cx. 

pipiens larval group was at a lower level than the reference larvae. In a previous study by 

Musasia et al. (2013), lead and cadmium exposures significantly downregulated the 

expression of CYP450 genes in Anopheles gambiae. In contrast, Bernabò et al. (2017) 

stated an elevation of CYP450 enzymatic activity in Chironomus riparius larvae exposed 

to copper. 

According to physiological and environmental factors, the role of the HSP70 

protein in insects varies across species or within the same species (King & MacRae, 

2015). It is present in early instars of insects, supporting them in defeating unfavorable 

environments (Kamel & Mahmoud, 2018). The HSH70 protein may protect cells from 

metal-induced chromosomal aberrations by promoting cell cycle regulation and 

decreasing genomic instability (Barnes et al., 2002). The expression of HSP70 is 

enhanced for cellular protection during stressors brought by temperature, pathogenic 

infections, and exposure to heavy metals. Generally, it is expressed at low levels in 

normal states (Song et al., 2006). It also prevents the aggregation of degraded proteins, 

resulting in intense damage in the stressed cells (Azam et al., 2017). Our results revealed 

that exposure of Cx. pipiens 3rd -instar larvae to LC50 of copper chloride and cadmium 

chloride increased the relative expression of heat shock protein (HSP). This aligns with 

Toto et al. (2024), who demonstrated that Cx. pipiens larvae with the largest level of 

heavy metal accumulation showed a considerable increase in HSP expression compared 

with the reference group. Elevation in HSP70 expression levels in insects due to heavy 

metal pollution has been reported in other studies (Braeckman et al., 1997a, b; Joshi & 

Tiwari, 2000; Kafel et al., 2012; Doğanlar et al., 2014; El-Samad et al., 2021).  

In our investigation, heavy metal exposure increased the relative expression of 

SOD in Cx. pipiens 3rd -instar larvae. This result is aligned with Islam et al. (2019), who 

observed higher SOD activity in muga silkworms Antheraea assamensis after exposure to 

heavy metals contamination. In contrast, Azam et al. (2017) demonstrated that extended 

exposure to metals causes a drop in SOD activity along with a decline in antioxidant 

capacity and an elevated degree of oxidative stress. The midgut tissues of Cx. pipiens 

larvae taken from heavy metals polluted site showed a significant decrease in SOD 

activity (Toto et al., 2024). 

Our results illustrated that heavy metal treatment increased the relative expression 

of MT in Cx. pipiens 3rd -instar larvae. Our finding is consistent with Toto et al. (2024), 

who demonstrated that the midgut tissues of Cx. pipiens larvae, from heavy metal 

polluted site, had higher MT concentrations than those from the reference site. The higher 
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MT production is the mechanism for metal tolerance, as reported in Chironomus javanus 

fourth-instar larvae (Somparn et al., 2015). 

CONCLUSION 

 

This study concluded that the third-instar larvae of Cx. pipiens can bioaccumulate 

heavy metals present in their aquatic habitats since their tissues were recorded to be 

highly sensitive to heavy metal pollution resulting in biochemical, genotoxicity, and 

molecular alteration. Consequently, Cx. pipiens larvae can be considered an effective 

bioindicator for heavy metal pollution in the aquatic environment. 
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