ORIGINAL ARTICLE

Assessing COVID-19 Risks among Egyptian Healthcare Workers: Incidence, Reinfection, and Vaccination Insights: A Retrospective Study

¹Heba S. Abdel Aziz, ²Reham M.R. Hamed*, ³Sara E. Abd El-Ghani, ⁴Hadeel A.M. Hassanen, ⁵Reham A. Abdelmageed, ⁶Soliman B. Soliman, ⁷Ghada H. El-Sherif, ⁸Radwa M. ElSayed, ⁹Mostafa A. Abdelmoneim, ⁹Shehab M.K. Ali, ⁹Sohaila M.M. Abdelbar, ¹⁰Abdelhameed M.A. Elshenawy, ¹¹Marwa O. Elgendy, ¹Amira M. Abbas

¹Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt

²Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt

³Internal Medicine Department, Clinical Hematology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt

⁴Chest Diseases Department, Faculty of Medicine, Cairo University, Cairo, Egypt

⁵Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt

⁶Critical Care Department, Faculty of Medicine, Cairo University, Cairo, Egypt

⁷Occupational and Environmental Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt

⁸Family Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt

⁹Undergraduate student in Kasr Alainy Medical School, Cairo University, Cairo, Egypt

¹⁰Care and Emergency Nursing Department, Faculty of Nursing, Cairo University, Cairo, Egypt

¹¹Clinical Pharmacy Department, Beni-Suef University Hospitals, Faculty of Medicine, Beni-Suef University; Clinical Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt

ABSTRACT

Key words: COVID-19; Vaccination; Health personnel; Health Care Workers

*Corresponding Author: Ass. Professor. Reham Mohammad Raafat Hamed Medical Microbiology and Immunology Department Kasr Alainy School of Medicine, Cairo University Tel.: 01020311987 rehamraafat1986@cu.edu.eg https://orcid.org/0000-0002-5526-2134

Background: The onset of COVID-19 has posed significant hurdles for both public health and the global economy. The most effective strategy for managing the outbreak lies in the widespread embrace of vaccination. Numerous COVID-19 vaccines have been created and approved for deployment across different parts of the world. Objective: Identifying instances of COVID-19 infection and reinfection, analyzing the factors contributing to these occurrences, and assessing the vaccination status and potential side effects among healthcare workers. Methodology: This cross-sectional study involved healthcare workers from a university Hospitals. The questionnaire comprised four sections: participant demographics, initial COVID-19 infection, COVID-19 reinfection, and vaccination status. **Results:** Healthcare workers faced elevated risks of both initial infection (46.4%) and reinfection (29.2%) due to potential transmission within the healthcare setting, as well as from patients and the wider community. Reinfection cases typically exhibited more severe symptoms compared to initial infections, leading to increased rates of hospitalization and intensive care unit admissions (p value <0.001). AstraZeneca (24.6%), Pfizer (23.8%), Sinopharm (20.9%), and Sinovac (20.2%) emerged as the most administered vaccines. Non-vaccinated participants faced heightened susceptibility to COVID-19 infection, experienced more severe symptoms, and were more likely to require hospitalization. Following vaccination, side effects were more commonly reported with Johnson & Johnson (47.6%%) and Sputnik vaccines (46.7%%), typically manifesting within the first day and lasting one to three days. Conclusions: Understanding the risk factors for COVID-19 infection and reinfection is crucial for developing effective prevention strategies, especially among healthcare workers who face heightened exposure.

INTRODUCTION

The COVID-19 pandemic has caused significant illness and death worldwide since late 2019, with millions of confirmed cases and deaths annually.^{1,2} Efforts to curb its spread have included various

measures, with vaccination playing a pivotal role in preventing transmission and severe illness.³⁻⁵ However, vaccine effectiveness may wane over time, leading to calls for booster shots.⁶⁻⁹ Understanding the risk factors for reinfection is crucial for developing effective prevention strategies, especially among healthcare

workers who face heightened exposure.¹⁰ Yet, detailed data on reinfection rates and risk factors remain limited.^{8,11} As the number of suspected and confirmed reinfections rises, determining appropriate measures to combat COVID-19 is important. Given their elevated risk of exposure, healthcare workers are a focus of this study, which aims to analyze infection and reinfection rates, identify associated risk factors, and evaluate vaccination status and related side effects.

METHODOLOGY

The study design:

A retrospective cohort study was conducted from June 2022 to December 2023 in Egypt using a selfadministered hard copy and an online questionnaire survey. This study acquired an approval letter from the Research Ethics Committee (REC) of the Faculty of Medicine, Cairo University under the reference number N-487-2023, all methods were performed in accordance with the relevant guidelines and regulations.

Sampling Technique

An online survey was designed to detect COVID-19 infection and reinfection details which were checked and confirmed from testing platforms of the main laboratory (polymerase chain reaction (PCR) test for COVID-19, antibody test, rapid antigen test), and the vaccination status of the healthcare workers which was checked and confirmed from the vaccination platforms of the Infection Prevention and Control office. A total of 1793 participants participated in the study.

Social media platforms (such as Facebook, WhatsApp, and Telegram) were used to help distribute the online survey to participants. The online survey created by using Google Forms.

Data Collection

Data was collected from from healthcare workers of Cairo University Hospitals. The time needed to

complete the survey was estimated to be 10 minutes. The questionnaire was divided into four parts; Participant's demographic data; First Time COVID-19 Infection; COVID-19 Reinfection and Vaccination Status. It included information about the Participant's demographic data (Age, and Sex), Type of working personnel, medical conditions (medical comorbidities, COVID-19 infection, and reinfection, different symptoms if present, Hospital admission, and intensive care unit (ICU) admission), treatment needed (Oxygen inhalation, and Mechanical ventilation need), Vaccine (types, dosage, and side effects), and Compliance with infection control preventive measures (hand washing, using surgical masks, and social distancing).

Inclusion and Exclusion criteria

The study included healthcare workers at the University who do not work outside this University Hospitals. Workers who refused to participate had been excluded.

Definition of reinfection

Reinfection was defined in this study as a positive COVID-19 PCR test or rapid antigen test at least 90 days following the initial positive test, regardless of symptoms.¹²

RESULTS

Participants' demographic data:

A total of 1793 (1251 females) participants completed the study. The majority of them (89%) were in the age group of 18 to 39 years. 60.4% of them were students. 89.4% followed the preventive measures during the COVID-19 pandemic. Wearing a mask was the most frequently used preventive measure during the COVID-19 pandemic (95%) followed by hand hygiene (88.2%). 67.4% of them had received the Influenza vaccine during the COVID-19 pandemic (Table. 1).

Variable	Number	Percentage
Age		
0-17y	11	0.6
18-39y	1595	89.0
40-59y	172	9.6
60y or more	15	0.8
Sex		
Males	542	30.2
Females	1251	69.8
Type of Healthcare Worker		
Student	1083	60.4
Nurse/Nurse aid	150	8.4
Resident	154	8.6
Staff	319	17.8
Lab tech/Chemist	32	1.8
Radiology Technician	8	0.4
Worker	30	1.7
Administrative	17	0.9
Presence of Risk Factors for COVID-19 infection		
Yes	440	24.5
No	1353	75.5
Type of Risk Factors		
Chronic chest disease	164	37.5
Cardiac disease	87	19.9
Obesity	122	27.9
Immunodeficiency	141	32.3
Diabetes Mellitus	92	21.1
Kidney disease	37	8.5
Liver disease	35	8.0
Hypothyroidism	46	10.5
Malignancy	44	10.1
Chemotherapy	41	9.4
Others	122	28.0
Compliance with preventive measures during the COVID pandemic		
Yes	1603	89.4
No	190	10.6
Type of Preventive measures during COVID pandemic		
1= Physical distance	1275	79.5
2= Wearing mask	1523	95.0
3= Hand hygiene	1414	88.2
History of Influenza vaccination during COVID pandemic		
Yes	584	32.6
No	1209	67.4

Table 1: Demographic characteristics

First Time COVID-19 Infection

A total of 589 (393 females) participants had COVID-19 infections. Many of them were in the age group of 18 to 39 years (84.6%). 41.4% of them were students. 92.5% of them followed the preventive measures during the COVID-19 pandemic. Wearing a

mask was the most frequently used preventive measure during the COVID-19 pandemic (96.1%) followed by hand hygiene (87.9%). 35% of them have received the Influenza vaccine during the COVID-19 pandemic (Table 2).

Variable	Number	Percentage
Age		
0-17y	6	1.0
18-39y	498	84.6
40-59y	80	13.6
60y or more	5	0.8
Sex		
Males	196	33.3
Females	393	66.7
Type of Healthcare Worker		
Student	244	41.4
Nurse/Nurse aid	42	7.1
Resident	85	14.4
Staff	183	31.1
Lab tech/Chemist	8	1.4
Radiology Technician	6	1.0
Worker	13	2.2
Administrative	8	1.4
Presence of Risk Factors for COVID-19 infection		
Yes	149	25.3
No	440	74.7
Type of Risk Factors		
Chronic chest disease	41	27.7
Cardiac disease	22	14.9
Obesity	43	29.1
Immunodeficiency	35	23.6
Diabetes Mellitus	32	21.6
Kidney disease	9	6.1
Liver disease	8	5.4
Hypothyroidism	15	10.1
Malignancy	8	5.4
Chemotherapy	5	3.4
Others	47	31.8
Compliance with preventive measures during COVID-19 pandemic		
Yes	545	92.5
No	44	7.5
Type of Preventive measures during COVID-19 pandemic		
1= Physical distance	414	76.0
2= Wearing mask	524	96.1
3= Hand hygiene	479	87.9
History of Influenza vaccination during COVID-19 pandemic		
Yes	206	35.0
No	383	65.0

COVID-19 Reinfection

Comparison between first-time infected and reinfected participants (Table 3)

Regarding the first infection with COVID-19:

Almost half of the participants (46.4%) reported that they had a COVID-19 infection once time and 86.5% reported that they did not travel in 14 days before the infection. 41.3% of the participants had COVID-19 infection during the period from March 2020 to February 2021. 47.1% of participants with COVID-19 infection were diagnosed by PCR. Regarding the COVID-19 symptoms, 79% suffered from fever, 64.8% suffered from cough, 60.1% lost the smell, and 54.7% lost the taste. 13.2% of the participants needed to be admitted to the hospital and 6.5% needed ICU admission. Moreover, 16% needed oxygen inhalation, and 7.2% needed mechanical ventilation.

Regarding the number of vaccinations, 31.8% were vaccinated once and 51% were vaccinated twice. Regarding the type of COVID-19 vaccine, 25.2% of the

participants received Pfizer, 25.2% received Sinopharm, 17.7% Sinovac and 27.9% received AstraZeneca vaccines.

Of all the participants, 35% suffered from COVID-19 vaccination side effects. The common post-COVID-19 vaccination side effects were fatigue (71.2%), fever (58.3%), pain and redness at the vaccination site (50.9%), and headache (49.1%).

Nearly half of the participants (49.7%) reported that the side effects appeared after the first dose during the first day after vaccination and the second day after vaccination in 46.6% of the participants. The side effects persisted for 1-3 days in 77.9% of the participants, for 3-5 days in 16%, and more than 5 days in 6.1% of them.

Regarding the reinfection with COVID-19:

29.2% of the participants who were infected for the first time reported that they got reinfected with COVID-19 and 75.7% reported that they did not travel in 14 days before the infection. 45.3% of the participants had COVID-19 infection during the period between December 2021 and February 2022. 51% of participants with COVID-19 infection were diagnosed by PCR. Regarding the COVID-19 symptoms, 72.3% suffered

from fever, 59.8% complained of cough, 54% from Myalgia/Body aches, and 51.8% had Headache. 21.3% of the participants needed to be admitted to the hospital and 16.9% needed ICU admission. Moreover, 24.9% needed oxygen inhalation and 16.4% needed mechanical ventilation. Regarding the number of vaccinations, 34.2% were vaccinated once and 49.7% were vaccinated twice. Regarding the type of COVID-19 vaccine, 31.1% of the participants received Pfizer, 23.3% received Sinopharm, 19.7% Sinovac and 21.8% received AstraZeneca vaccines.

Of all the participants, 57.5% suffered from COVID-19 vaccination side effects. The most common post-COVID-19 vaccination side effects were fatigue (69.4%), fever (55.9%), pain and redness at the vaccination site (55%), and headache (49.5%). More than half of the participants (58.6%) reported that the side effects appeared after the first dose during the first day after vaccination and the second day after vaccination in 37.8% of the participants. The side effects persisted for 1-3 days in 69.4% of the participants, for 3-5 days in 23.4%, and more than 5 days in 7.2% of them.

•	Infected fo	or the first time	Rei	nfected	D l
	Number	Percentage	Number	Percentage	P value
Infection source and route			•		
– Community	221	37.5%	107	44.0%	< 0.001
– Hospital	161	27.3%	92	37.9%	
– Unknown	207	35.1%	44	18.1%	
History of traveling 14 days previously	to the infectio	n			
– Yes	54	9.2%	58	23.9%	< 0.001
– No	535	90.8%	185	76.1%	
Infection period			•		
 Mar 2020- Feb 2021 	227	38.5%	117	48.1%	0.009
– Mar 2021- Nov 2021	227	38.5%	90	37.0%	
– Dec 2021- Feb 2022	135	22.9%	36	14.8%	
Testing type for diagnosis of COVID-19	infection				
– PCR	247	41.9%	145	59.7%	< 0.001
– Antibody	26	4.4%	17	7.0%	
 Rapid antigen 	38	6.5%	13	5.3%	
 Self-home test 	46	7.8%	19	7.8%	
 Don't know 	232	39.4%	49	20.2%	
Symptoms of COVID-19 infection					
- 1= Fever	423	78.2%	187	81.0%	0.388
 2= Runny nose 	270	49.9%	112	48.5%	0.717
– 3= Cough	342	63.2%	158	68.4%	0.168
– 4= Wheezing	98	18.1%	54	23.4%	0.092
 5= Shortness of breath 	197	36.4%	101	43.7%	0.056
 6= Chest pain 	133	24.6%	81	35.1%	0.003
- 7= Loss of taste	297	54.9%	125	54.1%	0.841
 8= Loss of smell 	335	61.9%	129	55.8%	0.114
– 9= Nausea/vomiting	68	12.6%	44	19.0%	0.019
– 10= Abdominal pain/Diarrhea	119	22.0%	62	26.8%	0.146
– 11= Headache	287	53.0%	143	61.9%	0.023

	Infected fo	r the first time	Rei	nfected	P value	
	Number	Percentage	Number	Percentage	P value	
 12= Myalgia/Body aches 	331	61.2%	140	60.6%	0.880	
- 13= Sore throat	283	52.3%	113	48.9%	0.388	
- 14= Pink eyes	56	10.4%	27	11.7%	0.583	
– 15= Rash	16	3.0%	11	4.8%	0.213	
Need for Hospital admission						
– Yes	46	8.5%	56	24.2%	< 0.001	
– No	496	91.5%	175	75.8%		
Need for ICU admission	.,,,	21070	170	1010/0		
– Yes	13	2.4%	37	16.0%	< 0.001	
– No	529	97.6%	194	84.0%	100001	
Number of COVID-19 vaccination tir		211070		011070		
- Once	149	31.8%	66	34.2%	0.816	
– Twice	239	51.0%	96	49.7%	0.010	
– More	81	17.3%	31	16.1%		
Number of doses in each time of vacc		11.570		10.1/0		
 Full dose 	422	90.0%	180	93.3%	0.181	
– No full dose	47	10.0%	13	6.7%	0.101	
Type of COVID-19 vaccination	τ <i>ι</i>	10.070	1.5	0.770		
- 1= Pfizer	118	25.2%	60	31.1%	0.118	
- 2= Sinopharm	116	24.7%	45	23.3%	0.699	
- 3= Sinoyac	83	17.7%	38	19.7%	0.547	
- 4= Sputnik	12	2.6%	7	3.6%	0.454	
- 5 = Moderna	12	2.6%	5	2.6%	0.434	
4 X 1	30	6.4%	13	6.7%	0.981	
 6= Johnson and Johnson 7= AstraZeneca 	131	27.9%	42	21.8%	0.101	
- 8= Others	6	1.3%	3	1.6%	0.725	
- 9= Do not know	24	5.1%	7	3.6%	0.409	
Presence of Side effects of COVID-19		5.1%	1	5.0%	0.409	
- Yes	163	34.8%	111	57.5%	< 0.001	
- No	306	65.2%	82	42.5%	< 0.001	
Side effects of COVID-19 vaccination		03.2%	82	42.3%		
- 1= Pain and redness at the	83	50.9%	61	55.0%	0.511	
	00	30.9%	01	55.0%	0.311	
vaccination site – 2= Fatigue	116	71.2%	77	69.4%	0.749	
<u> </u>	95	58.3%	62	<u> </u>	0.749	
	37		26			
.	80	22.7% 49.1%	55	23.4% 49.5%	0.889	
			17			
- 6= Nausea/Vomiting	<u>11</u> 80	6.7%		15.3%	0.022	
- 7= Joint/Bone pain	80	49.1%	33	29.7%	0.001	
- 8= Others		6.7%	6	5.4%	0.651	
Symptoms of vaccination side effects		40.70/	(5	5 9 60/	0.240	
- Vaccination day	81	49.7%	65	58.6%	0.340	
- 2nd day	76	46.6%	42	37.8%		
- 3rd day	6	3.7%	4	3.6%		
Duration of side effects lasted for	107			<i>co. to:</i>	0.250	
- 1-3 days	127	77.9%	77	69.4%	0.258	
– 3-5 days	26	16.0%	26	23.4%		
- > 5 days Bold values are significant at p<0.05	10	6.1%	8	7.2%		

Bold values are significant at p<0.05.

Vaccination Status

Regarding the number of COVID-19 vaccinations, 36% of all the participants were vaccinated twice times but on the other hand, 28% of them did not receive any vaccination. 85.3% of the participants reported that fear

was the main cause of non-vaccination followed by pregnancy (10.7%) and lactation (6.7%). AstraZeneca and Pfizer vaccines were the most received vaccines by the participants in this study.

Table 4 shows the participant's vaccination status.

Table 4. Vaccination status	Number	Percentage
Number of COVID-19 vaccination times		
- Once	442	24.7
– Twice	645	36.0
– More	204	11.4
– Never	502	28.0
The cause of non-vaccination	100	05.0
- 1= Fear	423	85.3
- 2= Pregnancy	53	10.7
- 3= Lactation	33	6.7
 4= Neurological e.g. epilepsy 5= Uncontrolled Diabetes Mellitus 		1.4
	9	1.8
- 6= Uncontrolled hypertension	13	2.6 0.2
- 7= HIV infection	1	
- 8= Cardiac disease	11	2.2
- 9= Immunosuppressive therapy	<u> </u>	1.2
- 10= Coagulopathy		3.8
– 11= Allergy	28	5.6
Aumber of doses in each time of vaccination Full dose 	1.165	00.2
	1,165	90.2 9.8
- No full dose	126	9.8
Yppe of COVID-19 vaccination - 1= Pfizer	308	23.8
- 1= Plizer - 2= Sinopharm	270	23.8
- $2=$ Sinopharm $ 3=$ Sinovac	262	20.9
- 4= Sputnik	202	20.2
- 5= Moderna	45	3.5
 – 5– Modelna – 6= Johnson and Johnson 	77	6.0
 – 0– Johnson and Johnson – 7= AstraZeneca 	318	24.6
- 8= Others	19	1.5
- 9= Unknown	87	6.7
Presence of Side effects of COVID-19 vaccination	67	0.7
- Yes	475	36.8
- No	816	63.2
ide effects of COVID-19 vaccination	010	05.2
- 1= Pain and redness at the vaccination site	249	52.4
 – 2= Fatigue 	338	71.2
- 3= Fever	280	58.9
- 4= Chills	108	22.7
- 5= Headache	250	52.6
- 6= Nausea/Vomiting	51	10.7
- 7= Joint/Bone pain	189	39.8
- 8= Others	34	7.2
ymptoms of vaccination side effects started on:		
– Vaccination day	245	51.6
- 2 nd -day post-vaccination	217	45.7
- 3 rd -day post-vaccination	13	2.7
Duration of side effects lasted for:		
– 1-3 days	369	77.7
– 3-5 days	75	15.8
- > 5 days	31	6.5

Table 4. Vaccination status

Regarding the different types of vaccines, the after-vaccination side effects were more prevalent after the Johnson and Johnson vaccine (47.6%) followed by the Sputnik vaccine (46.7%). The most reported side effects were pain and redness at the vaccination site, fatigue, and fever. The side effects appeared during the first day after vaccination with Pfizer, Sinopharm, Sinovac, Sputnik, Johnson and Johnson, and

AstraZeneca. However, they appeared on the second day after the Moderna vaccine. The side effects commonly lasted for 1 to 3 days after vaccination with Pfizer, Sinopharm, Sinovac, Moderna, Johnson and Johnson, and AstraZeneca. However, the side effects have mostly lasted for 3 to 5 days after vaccination with Sputnik.

Table 5 shows a Comparison between different types of vaccines.

Table 5: Comparison	n between different	types of vaccines
----------------------------	---------------------	-------------------

	Р	Pfizer Sinopharm		Sir	novac	S	putnik	Moderna		Johnson and Johnson		AstraZeneca		P value	
	Ν	%	N	%	N	%	Ν	%	Ν	%	Ν	%	N	%	
Presence of Side effects of COVID-19 vaccination															
– Yes	109	44.7%	48	21.1%	70	30.2%	7	46.7%	10	32.3%	30	47.6%	108	40.8%	< 0.001
– No	135	55.3%	180	78.9%	162	69.8%	8	53.3%	21	67.7%	33	52.4%	157	59.2%	
Side effects of COVID-19 vaccination															
 1= Pain and redness at the vaccination site 	52	47.7%	28	58.3%	36	51.4%	4	57.1%	3	30.0%	18	60.0%	63	58.3%	0.444
– 2= Fatigue	64	58.7%	35	72.9%	46	65.7%	5	71.4%	7	70.0%	25	83.3%	88	81.5%	0.010
- 3= Fever	53	48.6%	24	50.0%	42	60.0%	4	57.1%	6	60.0%	21	70.0%	71	65.7%	0.136
- 4= Chills	21	19.3%	8	16.7%	10	14.3%	0	0.0%	3	30.0%	9	30.0%	34	31.5%	0.048
– 5= Headache	46	42.2%	26	54.2%	39	55.7%	2	28.6%	4	40.0%	17	56.7%	62	57.4%	0.222
 6= Nausea/Vomiting 	8	7.3%	5	10.4%	10	14.3%	0	0.0%	1	10.0%	2	6.7%	15	13.9%	0.580
 7= Joint/Bone pain 	39	35.8%	18	37.5%	25	35.7%	4	57.1%	3	30.0%	9	30.0%	60	55.6%	0.025
- 8= Others	6	5.5%	1	2.1%	5	7.1%	0	0.0%	0	0.0%	4	13.3%	7	6.5%	0.483
Symptoms of vaccination side effects started on:															
 Vaccination day 	55	50.5%	29	60.4%	37	52.9%	6	85.7%	2	20.0%	17	56.7%	57	52.8%	0.374
 2nd-day post-vaccination 	54	49.5%	18	37.5%	32	45.7%	1	14.3%	8	80.0%	12	40.0%	50	46.3%	
 3rd-day post-vaccination 	0	0.0%	1	2.1%	1	1.4%	0	0.0%	0	0.0%	1	3.3%	1	0.9%	
Duration of side effects lasted for:															
 1-3 days 	79	72.5%	40	83.3%	58	82.9%	2	28.6%	7	70.0%	27	90.0%	85	78.7%	0.008
- 3-5 days	21	19.3%	8	16.7%	9	12.9%	5	71.4%	2	20.0%	2	6.7%	14	13.0%	
- > 5 days	9	8.3%	0	0.0%	3	4.3%	0	0.0%	1	10.0%	1	3.3%	9	8.3%	

Bold values are significant at p<0.05.

Regarding the vaccinated participants:

A total of 1291 (848 females) participants had COVID-19 infection with COVID-19. Many of them were in the age group of 18 to 39 years (89.4%). 58.9% of them were students. 92.1% of them followed the preventive measures during the COVID-19 pandemic. Wearing a mask was the most frequently used preventive measure during the COVID-19 pandemic (94.8%) followed by hand hygiene (87.4%). 42.2% of them received the Influenza vaccine during the COVID-19 pandemic.

Of the vaccinated participants, 92.3% reported that they suffered from COVID-19 symptoms. Regarding the COVID-19 symptoms, 78.5% suffered from fever, 63.6% complained of cough, 60.7% had myalgia/body aches, and 55.4% had headache. 12.8% of the participants needed hospital admission and 6.7% needed ICU admission. Moreover, 15.4% needed oxygen inhalation and 7.5% needed mechanical ventilation. Regarding COVID-19 reinfection, 29.2% were reinfected with COVID-19 infection and 92.7% of them suffered from COVID-19 symptoms.

Regarding the non-vaccinated participants:

A total of 502 (403 females) participants had COVID-19 infection with COVID-19. Many of them were in the age group of 18 to 39 years (87.8%). 64.3% of them were students. 82.5% of them followed the preventive measures during the COVID-19 pandemic. Wearing a mask was the most frequently used preventive measure during the COVID-19 pandemic (95.7%) followed by hand hygiene (90.6%). 7.8% of them received the Influenza vaccine during the COVID-19 pandemic. 19 pandemic.

Of the non-vaccinated participants, 95.3% reported that they suffered from COVID-19 symptoms. Regarding the COVID-19 symptoms, 80.9% suffered from fever, 69.1% complained of cough, 62.3% had myalgia/body aches, and 56.8% had headache. 14.8% of the participants needed hospital admission and 5.6% needed ICU admission. Moreover, 18.5% needed oxygen inhalation and 6.2% needed mechanical ventilation. Regarding COVID-19 reinfection, 29.4% were reinfected with COVID-19 and 92% of them suffered from COVID-19 symptoms.

Table 6 shows a Comparison between vaccinated and non-vaccinated participants.

		cinated	accinated	P value		
	Number	Percentage	Number	Number Percentage		
Age						
– 0-17y	8	0.6%	3	0.6%	0.804	
– 18-39y	1154	89.4%	441	87.8%		
– 40-59y	119	9.2%	53	10.6%		
– 60y or more	10	0.8%	5	1.0%		
Sex						
– Males	443	34.3%	99	19.7%	< 0.001	
– Females	848	65.7%	403	80.3%		
Type of Healthcare Worker	·	•				
– Student	760	58.9%	323	64.3%	0.008	
 Nurse/Nurse aid 	109	8.4%	41	8.2%		
– Resident	122	9.5%	32	6.4%		
– Staff	245	19.0%	74	14.7%		
 Lab tech/Chemist 	16	1.2%	16	3.2%		
 Radiology Technician 	6	0.5%	2	0.4%		
– Worker	19	1.5%	11	2.2%		
– Administrative	14	1.1%	3	0.6%		
Presence of Risk Factors for COVID-19				,.		
- Yes	323	25.0%	117	23.3%	0.449	
– No	968	75.0%	385	76.7%		
Type of Risk Factors						
- 1= Chronic chest disease	123	38.3%	41	35.3%	0.571	
 – 2= Cardiac disease 	63	19.6%	24	20.7%	0.806	
- 3= Obesity	85	26.5%	37	31.9%	0.265	
 4= Immunodeficiency 	106	33.0%	35	30.2%	0.574	
- 5= DM	61	19.0%	31	26.7%	0.080	
 6= kidney disease 	29	9.0%	8	6.9%	0.478	
- 7= Liver disease	27	8.4%	8	6.9%	0.606	
 Bryer disease 8= Hypothyroidism 	33	10.3%	13	11.2%	0.780	
– 9= Malignancy	35	10.9%	9	7.8%	0.335	
- 10= Chemotherapy	33	10.3%	8	6.9%	0.284	
- 11= Others	102	31.9%	20	17.2%	0.003	
Compliance to preventive measures du			20	17.270	0.005	
- Yes	1189	92.1%	414	82.5%	< 0.001	
- No	102	7.9%	88	17.5%	< 0.001	
Type of Preventive measures	102	1.570	00	17.570		
during COVID-19 pandemic						
- 1= Physical distance	929	78.2%	346	83.4%	0.024	
 – 2= Wearing mask 	1126	94.8%	397	95.7%	0.478	
- 3= Hand hygiene	1038	87.4%	376	90.6%	0.079	
History of Influenza Vaccination during			2.5	20.070	0,077	
– Yes	545	42.2%	39	7.8%	< 0.001	
- No	746	57.8%	463	92.2%		
COVID-19 first-time infection	, 10	2.1070		>=.=.70		
- Yes	662	51.3%	170	33.9%	< 0.001	
- No	629	48.7%	332	66.1%	× 0.001	
Infection period	027	10.7/0	552	00.170		
- Mar 2020- Feb 2021	270	40.8%	74	43.5%	0.752	

Egyptian Journal of Medical Microbiology _____ ejmm.journals.ekb.eg info.ejmm22@gmail.com

	Vaccinated		Non v	Devolues		
	Number	Percentage	Number	Percentage	P value	
– Mar 2021- Nov 2021	253	38.2%	64	37.6%		
– Dec 2021- Feb 2022	139	21.0%	32	18.8%		
Symptoms of COVID-19 infection		_	_		-	
– Yes	611	92.3%	162	95.3%	0.174	
– No	51	7.7%	8	4.7%		
Symptoms of COVID-19		•	•	-		
- 1= Fever	479	78.5%	131	80.9%	0.516	
- 2= Runny nose	307	50.3%	75	46.3%	0.362	
– 3= Cough	388	63.6%	112	69.1%	0.190	
– 4= Wheezing	107	17.5%	45	27.8%	0.004	
 5= Shortness of breath 	232	38.0%	66	40.7%	0.529	
 6= Chest pain 	154	25.2%	60	37.0%	0.003	
- 7= Loss of taste	338	55.4%	84	51.9%	0.419	
 8= Loss of smell 	367	60.2%	97	59.9%	0.947	
– 9= Nausea/vomiting	84	13.8%	28	17.3%	0.529	
 10= Abdominal pain/Diarrhea 	142	23.3%	39	24.1%	0.832	
– 11= Headache	338	55.4%	92	56.8%	0.753	
 12= Myalgia/Body aches 	370	60.7%	101	62.3%	0.695	
– 13= Sore throat	321	52.6%	75	46.3%	0.152	
 14= Pink eyes 	61	10.0%	22	13.6%	0.191	
– 15= Rash	20	3.3%	7	4.3%	0.523	
Need for Hospital admission		-	-			
– Yes	78	12.8%	24	14.8%	0.493	
– No	533	87.2%	138	85.2%		
Need for ICU admission		1	1	1	1	
– Yes	41	6.7%	9	5.6%	0.595	
– No	570	93.3%	153	94.4%		
Need for Oxygen					1	
– Yes	94	15.4%	30	18.5%	0.334	
– No	517	84.6%	132	81.5%		
Need for mechanical ventilation		- - - - - - - - - -	10	6 9 04	0	
– Yes	46	7.5%	10	6.2%	0.554	
– No	565	92.5%	152	93.8%		
COVID-19 Reinfection	102	20.20/	50	20.40/	0.047	
– Yes	193	29.2%	50	29.4%	0.947	
– No	469	70.8%	120	70.6%		
Infection period – Mar 2020- Feb 2021	60	31.1%	12	24.0%	0.328	
- Mar 2020- Feb 2021 - Mar 2021- Nov 2021	60	31.1%	12	38.0%	0.328	
	87	45.1%	23	46.0%	0.473	
- Dec 2021- Feb 2022 Symptoms of COVID-19 infection	07	45.170	23	40.070	0.907	
– Yes	179	92.7%	46	92.0%	0.770	
- res - No	179	7.3%	40	8.0%	0.770	
Symptoms of COVID	14	1.370	+	0.070	1	
– 1= Fever	130	72.6%	32	71.1%	0.839	
- 2 = Runny nose	95	53.1%	17	37.8%	0.067	
- $2=$ Runny nose - $3=$ Cough	111	62.0%	23	51.1%	0.182	
- 4 = Wheezing	43	24.0%	11	24.4%	0.182	
	56	31.3%	11	33.3%	0.792	
 5= Shortness of breath 6= Chest pain 	41	22.9%	15	35.6%	0.082	

	Vaccinated		Non vaccinated		
	Number	Percentage	Number	Percentage	P value
- 7= Loss of taste	64	35.8%	23	51.1%	0.059
- 8= Loss of smell	75	41.9%	21	47.7%	0.484
 9= Nausea/vomiting 	18	10.1%	5	11.1%	0.788
– 10= Abdominal pain/Diarrhea	35	19.6%	11	24.4%	0.468
– 11= Headache	85	47.5%	31	68.9%	0.010
 12= Myalgia/Body aches 	92	51.4%	29	64.4%	0.116
- 13= Sore throat	69	38.5%	27	60.0%	0.009
– 14= Pink eyes	14	7.8%	3	6.7%	0.794
– 15= Rash	3	1.7%	2	4.4%	0.265
Need for Hospital admission	·	•		•	•
– Yes	44	24.6%	4	8.7%	0.019
– No	135	75.4%	42	91.3%	
Need for ICU admission	·	•		•	•
– Yes	36	20.1%	2	4.3%	0.011
– No	143	79.9%	44	95.7%	
Need for Oxygen	·	•		•	•
– Yes	48	26.8%	8	17.4%	0.187
– No	131	73.2%	38	82.6%	
Need for mechanical ventilation	•	•	•	•	•
– Yes	35	19.6%	2	4.3%	0.013
– No	144	80.4%	44	95.7%	

Bold values are significant at p<0.05.

DISCUSSION

The COVID-19 pandemic's emergence and rapid global spread significantly disrupted healthcare services worldwide.^{13,14} Despite this, many individuals infected with the virus can remain asymptomatic while still being contagious.^{15,16} Consequently, implementing primary prevention measures within communities becomes inherently challenging.^{17,18} The global effort to combat the disease centered on mass vaccination campaigns. These vaccines aimed to protect individuals from coronavirus infection or developing severe symptoms by prompting their immune systems.

Throughout the pandemic, reinfections with COVID-19 have emerged as a growing concern, yet this pressing public health issue remains inadequately addressed.^{19,20}

Analysis of participant demographics revealed a notable proportion within the 18-39 age group, with a majority being female. This suggests that females exhibit heightened concerns about their health and infection risk,²¹ likely prompting them to share their experiences with colleagues. to produce antibodies.^{22,23}

Approximately a quarter of participants possessed risk factors for COVID-19 infection, with chronic chest conditions, obesity, and immunodeficiency being the most prevalent. This aligns with previous research findings.^{24,25}

Many participants demonstrated a commitment to COVID-19 preventive measures, indicating both

awareness of the virus's dangers and a fear of contracting it. Reported precautions included maintaining physical distance, wearing masks, and practicing hand hygiene. These preventive measures remain crucial for safeguarding healthcare workers against the virus.^{26,27}

During the COVID-19 pandemic, nearly a third of participants received the Influenza vaccine. A previous research showed a significant decrease in the odds of testing positive for COVID-19 among those who had the influenza vaccine compared to those who did not. Moreover, individuals who had received the influenza vaccine and later tested positive for COVID-19 experienced notably better clinical outcomes.²⁸

Additionally, a previous study explored the impact of widespread influenza immunization on COVID-19 transmission and other respiratory infections during concurrent outbreaks. It revealed that increased vaccine uptake could aid in managing respiratory outbreaks alongside the peak influenza season and compensate for limited detection resources.²⁹ Furthermore, in scenarios where both influenza and SARS-CoV-2 viruses circulate, high influenza vaccine uptake, particularly in seasons where vaccine strains closely match circulating strains, could reduce the interference of influenza during the COVID-19 epidemic.²⁹

PCR stands as the primary method for diagnosing COVID-19 infection in this research. This technique involves reverse transcription of the virus's genetic material (RNA) to complementary DNA (cDNA), then amplifying certain regions of the cDNA. Probes (DNA/RNA marked sequences to detect the genetic target in the material) and primers (DNA/RNA sequences that facilitate replication of genetic material in the sample) were created following the sequencing of the SARS-CoV-2 genome. Multiple amplification cycles are conducted to identify these targets; the more cycles needed, the lower the viral load in the material being studied.³⁰

Among the study population, fever, cough, and loss of taste and smell emerged as the most common symptoms of COVID-19 infection. Loss of taste and smell notably indicates a COVID-19 infection.^{31,32}

In cases of reinfection examined in this study, symptoms were more severe compared to initial infection, as evidenced by higher rates of hospitalization and ICU admission. Previous research suggests that a higher initial viral load independently correlates with poorer prognosis in SARS. Hence, the adverse outcomes among SARS patients should be considered alongside factors like age, comorbidities, and viral load.^{33,34}

Healthcare workers in this study exhibited heightened caution regarding vaccination, owing to their occupational exposure to COVID-19 patients, aiming to shield themselves from infection risks. This cautious approach aligns with findings by Rahul Shekhar et al. Vaccine hesitancy among the general public could exacerbate the situation, particularly for healthcare workers.^{35,36}

COVID-19 vaccines have the potential to shield individuals from coronavirus infection or severe symptoms by stimulating the immune system to generate antibodies. These antibodies, post-vaccination, adhere to the invader spike protein and limit the ability of the virus to enter into the cells.³⁷ Most participants in the study received complete doses of COVID-19 vaccine. A previous study showed that a single dose sufficed for individuals with prior coronavirus infections to attain satisfactory antibody levels.³⁸

The primary vaccines utilized in this study were Pfizer, Sinopharm, Sinovac, and AstraZeneca. However, developing immunity post-vaccination may trigger side effects, a key factor contributing to vaccine hesitancy. Raising awareness regarding vaccine efficacy and elucidating potential side effects are deemed vital for enhancing vaccine acceptance. Notably, side effects can vary depending on the vaccine type.²²

Common post-COVID-19 vaccination side effects included fatigue, fever, pain, redness at the injection site, and headache. Post-vaccination side effects were more prevalent with the Johnson and Johnson vaccine (47.6%) followed by the Sputnik vaccine (46.7%) in this study. Pain and redness at the injection site were the most frequently reported side effects, followed by fatigue and fever. Side effects typically manifested on the first day post-vaccination with Pfizer, Sinopharm, Sinovac, Sputnik, Johnson and Johnson, and AstraZeneca, while with Moderna, they occurred on the second day. The duration of side effects mostly spanned from 1 to 3 days post-vaccination with Pfizer, Sinopharm, Sinovac, Moderna, Johnson and Johnson, and AstraZeneca, but extended to 3 to 5 days with Sputnik.

In a prior study, it was noted that post-vaccination side effects were more frequently observed with RNA (mRNA) vaccines compared to others.²² Individuals with severe allergies (anaphylaxis) or allergies to vaccine components are advised against vaccination due to the potential risk of allergies and skin rashes.^{39,40}

Most individuals develop immunity against coronavirus post-vaccination, irrespective of experiencing side effects. A previous study showed that only one in four people experience mild and short-lived side effects after receiving COVID-19 vaccines.⁴¹ Common side effects following vaccination, according to the World Health Organization, include fatigue, fever, headaches, injection site pain, nausea, and diarrhea, consistent with the findings of this study.²²

Ensuring the safety and efficacy of vaccines is paramount for their widespread use in curbing virus transmission.¹⁵

Non-vaccinated participants in this study faced heightened risk of COVID-19 infection, experiencing more severe symptoms and increased likelihood of hospitalization. Common reasons for non-vaccination included fear, pregnancy, and lactation. Disseminating knowledge about post-vaccination outcomes among the general population, particularly among healthcare workers, could enhance awareness and health education regarding COVID-19 vaccines. Fear, rumors, and lack of comprehensive clinical trial information are cited as factors contributing to vaccine hesitancy.^{42,43}

CONCLUSIONS

Healthcare Workers (HWs) face a heightened risk of both initial infection and reinfection, with symptoms often more severe upon reinfection, leading to increased rates of hospitalization and ICU admissions. AstraZeneca, Pfizer, Sinopharm, and Sinovac were the most commonly administered vaccines in this study. Non-vaccinated participants faced elevated risks of contracting COVID-19, experiencing more severe symptoms, and requiring increased hospitalization. The most prevalent post-COVID-19 vaccination side effects included fatigue, fever, injection site pain and redness, and headache. Side effects were more commonly reported following administration of the Johnson and Johnson and Sputnik vaccines. The side effects appeared within the first day post-vaccination and mostly lasted for 1 to 3 days post-vaccination.

Recommendation:

- Vaccination is the most effective strategy for managing the pandemic.

- Comprehensive data on reinfection rates and risk factors are still limited so needs further studies.

- Healthcare workers are at high risk of exposure so proper care is recommended.

Declarations

Ethics approval and consent to participate

This study acquired an approval letter from the Research Ethics Committee (REC) of the Faculty of Medicine, Cairo University under the reference number N-487-2023. Informed consent to participate was obtained from all individual participants older than the age 16. Participants younger than the age of 16, consent to participate was obtained from their legal guardians. All methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests (including financial and personal nature).

Funding

No Funding

Authors' contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [H.S.], [R.M.], [S.E.], [H.A.], [R.A.], [S.B.], [G.H.], [R.M.], [M.A.], [S.M.K.], [S.M.M.], [A.M.A.E.], , and [A.M.A.]. The first draft of the manuscript was written by [M.O.]and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Acknowledgements: Not applicable.

REFERENCES

- 1. Alhazmi A, Alamer E, Daws D, et al. Evaluation of Side Effects Associated with COVID-19 Vaccines in Saudi Arabia. Vaccines (Basel). 2021 Jun 18;9(6):674. doi: 10.3390/vaccines9060674. PMID: 34207394; PMCID: PMC8235009.
- 2. Elgendy, M.O., A.O. El-Gendy, and M.E. Abdelrahim, Public awareness in Egypt about COVID-19 spread in the early phase of the pandemic. Patient education and counseling, 2020. **103**(12): p. 2598-2601.
- 3. Levin-Rector A, Firestein L, McGibbon E, et al. Reduced Odds of Severe Acute Respiratory

- Muhsen K, Maimon N, Mizrahi A, et al. 9. Effectiveness of BNT162b2 mRNA Coronavirus Disease 2019 (COVID-19) Vaccine Against Acquisition of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Among Healthcare Workers in Long-Term Care Facilities: A Prospective Cohort Study. Clin Infect Dis. 2022 Aug 24;75(1):e755-e763. doi: 10.1093/cid/ciab918. PMID: 34698808; PMCID: PMC8675294.
- 10. Salah H, Sinan I, Alsamani O, et al. COVID-19 Booster Doses: A Multi-Center Study Reflecting Healthcare Providers' Perceptions. Vaccines. 2023; 11(6):1061.<u>https://doi.org/10.3390/vaccines110</u>61061.
- 11. Eid RA, Elgendy MO, Sayed AM, et al. Efficacy of Linezolid in the management of pneumonic COVID-19 patients. Bioinformatics-based clinical

4. Hansen CH, Michlmayr D, Gubbels SM, et al. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level Lancet. observational study. 2021 Mar 27;397(10280):1204-1212. doi: 10.1016/S0140-6736(21)00575-4. Epub 2021 Mar 17. PMID: 33743221; PMCID: PMC7969130.

Syndrome Coronavirus 2 Reinfection After

- 5. Nagao M, Matsumura Y, Yamamoto M, et al. Analysis of a city-wide COVID-19 prevention strategy for aged-care facilities during third and fifth waves of COVID-19 in Kyoto City, Kyoto, Japan. Influenza Other Respir Viruses. 2022 Jul;16(4):690-695. doi: 10.1111/irv.12981. Epub 2022 Mar 9. PMID: 35262286; PMCID: PMC9111714.
- Brockman MA, Mwimanzi F, Lapointe HR, et al. 6 Reduced Magnitude and Durability of Humoral Immune Responses to COVID-19 mRNA Vaccines Among Older Adults. J Infect Dis. 2022 Apr 1;225(7):1129-1140. doi: 10.1093/infdis/jiab592. PMID: 34888688; PMCID: PMC8689804.
- 7. Brosh-Nissimov T, Hussein K, Wiener-Well Y, et. al. Hospitalized Patients With Severe Coronavirus Disease 2019 During the Omicron Wave in Israel: Benefits of a Fourth Vaccine Dose. Clin Infect Dis. 8;76(3):e234-e239. 2023 Feb doi: 10.1093/cid/ciac501. PMID: 35724127; PMCID: PMC9278185.
- Patalon T, Saciuk Y, Peretz A, et al. Waning 8. effectiveness of the third dose of the BNT162b2 mRNA COVID-19 vaccine. Nat Commun. 2022 Jun 9;13(1):3203. doi: 10.1038/s41467-022-30884-6. PMID: 35680872; PMCID: PMC9184525.

Abdel Aziz et al. / Assessing COVID-19 Risks Among Egyptian Healthcare Workers, Volume 34 / No. 2 / April 2025 345-359

study. J Infect Dev Ctries. 2024 Mar 31;18(3):326-331. doi: 10.3855/jidc.19205. PMID: 38635606.

- Nagao M, Matsumura Y, Yamamoto M, et al. Incidence of and risk factors for suspected COVID-19 reinfection in Kyoto City: a population-based epidemiological study. Eur J Clin Microbiol Infect Dis. 2023 Aug;42(8):973-979. doi: 10.1007/s10096-023-04625-6. Epub 2023 Jun 5. PMID: 37273038; PMCID: PMC10241120.
- Elgendy MO, Abd Elmawla MN, Abdel Hamied AM, et al. COVID-19 patients and contacted person awareness about home quarantine instructions. Int J Clin Pract. 2021 Apr;75(4):e13810. doi: 10.1111/ijcp.13810. Epub 2020 Nov 17. PMID: 33128825.
- Elgendy MO, Abdelrahman MA, Osama H, El-Gendy AO, et al. Role of repeating quarantine instructions and healthy practices on COVID-19 patients and contacted persons to raise their awareness and adherence to quarantine instructions. Int J Clin Pract. 2021 Oct;75(10):e14694. doi: 10.1111/ijcp.14694. Epub 2021 Aug 9. PMID: 34338414; PMCID: PMC8420543.
- Eid RA, Elgendy MO, El-Gendy AO, et al. Efficacy of Ceftazidime and Cefepime in the Management of COVID-19 Patients: Single Center Report from Egypt. Antibiotics (Basel). 2021 Oct 20;10(11):1278. doi: 10.3390/antibiotics10111278. PMID: 34827216; PMCID: PMC8614536.
- Zawbaa HM, Osama H, El-Gendy A, et al. Effect of mutation and vaccination on spread, severity, and mortality of COVID-19 disease. J Med Virol. 2022 Jan;94(1):197-204. doi: 10.1002/jmv.27293. Epub 2021 Aug 30. Erratum in: J Med Virol. 2023 Mar;95(3):e28684. doi: 10.1002/jmv.28684. PMID: 34427922; PMCID: PMC8661821.
- O. Elgendy M, Saeed H, and A. Abou-Taleb H. Assessment of educated people awareness level and sources about COVID-19. International Journal of Clinical Medical Research; 2023, 1(1):4. doi:10.61466/ijcmr1010004
- Zaki A, Elgendy M, Abdelrahman MA, et al. The Efficacy of Using Different Antibiotics to Prevent Maternal Surgical Site Infections in COVID-19-Infected Cases. Eur. Chem. Bull, 2023. 6: p. 1342-1348.
- 19. Islam, M.Z., Riaz BK, Ashrafi SA, et al., Severity of COVID-19 reinfection and associated risk factors: findings of a cross-sectional study in Bangladesh. medRxiv, 2022: p. 2021.12. 26.21268408.
- Elgendy MO, El-Gendy AO, Alzarea AI, et al. SARS-CoV-2 Post Vaccinated Adverse Effects and Efficacy in the Egyptian Population. Vaccines (Basel). 2021 Dec 24;10(1):18. doi:

10.3390/vaccines10010018. PMID: 35062679; PMCID: PMC8779046.

- Boshra MS, Elgendy MO, Abdelaty LN, et al. Knowledge, Attitude, and Acceptance of Sinopharm and AstraZeneca's COVID-19 Vaccines among Egyptian Population: A Cross-Sectional Study. Int J Environ Res Public Health. 2022 Dec 14;19(24):16803. doi: 10.3390/ijerph192416803. PMID: 36554688; PMCID: PMC9778847.
- Elgendy MO, El-Gendy AO, Mahmoud S, et al. Side Effects and Efficacy of COVID-19 Vaccines among the Egyptian Population. Vaccines (Basel).
 2022 Jan 12;10(1):109. doi: 10.3390/vaccines10010109. PMID: 35062770; PMCID: PMC8779934.
- 23. Mohamed A, Elgendy M, Khalaf A et al. COVID-19 Patients with Hepatic Complications During the Third Wave of Pandemic in Egypt. Journal of Clinical and Nursing Research, 2022. **6**(3): p. 108-121.
- 24. Petrakis D, Margină D, Tsarouhas K, et al. Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 2020 Jul;22(1):9-19. doi: 10.3892/mmr.2020.11127. Epub 2020 May 5. PMID: 32377709; PMCID: PMC7248467.
- 25. El-Hosari DG, Hussein WM, Elgendy MO, et al. Galangal-Cinnamon Spice Mixture Blocks the Coronavirus Infection Pathway through Inhibition of SARS-CoV-2 M^{Pro}, Three HCoV-229E Targets; Quantum-Chemical Calculations Support In Vitro Evaluation. Pharmaceuticals (Basel). 2023 Sep 28;16(10):1378. doi: 10.3390/ph16101378. PMID: 37895849; PMCID: PMC10610207.
- 26. Su Z, Wen J, McDonnell D, et al. Vaccines are not yet a silver bullet: The imperative of continued communication about the importance of COVID-19 safety measures. Brain Behav Immun Health. 2021 Mar;12:100204. doi: 10.1016/j.bbih.2021.100204. Epub 2021 Jan 20. PMID: 33495754; PMCID: PMC7817456.
- 27. Shaban M, Elgendy MO, Fahmy AM, et al. The Outcomes of COVID-19 Patients with Spontaneous Intracerebral Hemorrhage Comorbidity and the Efficacy of Enoxaparin in Decreasing the Mortality Rate in Them: Single Egyptian Center Report. J Pers Med. 2022 Nov 2;12(11):1822. doi: 10.3390/jpm12111822. PMID: 36579556; PMCID: PMC9699476.
- Conlon A, Ashur C, Washer L, et al. Impact of the influenza vaccine on COVID-19 infection rates and severity. Am J Infect Control. 2021 Jun;49(6):694-700. doi: 10.1016/j.ajic.2021.02.012. Epub 2021 Feb 22. PMID: 33631305; PMCID: PMC7899024.

- Maltezou HC, Theodoridou K, and Poland G. Influenza immunization and COVID-19. Vaccine.
 2020 Sep 3;38(39):6078-6079. doi: 10.1016/j.vaccine.2020.07.058. Epub 2020 Jul 29. PMID: 32773245; PMCID: PMC7388780.
- Goudouris, E.S., Laboratory diagnosis of COVID-19. Jornal de pediatria, 2021. 97: p. 7-12.
- Cristina Menni, Ana M Valdes, Maxim B Freidin, et al., Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. medRxiv, 2020: p. 2020.04. 05.20048421.
- Battistoni I, Francioni M, Morici N, et al. Pre- and in-hospital anticoagulation therapy in coronavirus disease 2019 patients: a propensity-matched analysis of in-hospital outcomes. J Cardiovasc Med (Hagerstown). 2022 Apr 1;23(4):264-271. doi: 10.2459/JCM.00000000001284. PMID: 34878430.
- Chu CM, Poon LL, Cheng VC, et al. Initial viral load and the outcomes of SARS. CMAJ. 2004 Nov 23;171(11):1349-52. doi: 10.1503/cmaj.1040398. PMID: 15557587; PMCID: PMC527336.
- Elgendy MO, Khalaf AM, El-gendy AO et al., An Observational Study on the Management of COVID-19 Patients in Limited-Resource Hospitals. Journal of Clinical and Nursing Research, 2022. 6(3): p. 43-53.
- 35. Elgendy MO, and Abdelrahim MEA. Public awareness about coronavirus vaccine, vaccine acceptance, and hesitancy. J Med Virol. 2021 Dec;93(12):6535-6543. doi: 10.1002/jmv.27199. Epub 2021 Jul 20. PMID: 34255346; PMCID: PMC8426667.
- Alatawi AD., Elgendy M, Sayed AM et al., Local and Systemic side effects of COVID-19 Vaccines. International Journal of Clinical Medical Research, 2023. 2(1): p. 11-20.
- 37. Noda K, Matsuda K, Yagishita S, et al. A novel highly quantitative and reproducible assay for the

detection of anti-SARS-CoV-2 IgG and IgM antibodies. Sci Rep. 2021 Mar 4;11(1):5198. doi: 10.1038/s41598-021-84387-3. PMID: 33664294; PMCID: PMC7933429.

- Sayed AM, Khalaf AM, Abdelrahim MEA, et al. Repurposing of some anti-infective drugs for COVID-19 treatment: A surveillance study supported by an in silico investigation. Int J Clin Pract. 2021 Apr;75(4):e13877. doi: 10.1111/ijcp.13877. Epub 2020 Dec 17. PMID: 33300221; PMCID: PMC7883047.
- Klein SL, Jedlicka A, and Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis. 2010 May;10(5):338-49. doi: 10.1016/S1473-3099(10)70049-9. Erratum in: Lancet Infect Dis. 2010 Nov;10(11):740. PMID: 20417416; PMCID: PMC6467501.
- 40. Elgendy SO, Elgendy M, El-Gendy AO et al., Health Care Workers' Awareness about the Post-COVID Syndrome and Different Types of COVID-19 Vaccines in Egypt. NeuroQuantology, 2022.
 20(11): p. 3830.
- Klugar M, Riad A, Mekhemar M, et al. Side Effects of mRNA-Based and Viral Vector-Based COVID-19 Vaccines among German Healthcare Workers. Biology (Basel). 2021 Aug 5;10(8):752. doi: 10.3390/biology10080752. PMID: 34439984; PMCID: PMC8389568.
- 42. Solomon Y, Eshete T, Mekasha B, et al. COVID-19 Vaccine: Side Effects After the First Dose of the Oxford AstraZeneca Vaccine Among Health Professionals in Low-Income Country: Ethiopia. J Multidiscip Healthc. 2021 Sep 16;14:2577-2585. doi: 10.2147/JMDH.S331140. PMID: 34556992; PMCID: PMC8454213.
- 43. Elgendy MO, Abdelrahman MA, and Abdelrahim ME, What should be learned from the COVID-19 pandemic for the next coronavirus pandemics? International Journal of Clinical Medical Research, 2023. 1(1): p. 9-11.