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APPROXIMATION OF A FUNCTION WITH BOUNDED

DERIVATIVES OF FIRST AND SECOND ORDER BY THE

EXTENDED SINE-COSINE WAVELET EXPANSION WITH

APPLICATIONS

VIVEK KUMAR SHARMA, VIRENDRA SHARMA, SONOO SINGH

Abstract. Wavelets are very powerful tools for solving certain problems in

mathematical analysis. Due to their well localized behavior, wavelets are very

useful for developing new numerical methods and due to this reason researchers

are trying to develop new numerical techniques using dierent wavelets. Keep-

ing it mind, In this paper, we have introduced the extended sine-cosine wavelet

and it is used to nd the approximations of a functions having bounded deriva-

tives upto the second order. Next, we have calculated the operational matrix

of integration for dierent values of parameter µ using these approximations.

Then, we have applied these approximations and operational matrices to nd

the solutions of some dierential and integral equations. Lastly, the compari-

son between exact solution and approximate solutions have been discussed to

show the usefulness of the method. From the tables 1 and 3, we see that as we

increase the value of µ, the approximate solution becomes closer to the exact

solution which shows the validity of the proposed method.

1. Introduction

Wavelet analysis has grown to be a crucial component of signal processing,
providing strong tools for signal representation and analysis across a range of appli-
cations. The extended sine-cosine wavelet is one of the many wavelet families, and
because of its special qualities and uses, it is a promising method. An expansion of
the sine-cosine wavelet, this wavelet adds new parameters to improve its exibility
and agility in collecting intricate signal aspects.

The extended sine-cosine wavelet inherits its foundation from the sine-cosine
wavelet, a popular choice for signal representation due to its frequency localization
and orthogonality properties. Through the expansion of this basic wavelet into a
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more versatile framework, scholars and professionals are better equipped to cus-
tomize wavelet functions to the unique properties of signals that arise in a variety
of applications. We explore the fundamental principles and properties of the ex-
tended sine-cosine wavelet. We look at the mathematical foundations that dene
its structure and explain how the addition of additional parameters improves its
ability to represent signals with greater accuracy. We also talk about the possible
uses of the extended sine-cosine wavelet in signal processing, image analysis, and
other related areas, while emphasizing its role in meeting the growing demands for
complex data representation.

The authors like Mohan and Datta [12] have analyzed identication via Fourier
series for a class of lumped and distributed parameter system. Yazdani, et al.[18]
gives to solving dierential equations by new wavelet transform method based on
the quasi-wavelets and dierential invariants. Sharma, lal et al.[17] have discussed,
approximation of a function having bounded derivatives upto second order by sine
cosine wavelet expansion and its applications. Irfan, et al.[9] have discussed sine-
cosine wavelets approach in numerical evaluation of Hankel transform for seismol-
ogy. Kung, et al.[10] gives solution of integral equations using a set of block pulse
functions. Azizi, et al.[3] gives applications of sine-cosine wavelets method for
solving Drinfel’d–Sokolov–Wilson system. Saeed, et al.[14] discussed sine– cosine
wavelets operational matrix method for fractional nonlinear dierential equation.
Azizi et al.[2] gives applications of sine–cosine wavelets method for solving the gen-
eralized Hirota–Satsuma coupled KdV equation. Yilmaz, et al.[19] give numerical
solutions of the Fredholm integral equations of the second type. Lal and Abhilasha
[11] analyzed Approximation of functions in Holder class by third kind Chebyshev
wavelet and its application in solution of Fredholm integro-dierential equations.
Iqbal, et al.[8] analyzed Approximate solution of fractional dierential equations
using Shannon wavelet operational matrix method, Saeed, et al.[13] gives Frac-
tional Gegenbauer wavelets operational matrix method for solving nonlinear frac-
tional dierential equations. Dincel, et al.[4] gives a sine-cosine wavelet method for
the approximation solutions of the fractional Bagley-Torvik equation, Zhu L and
Wang[21]. discussed second chebyshev wavelet operational matrix of integration
and its application in the calculus of variations. Azin, H., Mohammadi, et.al[1] dis-
cussed A piecewise spectral-collocation method for solving fractional Riccati dier-
ential equation in large domains. Rahimkhani, et al.[15] discussed Fractional-order
Bernoulli functions and their applications in solving fractional Fredholem–Volterra
integro-dierential equations. Guf, Jin-Sheng, et al.[6] derived The Haar wavelets
operational matrix of integration. Razzaghi, Mohsen, and Samira Youse[16] gives
the Legendre wavelets operational matrix of integration. Guo, et al.[7] gives a Novel
and Optimized sine–cosine Transform Wavelet Threshold Denoising Method Based
on the sym4 Basis Function and Adaptive Threshold Related to Noise Intensity.
Gabis, et al.[5] analyzed a comprehensive survey of sine cosine algorithm. Yazdani,
H.R. and Nadjakhah[18] gives solving dierential equations by new wavelet trans-
form method based on the quasi-wavelets and dierential invariants. Youse, S.
and Banifatemi[20] discussed Numerical solution of Fredholm integral equations by
using CAS wavelets.

In this present paper, we have discussed the extended sine-cosine wavelet and its
operational matrix of integration. This method is widely used in solving dierent
problems in engineering. We used this operational matrix of integration to solve



EJMAA-2025/13(1) APPROXIMATION OF A FUNCTION WITH BOUNDED DERIVATIVES 3

dierent types of problems of mathematical analysis as other kinds of orthogonal
polynomials.

The paper is organized as follows: Section 1 is introductory. In section 2, ex-
tended sine-cosine wavelets and some other denitions are introduced. In section
3, two theorems and their proofs are given. In Section 4, theorems are justied
with the help of an example. In section 5, operational matrix of integration for
µ = 2, 3, and 4 have been calculated. Section 6 contains the applications of the
approximations calculated in theorems and nally, in section 7, some conclusions
are given.

2. Definitions and Preliminaries

2.1. Sine-Cosine wavelets. Sine-Cosine wavelets [17] ψn,m(t) = ψ(n, k,m, t) have
four arguments, n, k,m & t, where n = 0, 1, 2, 3, ......2k − 1, k = 0, 1, 2, ..., and m is
a non negative integer, and t is normalized time and they are dened as

ψn,m(t) =




2

k+1
2 fm(2kt− n),

n

2k
≤t<

n+ 1

2k
;

0, otherwise.

with

fm(t) =





1√
2
, m = 0;

cos (2mπt), m = 1, 2, ...., L;

sin 2(m− L)πt), m = L+ 1, L+ 2, ...., 2L.

where L is a positive integer.

2.2. Extended Sine-Cosine wavelets. Extended Sine-Cosine wavelets ϕn,m(t) =
ϕ(n, k,m, t) have four arguments, n, k,m & t, where
n = 0, 1, 2, 3, ......µk − 1, k = 0, 1, 2, ..., and m is a non negative integer, and t is
normalized time and they are dened as

ϕn,m(t) =





√
2µ

k
2 fm(µkt− n),

n

µk
≤t<

n+ 1

µk
;

0, otherwise.

where

fm(t) =





1√
2
, m = 0;

cos (2mπt), m = 1, 2, ...., L;

sin (2(m− L)πt), m = L+ 1, L+ 2, ...., 2L.

Here L is any positive integer. We can easily see that the system of sine-cosine
wavelets form an orthonormal set.

Note: If we take µ = 2 in the denition of the extended Sine-Cosine wavelets
then we get the classical Sine-Cosine wavelets as dened in (2.1).
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2.3. Function expansion and approximation. A function f(t) dened over [0
1) can be expanded as follows

f(t) =

∞

n=0

∞

m=0

cn,mϕn,m(t),

where

cn,m =< f,ϕn,m > . (1)

If we cut-o the above innite series in the form of partial sums Sµk, 2L+1, then we
can write,

Sµk, 2L+1(t) =

µk−1

n=0

2L

m=0

cn,mϕn,m(t) = CTϕ(t).

Here C and ϕ(t) are the column vectors of order µk(2L+1)× 1 which are given by

C = [c0,0, c0,1, ......c0,2L, c1,0, ......c1,2L, ......, c2k−1,0, .....cµk−1,2L]
T ,

and

ϕ(t) = [ϕ0,0(t),ϕ0,1(t), .....ϕ0,2L(t),ϕ1,0(t), .......ϕ1,2L(t), .....,ϕµk−1,0(t), ......ϕµk−1,2L(t)]
T .

2.4. Wavelet approximation. We dene, ||f ||2 =
 1

0
|f(t)|2dt

 1
2

. The Wavelet

Approximation Eµk−1,M (f) of f by Sµk−1,M of its sine-cosine expansion under the
norm ||.||2 is dened by

Eµk,2L+1(f) = inf
S
µk ,2L+1

||f − Sµk,2L+1||2, (Zygmund[13]).

If Eµk,2L+1(f) → 0 as k → ∞, L → ∞ then Eµk,2L+1(f) is called the best wavelet
approximation of f (Zygmund[13]).

3. Theorems

Theorem 3.1. Let f(t) be a function belonging to L2[0, 1] such that f ′(t) is bounded
i.e |f ′(t)| ≤ N1, ∀ t ∈ [0, 1]. Let extended sine-cosine wavelet expansion of f is

f(t) =

∞

n=0

∞

m=0

c(µ)n,mϕ(µ)
n,m(t). (2)

Then the extended sine-cosine wavelet approximation error

E
(1)

µk,2L+1
(f) = inf ||f − S(µk),2L+1 ||2 =




O


1
µk


, m = 0;

O


1
µk

√
2L+1


, m > 0

Theorem 3.2. Let f be a function belonging to L2[0, 1] such that f ′′(t) is bounded
i.e |f ′′(t)| ≤ N2, ∀ t ∈ [0, 1]. Let extended sine-cosine wavelet expansion of f is
given by (1).
Suppose (µk, 2L+ 1)th partial sums of the series (1) is

Sµk,2L+1 =

µk−1

n=0

2L

m=0

c(µ)n,mϕ(µ)
n,m. (3)
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Then the extended sine-cosine wavelet approximation error of f by Sµk ,2L+1 is given
by

E
(2)

µk,2L+1
(f) = inf ||f − Sµk,2L+1||2 = O


1

µ2k

1

(2L+ 1)
3
2


. (4)

Proof of Theorem 3.1

For m = 0

ϕ
(µ)
n,0(t) =





√
2µ

k
2 f0(µ

kt− n),
n

µk
≤t<

n+ 1

µk
;

0, otherwise.

ϕ
(µ)
n,0(t) =





√
2µ

k
2

1√
2
,

n

µk
≤t<

n+ 1

µk
;

0, otherwise.

Since

ϕ
(µ)
n,0(t) =




µ

k
2 ,

n

µk
≤t<

n+ 1

µk
;

0, otherwise.

Let

f(t) =

∞

n=0

c
(µ)
n,0ϕ

(µ)
n,0.

and

Sµk,0 =

µk−1

n=0

c
(µ)
n,0ϕ

(µ)
n,0.

So,

c
(µ)
n,0 =

 n+1

µk

n

µk

f(t)µ
k
2 dt

= µ
k
2

 n+1

µk

n

µk

f(t)dt

= µ
k
2

 1

µk

0

f


u+

n

µk


du Here


t = u+

n

µk



= µ
k
2

 1

µk

0


f


n

µk


+

u

1!
f ′


n

µk
+ θu


du; 0 < θ < 1.

= µ
k
2


1

µk
f


n

µk


+

 1

µk

0

uf ′


n

µk
+ θu


du


.
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Therefore,

c2n,0 = µk


 1

µ2k
f2


n

µk


+

 1

µk

0

uf ′


n

µk
+ θu


du

2

+
2

µk
f


n

µk

 1

µk

0

uf ′


n

µk
+ θu


du


 .

=
1

µk
f2


n

µk


+ µk

 1

µk

0

uf ′


n

µk
+ θu


du

2

+ 2f


n

µk

 1

µk

0

uf ′


n

µk
+ θu


du. (5)

Next,

||f ||22 =

 n+1

µk

n

µk

|f(t)|2dt

=

 1

µk

0

f

u+

n

µk


2

du

=

 1

µk

0

f2


u+

n

µk


du

=

 1

µk

0


f


n

µk


+ uf ′


n

µk
+ θu

2
du

=

 1

µk

0


f2


n

µk


+ u2f ′2


n

µk
+ θu


+ 2f


n

µk


uf ′


n

µk
+ θu


du

=
1

µk
f2


n

µk


+

 1

µk

0

u2f ′2


n

µk
+ θu


du+ 2f


n

µk

 1

µk

0

uf ′


n

µk
+ θu


du.(6)

Now from equations (5) and (6), we have

||en,0||22 = ||f ||2 − c2n,0

=
1

µk
f2


n

µk


+

 1

µk

0

u2f ′2


n

µk
+ θu


du+ 2f


n

µk

 1

µk

0

uf ′


n

µk
+ θu


du

− 1

µk
f2


n

µk


− µk

 1

µk

0

uf ′


n

µk
+ θu


du

2

− 2f


n

µk

 1

µk

0

uf ′


n

µk
+ θu


du

=

 1

µk

0

u2f ′2


n

µk
+ θu


du− µk

 1

µk

0

uf ′


n

µk
+ θu


du

2

≤
 1

µk

0

u2

f ′


n

µk
+ θu


2

du+ µk

 1

µk

0

u

f ′


n

µk
+ θu

 du
2

≤ N2
1

 1

µk

0

u2du+ µkN2
1

 1

µk

0

udu

2

,


∵
f ′


n

µk
+ θu

 ≤ N1



=
N2

1

3

1

µ3k
+

N2
1µ

k

4

1

µ4k

=
7N2

1

12

1

µ3k
.
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Hence,

||e(µ)n,0||22 = ||f ||22 − c2n,0 ≤ 7N2
1

12

1

µ3k
.

So,

||f − Sµk,0||22 =

µk−1

n=0

||en,0||22

≤
µk−1

n=0


7N2

1

12


1

µ3k

=
7N2

1

12

1

µ3k
µk

=
7N2

1

12

1

µ2k
,

and so

||f − Sµk,0||2 = O


1

µk


.

Thus,

E
(1)

µk,0
= inf ||f − Sµk,0||2.

= O


1

µk


.

Now, for m = 1, 2, ..., L, we have

c(µ)n,m =

 ∞

−∞
f(t)ϕn,m(t)dt

=

 n+1

µk

n

µk

f(t)
√
2µ

k
2 fm(µkt− n)dt

=
√
2µ

k
2

 n+1

µk

n

µk

f(t)fm(µkt− n) dt

=
√
2µ

k
2

 n+1

µk

n

µk

f(t)cos[2mπ(µkt− n)] dt, for,m = 1, 2, .......L

=
√
2µ

k
2


f(t)

sin[2mπ(µkt− n)]

2mπ(µk)

n+1

µk

n

µk

−
 n+1

µk

n

µk

f ′(t)
sin2mπ(µkt− n)

2mπ(µk)
dt

=
√
2µ

k
2 × 0−

√
2µ

k
2

 n+1

µk

n

µk

f ′(t)
sin2mπ(µkt− n)

2mπ(µk)
dt
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= − µ
k
2√

2mπ(µk)

 n+1

µk

n

µk

f ′(t) sin 2mπ(µkt− n)dt

= − 1√
2mπµ

k
2

 n+1

µk

n

µk

f ′(t) sin 2mπ(µkt− n)dt.

Let 2mπ(µkt− n) = u and simplifying the above equation, we get

cn,m = − 1

2
√
2m2π2µ

3k
2

 2mπ

0

f ′

u+ 2mπn

2mπµk


sin (u)du.

Taking modulus on both side of above equation, we get

|cn,m| =

−
1

2
√
2m2π2µ

3k
2

 2mπ

0

f ′

u+ 2mπn

2mπµk


sinudu



≤ 1

2
√
2m2π2(µ

3k
2 )

 2mπ

0

f ′

u+ 2mπn

2mπµk

 |sinu|du

≤ N1√
2mπµ

3k
2

. (7)

Again, form = L+ 1, L+ 2, ....., 2L, we have

c(µ)n,m =

 n+1

µk

n

µk

f(t)
√
2µ

k
2 fm(µkt− n)dt

=
√
2µ

k
2

 n+1

µk

n

µk

f(t)fm(µkt− n)dt

=
√
2µ

k
2

 n+1

µk

n

µk

f(t)sin[2(m− L)π(µkt− n)]dt.

Let 2(m− L)(µkt− n)π = u and simplifying the above equation, we get

=
√
2µ

k
2

 2(m−L)π

0

f


u+ 2(m− L)nπ

2(m− L)πµk


sin(u)

du

2(m− L)πµk
.

=

√
2µ

k
2

2(m− L)πµk

 2(m−L)π

0

f


u+ 2(m− L)nπ

2(m− L)πµk


sin(u) du

=
1√

2(m− L)πµk

 2(m−L)π

0

f


u+ 2(m− L)nπ

2(m− L)πµk


sin(u) du

=
1√

2(m− L)πµ
k
2


0 +

 2(m−L)π

0

f ′

u+ 2(m− L)nπ

2(m− L)πµk


1

2(m− L)πµk
cos(u) du



=
1√

2(m− L)πµ
k
2

× 1

2(m− L)πµk

 2(m−L)π

0

f ′

u+ 2(m− L)nπ

2(m− L)πµk


cos(u) du



=
1

2
3
2 (m− L)2π2µ

3k
2

 2(m−L)π

0

f ′

u+ 2(m− L)nπ

2(m− L)πµk


cos(u) du


.
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Taking the modulus on both sides of above, we get

|cn,m| ≤ N1√
2(m− L)πµ

3k
2

. (8)

By using (7) and (8), we have

||f − Sµk ,2L+1 ||22 =

µk−1

n=0

∞

m=2L+1

|c(µ)n,m|2

=

µk−1

n=0


3L

m=2L+1

|c(µ)n,m|2 +
4L

m=3L+1

|c(µ)n,m|2 +
5L

m=4L+1

|c(µ)n,m|2 +
6L

m=5L+1

|c(µ)n,m|2 + ......



= ≤
µk−1

n=0


1

2L+ 1
+

1

2L+ 1


N2

1

2π2

1

µ3k

=
N2

1

2π2

2

2L+ 1

1

µ2k
.

Thus,

∥f − Sµk ,2L+1 ∥ = O


1

µk

1√
2L+ 1


,

and so

E
(1)

µk ,2L+1 = inf ||f − Sµk,2L+1||2 = O


1

µk

1√
2L+ 1


.

Proof of Theorem 3.2. By equation (1), it follows that

c(µ)n,m =
−1

2
√
2m2π2µ

3k
2

 2mπ

0

f ′

u+ 2mnπ

2mπµk


sin(u) du

=
−1

2
√
2m2π2µ

3k
2


0−
 2mπ

0

f ′′

u+ 2mnπ

2mπµk


× 1

2mπµk
(−cos(u)) du



=
−1

4
√
2m3π3µ

5k
2

 2mπ

0

f ′′

u+ 2mnπ

2mπµk


cos(u)du.

So,

|c(µ)n,m| ≤ 1

4
√
2m3π3µ

5k
2

 2mπ

0

f ′′

u+ 2mnπ

2mπµk

 |cos(u)| du

=
1

4
√
2m3π3µ

5k
2

N2.2mπ

=
N2

2
√
2m2π2µ

5k
2

. (9)
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Now for m = L+ 1, L+ 2, ...2L, we have

c(µ)n,m =
1

2
√
2(m− L)2π2µ

3k
2

 2(m−L)π

0

f ′

u+ 2(m− L)nπ

2(m− L)πµk


cosu du

=
1

2
√
2(m− L)2π2µ

3k
2


0−
 2(m−L)π

0

f ′′

u+ 2(m− L)nπ

2(m− L)πµk


sinu× 1

2(m− L)πµk
du



=
1

4
√
2(m− L)3π3µ

5k
2

 2(m−L)π

0

f ′′

u+ 2(m− L)nπ

2(m− L)πµk

 |sinu| du.

≤ N2

4
√
2(m− L)3π3µ

5k
2

× 2(m− L)π

=
N2

2
√
2(m− L)2π2µ

5k
2

i.e

|c(µ)n,m| ≤ N2

2
√
2(m− L)2π2µ

5k
2

=
N2

2
√
2(m− L)2π2µ

5k
2

. (10)

By using (9) and (10), we have

||f − Sµk ,2L+1 ||22 =

µk−1

n=0

∞

m=2L+1

|c(µ)n,m|2

=

µk−1

n=0


3L

m=2L+1

|c(µ)n,m|2 +
4L

m=3L+1

|c(µ)n,m|2 +
5L

m=4L+1

|c(µ)n,m|2 +
6L

m=5L+1

|c(µ)n,m|2 + ......



≤ N2
2

8π4 µ5k
µk


2

(2L+ 1)3



=
N2

2

4π4 µ4k


1

(2L+ 1)3


.

Hence,

||f − Sµk ,2L+1 ||2 = O


1

µ2k

1

(2L+ 1)
3
2


.

Thus

E
(2)

µk ,2L+1 = inf ||f − Sµk,2L+1||2 = O


1

µ2k

1

(2L+ 1)
3
2


.

Remark: If we take µ = 2 in the theorems proved in section 3, then we can obtain
the theorems proved in [17]. This shows that the theorems of this paper generalizes
the theorems proved in [17].

4. Numerical justification of calculated approximation

In this section, approximation of the function f(t) = e−t2t
1
2 over interval [0,1)

for k = 1, L = 3, µ = 2; k = 1, L = 3, µ = 3; and also for k = 1, L = 3, µ = 4
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have been calculated and it is shown in the gures [1], [2], and [3].

S21,7(t) =





0.300295×
√
2− 0.0291881× 2 cos(4πt)− 0.0100289× 2 cos(8πt)− 0.00543327

×2 cos(12πt)− 0.0610448× 2 sin(4πt)− 0.0610448× 2 sin(8πt)− 0.0610448

×2 sin(12πt), 0 < t ≤ 1
2 .;

0.340898×
√
2− 0.00690776× 2 cos(2π(2t− 1))− 0.0017418× 2 cos((4π(2t− 1))

−0.000775441× 2 cos(6π(2t− 1)) + 0.0312898× 2 sin(2π(2t− 1)) + 0.0148156

×2 sin(4π(2t− 1)) + 0.00977767× 2 sin(6π(2t− 1)). 1
2 ≤ t < 1.

S31,7(t) =





0.212004×
√
3− 0.0160893×

√
6 cos(6πt)− 0.00591381×

√
6 cos(12πt)− 0.00328554

×
√
6 cos(18πt)− 0.0492571×

√
6 sin(6πt)− 0.0270556×

√
6 sin(12πt)− 0.0188054

×
√
6 sin(18πt), 0 < t ≤ 1

3 .;

0.312054×
√
3− 0.00506428×

√
6 cos(2π(3t− 1))− 0.00126709×

√
6 cos(4π(3t− 1))

−0.000563429×
√
6 cos(6π(3t− 1))− 0.000348594×

√
6 sin(2π(3t− 1))− 0.000377697

×
√
6 sin(4π(3t− 1))− 0.000277499×

√
6 sin(6π(3t− 1)), 1

3 ≤ t < 2
3 .

0.261239×
√
3− 0.0016738×

√
6 cos(2π(3t− 2))− 0.00042319×

√
6 cos(4π(3t− 2))

−0.000188465×
√
6 cos(6π(3t− 2))− 0.00207328×

√
6 sin(2π(3t− 2))− 0.0101755

×
√
6 sin(4π(3t− 2))− 0.0067604×

√
6 sin(6π(3t− 2)). 2

3 ≤ t < 1.

S41,7(t) =





0.16229× 2− 0.0110593× 2
√
2 cos(8πt)− 0.00419668× 2

√
2 cos(16πt)− 0.00235942

×2
√
2 cos(24πt)− 0.0393367× 2

√
2 sin(8πt)− 0.0215295× 2

√
2 sin(16πt)− 0.014935

×2
√
2 sin(24πt), , 0 < t ≤ 1

4 .;

0.262391× 2− 0.00312367× 2
√
2 cos(2π(4t− 1))− 0.000786262× 2

√
2 cos(4π(4t− 1))

−0.000350031× 2
√
2Cos(6π(4t− 1))− 0.00887901× 2

√
2 sin(2π(4t− 1))− 0.00452601

×2
√
2 sin(4π(4t− 1))− 0.00302877× 2

√
2 sin(6π(4t− 1)), 1

4 ≤ t < 2
4 .

0.26532× 2− 0.00184218× 2
√
2 cos(2π(4t− 2))− 0.000460353× 2

√
2 cos(4π(4t− 2))

−0.000204593× 2
√
2 cos(6π(4t− 2)) + 0.00664311× 2

√
2 sin(2π(4t− 2)) + 0.00324634

×2
√
2 sin(4π(4t− 2)) + 0.00215498× 2

√
2 sin(6π(4t− 2)), 2

4 ≤ t < 3
4 .

0.216783× 2− 0.000621097× 2
√
2 cos(2π(4t− 3))− 0.000156884× 2

√
2 cos(4π(4t− 3))

−0.0000698564× 2
√
2 cos(6π(4t− 3)) + 0.0143093× 2

√
2 sin(2π(4t− 3)) + 0.00708774

×2
√
2 sin(4π(4t− 3)) + 0.00471696× 2

√
2 sin(6π(4t− 3)). 3

4 ≤ t < 1.
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Figure 1. Graph ofS21,7(t) and function f(t)

Figure 2. Graph ofS31,7(t) and function f(t)
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Figure 3. Graph ofS41,7(t) and function f(t)

5. Evaluation of the operational matrix of integration for
sine-cosine wavelets

5.1. Sine-Cosine wavelet Operational matrix of integration for µ = 2.
Here, we nd the operational matrix of integration P (2) with k = 1 and L = 3
µ = 2. The 14 basis functions are given by




ϕ0,0 =
√
2

ϕ0,1 = 2 cos(4πt)

ϕ0,2 = 2 cos(8πt)

ϕ0,3 = 2 cos(12πt)

ϕ0,4 = 2 sin(4πt)

ϕ0,5 = 2 sin(8πt)

ϕ0,6 = 2 sin(12πt)

0 ≤ t <
1

2
(11)





ϕ1,0 =
√
2

ϕ1,1 = 2 cos(2π(2t− 1))

ϕ1,2 = 2 cos(4π(2t− 1))

ϕ1,3 = 2 cos(6π(2t− 1))

ϕ1,4 = 2 sin(2π(2t− 1))

ϕ1,5 = 2 sin(4π(2t− 1))

ϕ1,6 = 2 sin(6π(2t− 1))

1

2
≤ t < 1. (12)
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By integrating equation (11) from 0 to t and using in equation 1 we get,





 t

0
ϕ0,0(t)dt =


1
4 , 0, 0, 0,

−1
2
√
2π

, −1
4
√
2π

, −1
6
√
2π

, 1
2 , 0, 0, 0, 0, 0, 0

T
ϕ
(2)
14 (t), t

0
ϕ0,1(t)dt =


0, 0, 0, 0, 1

4π , 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(2)
14 (t), t

0
ϕ0,2(t)dt =


0, 0, 0, 0, 0, 1

8π , 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(2)
14 (t), t

0
ϕ0,3(t)dt =


0, 0, 0, 0, 0, 0, 1

12π , 0, 0, 0, 0, 0, 0, 0
T

ϕ
(2)
14 (t), t

0
ϕ0,4(t)dt =


1

2
√
2π

,− 1
4π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(2)
14 (t),

 t

0
ϕ0,5(t)dt =


1

4
√
2π

, 0,− 1
8π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(2)
14 (t),

 t

0
ϕ0,6(t)dt =


1

6
√
2π

, 0, 0,− 1
12π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(2)
14 (t),

and similarly for (12),





 t

0
ϕ1,0(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

4 , 0, 0, 0,
−1

2
√
2π

, −1
4
√
2π

, −1
6
√
2π

,
T

ϕ
(2)
14 (t), t

0
ϕ1,1(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

4π , 0, 0, 0
T

ϕ
(2)
14 (t), t

0
ϕ1,2(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8π , 0, 0
T

ϕ
(2)
14 (t), t

0
ϕ1,3(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

12π , 0
T

ϕ
(2)
14 (t), t

0
ϕ1,4(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

2
√
2π

,− 1
4π , 0, 0, 0, 0, 0

T
ϕ
(2)
14 (t),

 t

0
ϕ1,5(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

4
√
2π

, 0,− 1
8π , 0, 0, 0, 0

T
ϕ
(2)
14 (t),

 t

0
ϕ1,6(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

6
√
2π

, 0, 0,− 1
12π , 0, 0, 0

T
ϕ
(2)
14 (t),

Thus, we can write
 t

0

ϕ14(x)dx = P
(2)
14×14ϕ

(2)
14 (t).

where

ϕ
(2)
14 (t) = [ϕ0,0,ψ0,1,ϕ0,2,ϕ0,3,ϕ0,4,ϕ0,5,ϕ0,6,ϕ1,0,ϕ1,1,ϕ1,2,ϕ1,3,ϕ1,4,ϕ1,5,ϕ1,6]

T
.

and P
(2)
14×14 be an operational matrix of integration which is given as

P
(2)
14×14=


A B
O A


.

Here

A7×7 =




1
4 0 0 0 −1

2
√
2π

−1
4
√
2π

−1
6
√
2π

0 0 0 0 1
4π 0 0

0 0 0 0 0 1
8π 0

0 0 0 0 0 0 1
12π

1
2
√
2π

− 1
4π 0 0 0 0 0

1
4
√
2π

0 − 1
8π 0 0 0 0

1
6
√
2π

0 0 − 1
12π 0 0 0




,
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B7×7 =




1
2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, O7×7 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

5.2. Sine-Cosine wavelet Operational matrix of integration for µ = 3. In
this section, we nd the operational matrix of integration P (3) with k = 1 and
L = 3 µ = 3. The 21 basis function are given by,




ϕ0,0 =
√
3

ϕ0,1 =
√
6 cos(6πt)

ϕ0,2 =
√
6 cos(12πt)

ϕ0,3 =
√
6 cos(18πt)

ϕ0,4 =
√
6 sin(6πt)

ϕ0,5 =
√
6 sin(12πt)

ϕ0,6 =
√
6 sin(18πt)

0 ≤ t <
1

3
(13)





ϕ1,0 =
√
3

ϕ1,1 =
√
6 cos(2π(3t− 1))

ϕ1,2 =
√
6 cos(4π(3t− 1))

ϕ1,3 =
√
6 cos(6π(3t− 1))

ϕ1,4 =
√
6 sin(2π(3t− 1))

ϕ1,5 =
√
6 sin(4π(3t− 1))

ϕ1,6 =
√
6 sin(6π(3t− 1))

1

3
≤ t <

2

3
(14)





ϕ1,0 =
√
3

ϕ1,1 =
√
6 cos(2π(3t− 1))

ϕ1,2 =
√
6 cos(4π(3t− 1))

ϕ1,3 =
√
6 cos(6π(3t− 1))

ϕ1,4 =
√
6 sin(2π(3t− 1))

ϕ1,5 =
√
6 sin(4π(3t− 1))

ϕ1,6 =
√
6 sin(6π(3t− 1))

2

3
≤ t < 1. (15)

By integrating equation (13) from 0 to t and using in equation 1 we get,





 t

0
ϕ0,0(t)dt =


1
6 , 0, 0, 0,

−1
3
√
2π

, −1
6
√
2π

, −1
9
√
2π

, 1
3 , 0, 0, 0, 0, 0, 0,

1
3 , 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t), t

0
ϕ0,1(t)dt =


0, 0, 0, 0, 1

6π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ0,2(t)dt =


0, 0, 0, 0, 0, 1

12π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ0,3(t)dt =


0, 0, 0, 0, 0, 0, 1

18π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ0,4(t)dt =


1

3
√
2π

,− 1
6π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),

 t

0
ϕ0,5(t)dt =


1

6
√
2π

, 0,− 1
12π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),

 t

0
ϕ0,6(t)dt =


1

9
√
2π

, 0, 0,− 1
18π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),
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And similarly for (14),





 t

0
ϕ1,0(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

6 , 0, 0, 0,
−1

3
√
2π

, −1
6
√
2π

, −1
9
√
2π

, 1
3 , 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t), t

0
ϕ1,1(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

6π , 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ1,2(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

12π , 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ1,3(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

18π , 0, 0, 0, 0, 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ1,4(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

3
√
3π

,− 1
6π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),

 t

0
ϕ1,5(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

6
√
2π

, 0,− 1
12π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),

 t

0
ϕ1,6(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

9
√
2π

, 0, 0,− 1
18π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),

Again for (15),





 t

0
ϕ1,0(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

6 , 0, 0, 0,
−1

3
√
2π

, −1
6
√
2π

, −1
9
√
2π

T
ϕ
(3)
21 (t), t

0
ϕ1,1(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

6π , 0, 0
T

ϕ
(3)
21 (t), t

0
ϕ1,2(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

12π , 0
T

ϕ
(3)
21 (t), t

0
ϕ1,3(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

18π

T
ϕ
(3)
21 (t), t

0
ϕ1,4(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

3
√
3π

,− 1
6π , 0, 0, 0, 0, 0

T
ϕ
(3)
21 (t),

 t

0
ϕ1,5(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

6
√
2π

, 0,− 1
12π , 0, 0, 0, 0

T
ϕ
(3)
21 (t),

 t

0
ϕ1,6(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

9
√
2π

, 0, 0,− 1
18π , 0, 0, 0

T
ϕ
(3)
21 (t),

Thus, we can write
 t

0

ϕ21(x)dx = P
(3)
21×21ϕ

(3)
21 (t).

where

ϕ
(3)
21 (t) = [ϕ0,0,ϕ0,1,ϕ0,2, ...,ϕ0,6,ϕ1,0,ϕ1,1,ϕ1,2, ...,ϕ1,6,ϕ2,0,ϕ2,1,ϕ2,2, ...,ϕ2,6]

T
.

and P
(3)
21×21 be an operational matrix of integration which is given as

P
(3)
21×21=



C D D
O C D
O O C


.

Here

C7×7 =




1
6 0 0 0 −1

3
√
2π

−1
6
√
2π

−1
9
√
2π

0 0 0 0 1
6π 0 0

0 0 0 0 0 1
12π 0

0 0 0 0 0 0 1
18π

1
3
√
2π

− 1
6π 0 0 0 0 0

1
6
√
2π

0 − 1
12π 0 0 0 0

1
9
√
2π

0 0 − 1
18π 0 0 0




,
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D7×7 =




1
3‘ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, O7×7 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

5.3. Sine-Cosine wavelet Operational matrix of integration for µ = 4.
Finally, we have computed the operational matrix of integration P (3) with k = 1
and L = 3 µ = 4. The 28 basis function are given by




ϕ0,0 = 2

ϕ0,1 = 2
√
2 cos(8πt)

ϕ0,2 = 2
√
2 cos(16πt)

ϕ0,3 = 2
√
2 cos(24πt)

ϕ0,4 = 2
√
2 sin(8πt)

ϕ0,5 = 2
√
2 sin(16πt)

ϕ0,6 = 2
√
2 sin(24πt)

0 ≤ t <
1

4
(16)





ϕ1,0 = 2

ϕ1,1 = 2
√
2 cos(2π(4t− 1))

ϕ1,2 = 2
√
2 cos(4π(4t− 1))

ϕ1,3 = 2
√
2 cos(6π(4t− 1))

ϕ1,4 = 2
√
2 sin(2π(4t− 1))

ϕ1,5 = 2
√
2 sin(4π(4t− 1))

ϕ1,6 = 2
√
2 sin(6π(4t− 1))

1

4
≤ t <

2

4
(17)





ϕ2,0 = 2

ϕ2,1 = 2
√
2 cos(2π(4t− 2))

ϕ2,2 = 2
√
2 cos(4π(4t− 2))

ϕ2,3 = 2
√
2 cos(6π(4t− 2))

ϕ2,4 = 2
√
2 sin(2π(4t− 2))

ϕ2,5 = 2
√
2 sin(4π(4t− 2))

ϕ2,6 = 2
√
2 sin(6π(4t− 2))

2

4
≤ t <

3

4
(18)





ϕ3,0 = 2

ϕ3,1 = 2
√
2 cos(2π(4t− 3))

ϕ3,2 = 2
√
2 cos(4π(4t− 3))

ϕ3,3 = 2
√
2 cos(6π(4t− 3))

ϕ3,4 = 2
√
2 sin(2π(4t− 3))

ϕ3,5 = 2
√
2 sin(4π(4t− 3))

ϕ3,6 = 2
√
2 sin(6π(4t− 3))

3

4
≤ t < 1 (19)

By integrating equation (16) from 0 to t and using in equation 1 we get,





 t

0
ϕ0,0(t)dt =


1
8 , 0, 0, 0,

−1
4
√
2π

, −1
8
√
2π

, −1
12

√
2π

, 1
4 , 0, 0, 0, 0, 0, 0,

1
4 , 0, 0, 0, 0, 0, 0,

1
4 , 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t), t

0
ϕ0,1(t)dt =


0, 0, 0, 0, 1

8π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ0,2(t)dt =


0, 0, 0, 0, 0, 1

16π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ0,3(t)dt =


0, 0, 0, 0, 0, 0, 1

24π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ0,4(t)dt =


1

4
√
2π

,− 1
8π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ0,5(t)dt =


1

8
√
2π

, 0,− 1
16π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ0,6(t)dt =


1

12
√
2π

, 0, 0,− 1
24π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),
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and similarly for (17),




 t

0
ϕ1,0(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

8 , 0, 0, 0,
−1

4
√
2π

, −1
8
√
2π

, −1
12

√
2π

, 1
4 , 0, 0, 0, 0, 0, 0,

1
4 , 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t), t

0
ϕ1,1(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ1,2(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

16π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ1,3(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

24π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ1,4(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

4
√
2π

,− 1
8π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ1,5(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

8
√
2π

, 0,− 1
16π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ1,6(t)dt =


0, 0, 0, 0, 0, 0, 0, 1

12
√
2π

, 0, 0,− 1
24π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

for (18),




 t

0
ϕ2,0(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8 , 0, 0, 0,
−1

4
√
2π

, −1
8
√
2π

, −1
12

√
2π

, 1
4 , 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t), t

0
ϕ2,1(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8π , 0, 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ2,2(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

16π , 0, 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ2,3(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

24π , 0, 0, 0, 0, 0, 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ2,4(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

4
√
2π

,− 1
8π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ2,5(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8
√
2π

, 0,− 1
16π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ2,6(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

12
√
2π

, 0, 0,− 1
24π , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

and for (19),




 t

0
ϕ3,0(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8 , 0, 0, 0,
−1

4
√
2π

, −1
8
√
2π

, −1
12

√
2π

T
ϕ
(4)
28 (t), t

0
ϕ3,1(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8π , 0, 0
T

ϕ
(4)
28 (t), t

0
ϕ3,2(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

16π , 0
T

ϕ
(4)
28 (t), t

0
ϕ3,3(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

24π

T
ϕ
(4)
28 (t), t

0
ϕ3,4(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

4
√
2π

,− 1
8π , 0, 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ3,5(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8
√
2π

, 0,− 1
16π , 0, 0, 0, 0

T
ϕ
(4)
28 (t),

 t

0
ϕ3,6(t)dt =


0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

12
√
2π

, 0, 0,− 1
24π , 0, 0, 0

T
ϕ
(4)
28 (t).

Hence, we can write  t

0

ϕ28(t)dt = P
(4)
28×28ϕ

(4)
28 (t).

where

ϕ
(4)
28 (t) = [ϕ0,0,ϕ0,1,ϕ0,2, ...,ϕ0,6,ϕ1,0,ϕ1,1,ϕ1,2, ...,ϕ1,6,ϕ2,0,ϕ2,1,ϕ2,2, ...,ϕ2,6,ϕ3,0,ϕ3,1,ϕ3,2, ...,ϕ3,6]

T
.

and, P
(4)
28×28 be an operational matrix of integration which is given as,

P
(4)
28×28=




E F F F
O E F F
O O E F
O O O E


.



EJMAA-2025/13(1) APPROXIMATION OF A FUNCTION WITH BOUNDED DERIVATIVES 19

Here

E7×7 =




1
8 0 0 0 −1

4
√
2π

−1
8
√
2π

−1
12

√
2π

0 0 0 0 1
8π 0 0

0 0 0 0 0 1
16π 0

0 0 0 0 0 0 1
24π

1
4
√
2π

− 1
8π 0 0 0 0 0

1
8
√
2π

0 − 1
16π 0 0 0 0

1
12

√
2π

0 0 − 1
24π 0 0 0




,

F7×7 =




1
4 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, O7×7 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

6. Numerical Examples

6.1. Application in solving the dierential equation. Example 1 Consider
the dierential equation,

y′(t) + y(t) = 1, y(0) = 0. (20)

Exact solution of equation (20) is given by,

y(t) = (−e−t + 1).

Now, we will solve this equation by sine-cosine wavelet method for k = 1, L = 3,
µ = 2,µ = 3 and µ = 4
Let

y(t) = C(µ)Tϕ(µ)(t),

on integrating both sides of the above equation on (0, t) and simplifying, we get
 t

0

ϕ(µ)(x)dx = P (µ)ϕ(µ)(t).

Expanding β(µ)(t) = 1, in the form basis functions we have, β(µ)(t) = d(µ)
T
ϕ(µ)(t).

Where, d(2) =


1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0
T

,

d(3) =


1√
3

0 0 0 0 0 0 1√
3

0 0 0 0 0 0 1√
3

0 0 0 0 0 0
T

,

d(4) =


1
2 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1

2 0 0 0 0 0 0
T

.

Putting y(t) = C(µ)Tϕ(µ)(t) in equation (20), and integrating between 0 to t, and
simplifying, we get,

C(µ) = (P (µ)T + I(µ))−1P (µ)T d(µ).

This is a system of 14, 21, 28 algebraic equations, which is solvable for C(µ). After
solving, we obtain the unknown vector C(µ) as,
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C(2)=




0.1490790
−0.0049660
−0.0012474
−0.0005548
−0.0624051
−0.0313505
−0.0209187
0.3692893
−0.0030229
−0.0007562
−0.0000956
−0.0379878
−0.0190064
−0.0126726




; C(3)=




0.0857002
−0.00195141
−0.000488881
−0.000217365
−0.0367832
−0.0184304
−0.0122917
0.225257

−0.00139749
−0.00035011
−0.000155665
−0.0263421
−0.0131988
−0.00880267

0.3252
−0.00100081
−0.00025073
−0.000111479
−0.0188648
−0.0094523
−0.00630399




; C(4)=




0.0572495
−0.000989708
−0.000247721
−0.000110122
−0.0248741
−0.0124518
−0.00830303
0.155264

−0.000770612
−0.000192882
−0.000085744
−0.0193676
−0.00969528
−0.00646494

0.23158
−0.000600017
−0.000150182
−0.0000667624
−0.0150801
−0.00754899
−0.00503377
0.291001

−0.000467188
−0.000116936
−0.0000519828
−0.0117417
−0.00587783
−0.00391941




.

In table [1], the solution obtained by extended sine-cosine wavelet method and
Euler method (with step size 0.1) is compared with exact solution.

6.2. Application in solving the integral equation. Here we consider the linear
integral equation

y(x) = m(x) +

 1

0

q(x, t)y(t)dt, (21)

where m(x) and q(x, t) are continuous on [0, 1] and the region [0, 1] × [0, 1] re-
spectively. Also here we have to evaluate y(x) which is an unknown function. Now
here we approximating the functions y(x), m(x) and q(x, t) which is given as follows

y(x) = ϕT (x)Y,m(x) = ϕT (x)M, q(x, t) = ϕT (x)QϕT (t).

where Y, M are µk(2L+1)× 1 vectors and Q is a µk(2L+1)× µk(2L+1) matrix.
Putting these values in equation (21) and then simplifying we get

Y = (I −Q)−1M (22)

This is system of µk(2L + 1) × 1 algebraic equations which can be solved for Y.
Now this method is illustrated with help of following example:
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t Approximate
Solution
y(t) =

C(µ)Tϕ(µ)(t)
for k = 1,
L = 3, µ = 2

Approximate
Solution
y(t) =

C(µ)Tϕ(µ)(t)
for k = 1,
L = 3, µ = 3

Approximate
Solution
y(t) =

C(µ)Tϕ(µ)(t)
for k = 1,
L = 3, µ = 4

Exact Solu-
tion y(t) =
(−e−t + 1)

By Eulers
Method with
step size
h = 0.1

0.0 0.19729 0.14192 0.11068 0.00000 0.00000
0.1 0.07971 0.10899 0.08625 0.09516 0.10000
0.2 0.16423 0.19042 0.18826 0.18126 0.19000
0.3 0.27127 0.26889 0.25302 0.25918 0.27100
0.4 0.34164 0.32240 0.33555 0.32968 0.34390
0.5 0.51450 0.39310 0.46084 0.39346 0.40951
0.6 0.44205 0.45779 0.44603 0.45118 0.46855
0.7 0.49400 0.49730 0.50787 0.50341 0.52170
0.8 0.55922 0.54514 0.54713 0.55067 0.56953
0.9 0.60146 0.58555 0.59717 0.59343 0.61257

Table 1. Comparison between approximate solution, exact solu-
tion and by Euler’s method for k = 1, L = 3, µ = 2, 3, 4.

Figure 4. Graph of exact solution, approximate solution and Eu-
ler solution of Example (1)
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t Abs.Error for k = 1,
L = 3, µ = 2

Abs.Error for k = 1,
L = 3, µ = 3

Abs.Error for k = 1,
L = 3, µ = 4

0.0 0.19729 0.14192 0.11068
0.1 0.01545 0.01383 0.00891
0.2 0.01703 0.00916 0.007
0.3 0.01209 0.00971 0.00616
0.4 0.01196 0.00728 0.00587
0.5 0.12104 0.00036 0.06738
0.6 0.00913 0.00661 0.00515
0.7 0.00941 0.00611 0.00446
0.8 0.00855 0.00553 0.00354
0.9 0.00803 0.00788 0.00374

Table 2. Error table

Figure 5. The comparison between the absolute errors and by
sine-cosine wavelet solution of Example (1)

Example 2:

Here we consider the fredholm integral equation

y(x) =
x

2
+

 1

0

e(x+t)

4
y(t)dt. (23)

Th exact solution of equation(23) is given by y(x) = x
2 +

ex

9−e2 . Comparison between
exact solution and by sine cosine wavelet solution for k = 1, L = 3, µ = 2, 3, 4.
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t sine cosine wavelet
solution for k = 1,
L = 3, µ = 2

sine cosine wavelet
solution for k = 1,
L = 3, µ = 3

sine cosine wavelet
solution for k = 1,
L = 3, µ = 4

Exact Solution
y(t) = x

2 + ex

9−e2

0.0 0.924618 0.819051 0.767174 0.620754
0.1 0.697348 0.751727 0.721603 0.736039
0.2 0.816766 0.866532 0.864414 0.858191
0.3 0.991712 0.996963 0.971654 0.98793
0.4 1.12522 1.10032 1.13426 1.12606
0.5 1.69294 1.26406 1.47431 1.27345
0.6 1.37231 1.43785 1.41026 1.43109
0.7 1.53725 1.56439 1.60756 1.60005
0.8 1.78137 1.74588 1.75742 1.78151
0.9 1.96945 1.92912 1.98735 1.97681

Table 3. Comparison between extended sine cosine wavelet solu-
tion (ESCWM) and exact solution for k = 1, L = 3, µ = 2, 3, 4

Figure 6. Graph of exact solution, approximate solution of Ex-
ample (2)
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t Abs.Error for k =
1, L = 3, µ = 2

Abs.Error for k =
1, L = 3, µ = 3

Abs.Error for k =
1, L = 3, µ = 4

0.0 0.303864 0.198297 0.14642
0.1 0.038691 0.015688 0.014436
0.2 0.041425 0.008341 0.006223
0.3 0.003782 0.009033 0.016276
0.4 0.00084 0.02574 0.0082
0.5 0.41949 0.00939 0.20086
0.6 0.05878 0.00676 0.02083
0.7 0.0628 0.03566 0.00751
0.8 0.00014 0.03563 0.02409
0.9 0.00736 0.04769 0.01054

Table 4. Error table

Figure 7. The comparison between the absolute errors and by
sine-cosine wavelet solution of Example (2)

7. Conclusions

(i) From theorems 3.1 and 3.2, it follows that

E
(1)

µk,2L+1
= ||f − Sµk ,2L+1 ||2 =




O


1
µk


, m = 0;

O


1
µk

√
2L+1


, m > 0.

and

E
(2)

µk,2L+1
= ||f − Sµk,2L+1||2 = O


1

µ2k

1

(2L+ 1)
3
2


.
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Since E
(1)

µk,2L+1
and E

(2)

µk,2L+1
→ 0 as k, L → ∞. Therefore, the approxima-

tions obtained in theorems 3.1 and 3.2 are best possible in wavelet analysis.
(ii) Approximations calculated in theorems 3.1 and theorem 3.2are veried by

an example in section (4) which is signicant part of the paper.
(iii) These approximations are used in solving the dierent types of dierential

and integral equations and solutions obtained by such method are compared
to the exact solutions. We observe that the exact solution and approximate
solution is very close to each other which is shown in the graphs.
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