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exposing the component to more extreme conditions than usual. The strength variable (X) and stress
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The maximum likelihood method was used to estimate the model parameters and the stress-strength
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proposing gamma priors for the model’s parameters and E-Bayesian estimation suggesting beta priors
for the hyperparameters. Furthermore, Lindley’s approximation method and Markov Chain Monte
Carlo simulation were utilized with both the squared error and the precautionary loss functions to
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intervals, Bayes, and expected Bayes credible intervals were discussed. A simulation study and real-
data application were employed to evaluate the proposed estimating methods that have been developed
in addition to verifying the accuracy of the results.
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1. Introduction

1.1. Background

The stress-strength reliability model (SSRM) has been widely used in various fields such as
engineering, economics, risk assessment, quality control, health, and technology. For highly reliable
components where failures are rare occurrences, it is exceedingly difficult to obtain a failure sample.
Thus, to gather data, it is essential to execute an accelerated life test (ALT) or partially ALT (PALT)
throughout the phases of development and production. The fundamental concept underlying ALT or
PALT involves subjecting the components to severe degrees of operational and environmental condi-
tions that are beyond their average exposure, with the intent of estimating the behavioral attributes of
the components. Progressive stress, step stress, and constant stress can be utilized in the evaluation.
The ALT assumes a knowledge relationship between component lifetimes and stress. When such a
relation is absent, PALT is the best for representing the model’s parameters. Currently, a combination
of the SSRM and the PALT was developed to examine components’ strength through stress, ensuring
that the experiment would be accomplished in a shorter time. Four basic models were used mainly to
illustrate the impact of stress level variations on components’ residual lifetime during accelerated test-
ing: the tampered random variable model, the tampered failure rate (TFR) model, the linear cumulative
exposure model and the cumulative exposure model.

Several PALT models have been thoroughly studied. For example, Srivastava and Mittal [47] con-
sidered the optimal design of the SSPALT, assuming that the life of the items follows a truncated
logistic distribution truncated at point zero. Inferential procedures involving the model parameters
and the acceleration factor were studied. Abushal and Soliman [1] assumed that the lifetime of the
items follows the two-parameter Pareto distribution of the second kind. PALT based on progressively
Type II censoring scheme (CS) was considered, as well as maximum likelihood estimators, asymptotic
confidence intervals (ACIs), two bootstrap confidence intervals (CIs), and Bayes estimators for the
parameters were derived. Kamal et al. [34] considered the Nadarajah-Haghighi distribution when the
SSPALT model was under adaptive Type II progressively hybrid CS. The maximum likelihood esti-
mators of the model parameters and the acceleration factor were derived, and the Fisher information
matrix (FIM) was constructed to produce the ACIs. The estimation of constant PALT for the Weibull
distribution of the competing risks model was provided by Hassan et al. [31]. For recent studies, the
reader can refer to [3, 5, 6, 7, 22, 32].

The SSRM was initially proposed by Birnbaum [14], which was further developed by Birnbaum
and McCarty [15]. SSRM can be described as a technique for assessing the reliability of a component
by comparing two sets of random variables, X and Y . In this simplified situation, the component would
fail if the applied stress exceeded its strength (Y > X), and vice versa. The SSRM is defined as the
probability of avoiding failure P(Y < X) expressed as follows:

R =
∫ ∞

0
f (x)GY(x)dx.

Considering SSRM, Mokhlis [41] discussed the reliability of a system when both strength and stress
are independent and non-identical Burr Type III distributions of random variables. Asgharzadeh et al.
[10] obtained maximum likelihood estimators and Bayesian estimators (BEs) of the stress–strength
parameter (SSP) R when X and Y are independent random variables from two generalized logistic

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 348–378



350

distributions. For more recent studies, see [4, 8, 25, 29, 30, 38, 40].
Recently, Çetinkaya [18] introduced SSRM in the presence of PALT. This test design combines two

distinct forms of tests that were hierarchically imposed on the components of a system. The devel-
oped model includes two stresses: the main stress, denoted by SSRM, and the PALT, respectively. In
addition, maximum likelihood estimators with their ACIs and BEs with their highest posterior density
credible intervals were provided. The model was formulated according to the following equation:

R =
∫ τ

0

∫ x

0
f1(x)dG(y)dx +

∫ ∞

τ

∫ x

0
f2(x)dG(y)dx, (1.1)

where,

f1(x) and f2(x) are the probability density functions (PDFs) of the strength variable X at normal
use conditions and higher stress levels when implementing PALT, respectively.

G(y) is the cumulative distribution function (CDF) of the strength variable Y , under normal use
conditions, and τ is a pre-fixed assigned transition time, at which stress shifts to a higher level.

The TFR model was first proposed by Bhattacharrya and Soejoeti [13], and then generalized by
Madi [37]. Acceleration of failure demonstrates the changes that take place in the hazard rate function
when the stress level changs from a lower to a higher level as the load is subjected to a predetermined
sequence of loads denoted byLi(i = 0, 1, ..., q−g). Thus, the hazard rate function H(t) of the component
at time t can be represented as follows:

H(t) = Hi(t) = λi(Li)H◦(t), τi−1 ≤ t < τi,

where,

q: the total number of components in the system,

g: the minimum number of components required for successful operation,

Li is the number of loads with sequence (i = 0, 1, ..., q − g) occurring at time τ1, τ2, ..., τq−g, at τ0 =

0,

H0(t): the hazard rate at the lower load L0,

λi is the acceleration factor, which is considered to be a function of the loads Li at time t.

According to this model, the mathematical expression of the TFR model is shown below:

H(t) =

HT FR(t), t ≤ τ.

λHT FR(t), τ < t.

Applying TFR model, the CDF of the samples can be expressed as follows:

F(x) =

F1(x), x ≤ τ,

F2(x) = 1 − (1 − F1(τ))1−λ(1 − F1(x))λ, τ < x,
(1.2)

where F1(x) = 1 − e−
∫ x

0 HT FR(x)d(x) and the acceleration factor λ > 1.
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1.2. Related Works

The combination of SSRM and PALT improves the reliability evaluation of the product under both
severe and normal conditions, while enabling accelerated data collection using higher levels of stress
for a limited period of time. Thus, it works to reduce testing, duration, and costs while preserving
the integrity of the result. In addition to what has been discussed by Çetinkaya [18] which has been
recognized as the pioneer study in the introduction of SSRM in the presence of PALT. Quite a few
studies addressed this notion; for example, El-Sagheer et al. [24] estimated the SSRM when the
strength variable is used along with the SSPALT under the assumption that the stress and strength
random variables have a common shape parameter and follow the Weibull distribution. Sarhan and
Tolba [46] provided maximum likelihood estimators and BEs of R = P(Y < X) in the context of the
SSPALT when both variables X and Y follow an exponential distribution. Yousef et al. [51] derived
maximum likelihood estimators and BEs of R = P(Y < X) considering the progressive type II CS
while applying SSRM based on the SSPALT. Temraz [48] used the maximum likelihood estimators
and ACIs methods to estimate the fuzzy multicomponent SSP in the presence of the PALT, assuming
that the data follow the inverse Weibull distribution.

1.3. Motivation of the Study

The efficacy of the SSRM in the presence of PALT can be explained as the development of a more
conservative framework that incorporates two distinct types of tests that occur hierarchically through-
out a lifetime test. This approach for evaluating a component’s lifetime is used not only to demonstrate
reliability and lifetime but also to speed up the production process, thereby reducing the time required
to bring the component to market. Furthermore, enhancing product reliability through such testing
significantly increases customer loyalty and increases corporate revenue. The rationale for our choice
to implement the SSRM under PALT in our study is rooted in its extensive use in several fields and
the previously recognized advantageous characteristics it possesses. The Gompertz distribution (GD)
can show positive or negative skewness. It is a generalized form of exponential distribution and was
historically introduced by Gompertz [27]. GD is widely documented in the literature for its practical
uses in several domains, primarily in the area of analyzing data related to the duration of events or
lifetimes; see [33]. Survival studies have been conducted in some sciences, such as gerontology [16],
computer science [44], biology [50], sociology [20], marketing science [11], and biotechnology [49].
Multiple studies have used GD in modeling reliability. Saraçoğlu and Kaya [45] obtained the maxi-
mum likelihood estimators and CIs of the SSRM while considering the probability estimation problem
R = P(Y < X), assuming that the stress variable Y and the strength variable X follow the GD. Kumar
and Vaish [35] studied the problem of SSRM, assuming that stress follows the GD and strength follows
a power function distribution. Asadi et al. [9] discussed the GD under the constant-stress PALT model
based on adaptive Type II progressive hybrid CS.

The present study discusses the parameter point estimators and the accelerated factor using maxi-
mum likelihood estimation (MLE) and Bayesian estimation methods. Furthermore, interval estimators
were created, including ACIs, Bayesian credible intervals (BCIs), and bootstrap CIs. Two distinct es-
timation techniques, referred to as E-Bayesian estimation and E-Bayesian credible intervals (E-BCIs)
have been adopted, which have never been utilized before in similar studies. Our efforts will be sum-
marized as follows:
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1. Offer an in-depth description of the stress-strength model P(Y < X). This system commences
under normal conditions for both variables X and Y , whereby the strength component X is exposed
to the stress component Y . If the system does not fail before the predetermined time τ, the strength
variable X is running at an acceleration factor λ. Assuming both stress and strength variables
follow GD, where Y ∼ GD (α), X ∼ GD, (θ) and when a higher stress level is experienced using
PALT, X ∼ GD (θ, λ).

2. Given the complete sample size, MLE, BEs, E-Bayesian estimators (E-BEs), ACIs, in addition to
BCIs and E-BCIs are obtained for the SSP R.

3. Obtain the BEs and E-BEs of the SSP R with informative (INF) and non-informative (NINF)
priors using the Lindley approximation method and Markov chain Monte Carlo (MCMC) simula-
tion, which is represented by the Gibbs sampling algorithm, considers two separate loss functions
(LFs), represented by the squared error loss function (SELF) and the precautionary loss function
(PLF).

4. Evaluate and compare the efficacy of various estimation methods by conducting simulation stud-
ies with different sample sizes to determine how several estimates perform in terms of accuracy,
reliability, and unbiasedness. Finally, a real-world dataset is provided to support the theoretical
conclusions.

The structure of the paper is as follows. Section 2 provides an extensive description of the SSRM
under SSPALT. The development of maximum likelihood estimators for the SSP is presented in Section
3. In Section 4, the BEs of the model’s parameters are computed under SELF and PLF using the
Lindley approximation and the Gibbs sampling algorithm. The E-BE of the SSP has been computed
using the SELF and PLF approaches, utilizing the Lindley technique and the Gibbs sampling algorithm
in Section 5. In Section 6, interval estimation, including ACIs, BCIs, and E-BCIs, is considered. In
Section 7, simulation methodology has been implemented to assess and compare the effectiveness of
various estimation methodologies. In Section 8, the proposed estimation methodologies have been
used to examine real data. The outcomes of this study are presented in Section 9.

2. Model Description

According to El-Gohary et al. [23], the distribution of our interest in this study is mathematically
considered a special case of generalized GD, where X ∼ GD(θ) with parameter θ. Subsequently, the
CDF and the PDF of the GD are ascertained by the following formula:

F(x; θ) = 1 − e−θ(e
x−1); θ, x > 0, (2.1)

and

f (x; θ) = θex−θ(ex−1); θ, x > 0.

This study’s main contribution is to look at how reliable a system is when the SSRM and SSPALT
were presented. The model assumes that the two underlying variables follow an GD in the context of
complete data.
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Consider X and Y be two independent random variables that follow the GD with parameters θ and
α, respectively. The CDF of the strength variable under SSPALT is obtained by inserting Equation
(2.1) in Equation (1.2) as follows:

F(x) =

F1(x; θ) = 1 − e−θ(e
x−1) ; x ≤ τ,

F2(x; θ, λ) = 1 − e−θ[λ(e
x−1)+(1−λ)(eτ−1)] ; τ < x.

(2.2)

The corresponding PDF is defined as follows:

f (x) =

 f1(x; θ) = θex−θ(ex−1) ; x ≤ τ.

f2(x; θ, λ) = θλex−θ[λ(ex−1)+(1−λ)(eτ−1)] ; τ < x.
(2.3)

The PDF and CDF of the primary stress Y are provided by

g(y;α) = αey−α(ey−1); y > 0
G(y;α) = 1 − e−α(ey−1); y > 0

. (2.4)

The hazard function H1(x; θ) and the survival function F̄1(x; θ), which incorporate the strength
variable X under the normal used condition, are defined as follows:

H1(x; θ) = θex; x ≤ τ
F̄1(x; θ) = e−θ(e

x−1); x ≤ τ
. (2.5)

SSPALT’s hazard function H2(x; θ) is derived by multiplying H1(x; θ) by an acceleration factor λ,
where λ > 1, when stress is raised to a specific time τ. This leads to the following formula:

H2(x; θ, λ) = θλex; τ < x. (2.6)

Considering the formula F̄2(x; θ) =
∫ x

0
H2(x; θ, λ)dx, the survival function can be obtained as given

below:
F̄2(x; θ, λ) = e−θ[λ(e

x−1)+(1−λ)(eτ−1)]; τ < x. (2.7)

Within the framework of the SSRM involving the application of the SSPALT, the strength of the
variable X represented by its PDF f (x) and CDF F(x) has been investigated, considering the impacts
of the primary stress variable Y characterized by its PDF g(y) and CDF G(y). Thus, the SSP R of the
above system is calculated by plugging Equation (2.3) and the PDF of the stress variable Y mentioned
in Equation (2.4) into Equation (1.1) as shown below:

R = αθ
∫ τ

0

∫ x

0
ex−θ(ex−1)ey−α(ey−1)dydx + αθλ

∫ ∞

τ

∫ x

0
ex−θ[λ(ex−1)+(1−λ)(eτ−1)]ey−α(ey−1)dydx.

After simplification, the SSP R is given by:

R =
α

θ + α
+

θα(1 − λ)
(θ + α)(θλ + α)

e−(θ+α)(eτ−1). (2.8)

In cases where acceleration is not taken into concern and just GD under SSRM is considered, it
is evident that the reliability of a simple stress-strength system may be expressed in the formula (2.8)
when λ= 1.
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Figure 1. The stress–strength parameter R under SSPALT

Figure 2. Actual R values with increasing τ points for various λ values in the case of α = 1.2
and θ = 1.5

The diagram illustrated above, referred to as Figure 1, presents a three-dimensional graphical de-
piction of the SSP R. The model highlighted the effect of different values of α and θ while keeping both
λ and τ constant, where (λ = 1.2 and τ = 0.8). (i) As the value of θ increases, there is a corresponding
decrease in the SSP. (ii) As the value of α grows, the system becomes more reliable.

The graphical representation in Figure 2 shows a direct relationship between R and stress change
time τ, while keeping the acceleration factor λ constant. The SSP decreases noticeably as the accelera-
tion factor λ rises, as seen in Figure 3. As illustrated, when λ=1, the SSPALT exerts minimal influence
on the SSP R.

3. MLE of R’s Parameters

Suppose that (x1, x2, ..., xn) represent the observed values of the strength X, and (y1, y2, ..., ym) denote
the observed values of the stress Y . Both the stress and strength random samples are independent and
selected from the Gompertz population. The MLE is used to get point estimates of the unknown
parameters θ, α, and λ using Equation (2.3) and the PDF included in Equation (2.4) as follows:

L(Θ|x, y) =
r∏

i=1

f1(xi|θ)
n∏

i=r+1

f2(xi|θ, λ)
m∏

j=1

g(y j|α), (3.1)
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Figure 3. Actual R values with increasing λ points for various τ values in the case of α = 1.2
and θ = 1.5

where Θ ≡ (θ, α, λ), xr ≤ τ < xr+1, and R is the total number of items that failed before the occurrence
of the predetermined time τ.

Using Equation (3.1), the likelihood function is given as follows:

L(Θ|x, y) = θnαmλn−r
r∏

i=1

exi−θ(exi−1)
n∏

i=r+1

exi−θ[λ(exi−1)+(1−λ)(eτ−1)]
m∏

j=1

ey j−α(ey j−1). (3.2)

Thus, the corresponding log-likelihood function is given by:

ℓ(Θ|x, y) ∝ n log(θ) + m log(α) + (n − r) log(λ) − θ
r∑

i=1

(exi − 1) − θλ
n∑

i=r+1

(exi − 1) − (n − r)θ

× (1 − λ)(eτ − 1) − α
m∑

j=1

(ey j − 1).
(3.3)

To obtain maximum likelihood estimators of the vector parameter Θ, the log-likelihood function
needs to be maximized separately for each parameter. From Equation (3.3), it is clear that the MLE of
θ, α, and λ can be obtained by solving the following three equations.

ℓ(Θ|x, y)

∂θ
=

n
θ
−

r∑
i=1

(exi − 1) − λ
n∑

i=r+1

(exi − eτ) − (n − r)(eτ − 1) = 0, (3.4)

ℓ(Θ|x, y)

∂α
=

m
α
−

m∑
j=1

(ey j − 1) = 0, (3.5)

ℓ(Θ|x, y)

∂λ
=

n − r
λ
− θ

n∑
i=r+1

(exi − eτ) = 0. (3.6)

From Equation (3.5), the MLE of α can be determined by solving the following equation.

α̂ =
m∑m

j=1(ey j − 1)
. (3.7)
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Given Equation (3.4), the MLE of θ, say θ̂(λ), can be solved numerically using a numerical iterative
technique as follows.

θ̂(λ) =
n∑r

i=1(exi − 1) + λ
∑n

i=r+1(exi − eτ) + (n − r)(eτ − 1)
. (3.8)

Therefore, the MLE of λ can be obtained by inserting outcomes from θ̂(λ) in the non-linear Equation
(3.6) as follows.

n − r
λ
−

n
∑n

i=r+1(exi − eτ)∑r
i=1(exi − 1) + λ

∑n
i=r+1(exi − eτ) + (n − r)(eτ − 1)

= 0. (3.9)

Using the iteration technique, the MLE of λ is obtained by solving numerically the non-linear Equation
(3.9), then substituting the value of λ̂ in Equation (3.8) to obtain θ̂. Finally, by using the invariance
property, the maximum likelihood estimation of R, represented by R̂ML, is as follows after substituting
θ̂(λ), α̂, and λ̂ in Equation (2.8).

R̂ML =
α̂

θ̂(λ) + α̂
+

θ̂(λ)α̂(1 − λ̂)
(θ̂(λ) + α̂)(θ̂(λ)λ̂ + α̂)

e−(θ̂(λ)+α̂)(eτ−1). (3.10)

4. Bayesian Estimation of R

In this section, the SSP R using the Lindley approximation method will be considered. Globally,
when analyzing an estimate from a Bayesian perspective, the key factor is to define prior distributions
for the unknown parameters. When there is a lack of relevant background data, it is customary to utilize
NINF priors; refer to Carlin and Louis [17] for more details. In order to derive BEs for the unknown
parameters, it is assumed that both parameters θ and α have independent gamma priors, while the
parameter λ has an NINF prior. The joint prior of the unknown parameters θ, α, and λ is:

S (Θ) ∝
θa1−1αa2−1

λ
e−

(
θb1+αb2

)
, a1, b1, a2, b2 > 0; λ > 1. (4.1)

The joint posterior density functions of θ, α, and λ are obtained using the following mathematical
equation:

π(Θ|x, y) =
L(Θ|x, y)S (Θ)∫

Θ
L(Θ|x, y)S (Θ)dΘ

, (4.2)

where dΘ = dθdαdλ. By substituting L(Θ|x, y) and S (Θ) in Equation (4.2), the following joint
posterior π(Θ|x, y) has been obtained:

π(Θ|x, y) = Kθn+a1−1αm+a2−1λn−r−1e−
(
θb1+αb2

)
e−θ

∑r
i=1(exi−1)e−θ[λ

∑n
i=r+1(exi−eτ)+(n−r)(eτ−1)]

× e−α
∑m

j=1(ey j−1),
(4.3)

where,

K−1 =

∫ ∞

1

∫ ∞

0

∫ ∞

0
θn+a1−1αm+a2−1λn−r−1e−

(
θb1+αb2

)
e−θ

∑r
i=1(exi−1)e−θ[λ

∑n
i=r+1(exi−eτ)+(n−r)(eτ−1)]
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× e−α
∑m

j=1(ey j−1)dθdαdλ.

Assigning an appropriate LF is crucial for Bayesian parameter estimation. Consequently, LFs that
demonstrate both symmetry and asymmetry have been considered. The SELF is widely considered the
most often employed approach for estimating problems since it gives equal weight to losses caused by
both overestimation and underestimation. The Bayes estimate of the parametric function of interest,
say R(Θ) under SELF, is obtained by L(R̂(Θ),R(Θ)) = (R̂(Θ) − R(Θ))2. Although this assumption may
not be inappropriate for all estimating issues, thus, Norstrom [42] provided a definition for an alternate
asymmetric LF called PLF, denoted as L(R̂(Θ),R(Θ)) = (R̂(Θ)−(R(Θ))2

R̂(Θ)
. The PLF avoids underestimating

problems by approaching infinitely close to the origin.

4.1. Bayesian estimation of R using Lindley approximation method

Due to the complexity of analytically computing the stated equations, the Lindley approximation
method, introduced by Lindley [36], which approaches the ratio of the integrals as a whole and pro-
duces a single numerical result, was proposed for obtaining the BEs. The ratio of integrals that arises
in Bayesian analysis is expressed as

R̂L(Θ) = E(R(Θ)|x, y) =

∫
Θ

R(Θ)eℓ(Θ|x,y)ρ(Θ|x,y)dΘ∫
Θ

eℓ(Θ|x,y)ρ(Θ|x,y)dΘ
, (4.4)

where R̂L(Θ) represents the Bayes estimate of the parametric function of interest utilizing Lindley’s
approximation, ℓ(Θ|x, y) is the log-likelihood function, and ρ(Θ|x, y) is the log of the joint prior of Θ.
To approximate Lindley’s technique, we employ a Taylor series considering the MLE of (θ, α, λ) to
expand the log of the joint prior ρ(Θ|x, y) and the log-likelihood function ℓ(Θ|x, y) in Equation (4.4).

R̂L(Θ) = E(R(Θ) | x, y) = R̂ML +
1
2

q∑
i, j=1

[
Ri j + 2Riρ j

]
σi j +

1
2

q∑
i, j,k,l=1

ℓRkσi jσkl,

where q is the total number of parameters; Ri =
∂R
∂Θi

; Ri j =
∂2R
∂Θi∂Θ j

; ℓi j =
∂2ℓ
∂Θi∂Θ j

; ℓi jk =
∂3ℓ

∂Θi∂Θ j∂Θk
; ρ j =

∂ρ

∂Θ j
;

and σi j represents the (i, j) − th element of the ℓi j inverse matrix.
In the case of the three parameters (θ, α, λ), for i = j = k = (1, 2, 3) ≡ (θ, α, λ). Given (Θ1 ≡ θ,Θ2 ≡

α,Θ3 ≡ λ), the approximation of the posterior expectation is expressed as follows:

R̂L(Θ) = R̂ML +
1
2

[
(Rθθ + 2Rθρθ)σθθ + (Rαθ + 2Rαρθ)σαθ + (Rλθ + 2Rλρθ)σλθ

+ (Rθα + 2Rθρα)σθα + (Rλα + 2Rλρα)σλα + (Rαα + 2Rαρα)σαα

+ (Rθλ + 2Rθρλ)σθλ + (Rαλ + 2Rαρλ)σαλ + (Rλλ + 2Rλρλ)σλλ
]

+
1
2

[
Λ1

(
Rθσθθ + Rασθα + Rλσθλ

)
+ Λ2

(
Rθσαθ + Rασαα + Rλσαλ

)
+ Λ3

(
Rθσλθ + Rασλα + Rλσλλ

)]
,

(4.5)

where, Λ1 = σθθℓθθθ + 2σθαℓθαθ + 2σθλℓθλθ + 2σαλℓαλθ + σααℓααθ + σλλℓλλθ,
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Λ2 = σθθℓθθα + 2σθαℓθαα + 2σθλℓθλα + 2σαλℓαλα + σααℓααα + σλλℓλλα,

Λ3 = σθθℓθθλ + 2σθαℓθαλ + 2σθλℓθλλ + 2σαλℓαλλ + σααℓααλ + σλλℓλλλ.

The R̂LS (Θ) and R̂LP(Θ) of R(Θ) estimates were derived from the following expressions under SELF
and PLF, respectively:

R̂LS (Θ) = E(R(Θ)|x, y) =
∫ ∞

0

∫ ∞

0
R(Θ)π(Θ|x, y)dΘ,

and

R̂LP(Θ) =
√
E(R2(Θ)|x, y) =

( ∫ ∞

0

∫ ∞

0
R2(Θ)π(Θ|x, y)dΘ

) 1
2

.

Demonstration of the above terms and other derivatives are shown in Appendix A.1 and A.2 in details.

4.1.1. Bayesian estimates of R under SELF

According to Appendix A.1, A.2, and Equation (2.8), the Bayes estimator of R(Θ) under the SELF,

given the parametric function R(Θ) =
α

θ + α
+

θα(1 − λ)
(θ + α)(θλ + α)

e−(θ+α)(eτ−1) can be obtained from the

following approximation:

R̂LS (Θ) = R̂ML +
1
2

[
(Rθθ + 2Rθρθ)σθθ + (Rλθ + 2Rλρθ)σλθ + (Rαα + 2Rαρα)σαα

+ (Rθλ + 2Rθρλ)σθλ + (Rλλ + 2Rλρλ)σλλ
]
+

1
2

[
σθθℓθθθ

(
Rθσθθ + Rλσθλ

)
+ σααℓααα

(
Rασαα

)
+ σλλℓλλλ

(
Rθσλθ + Rλσλλ

)]
.

(4.6)

The subsequent parametric function derivatives that will replace those in Equation (4.6) were provided
as follows:

Rθ = ∂R
∂θ
= Aθ + BθC +CθB, Rθθ = ∂

2R
∂θ2
= Aθθ + 2BθCθ + BθθC +CθθB,

Rα = ∂R
∂α
= Aα + BαC +CαB, Rαα = ∂

2R
∂α2 = Aαα + 2BαCα + BααC +CααB,

Rλ = ∂R
∂λ
= BλC, Rλλ = ∂

2R
∂λ2 = BλλC, Rλθ = Rθλ = ∂2R

∂λ∂θ
= BλθC +CθBλ.

. (4.7)

4.1.2. Bayesian estimates of R under PLF

The Bayes estimator of R under the PLF, given the parametric function R(Θ) =
( α
θ + α

+

θα(1 − λ)
(θ + α)(θλ + α)

e−(θ+α)(eτ−1)
)2

, considering Appendix A.1, A.2 and Equation (2.8), can be provided em-

ploying the following approximation:

R̂LP(Θ) =
(
R̂ML +

1
2

[
(Rθθ + 2Rθρθ)σθθ + (Rλθ + 2Rλρθ)σλθ + (Rαα + 2Rαρα)σαα

+ (Rθλ + 2Rθρλ)σθλ + (Rλλ + 2Rλρλ)σλλ
]
+

1
2

[
σθθℓθθθ

(
Rθσθθ + Rλσθλ

)
+ σααℓααα

(
Rασαα

)
+ σλλℓλλλ

(
Rθσλθ + Rλσλλ

)]) 1
2

.

(4.8)
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The following parametric function derivatives will substitute those in Equation (4.8):

Rθ = ∂R∂θ = 2[A + BC][Aθ + BθC +CθB],
Rθθ = ∂

2R
∂θ2
= 2

[
[Aθ + BθC +CθB]2 + [A + BC][Aθθ + BθθC + 2BθCθ +CθθB]

]
,

Rα = ∂R∂α = 2[A + BC][Aα + BαC +CαB],
Rαα = ∂

2R
∂α2 = 2

[
[Aα + BαC +CαB]2 + [A + BC][Aαα + BααC + 2BαCα +CααB]

]
,

Rλ = ∂R∂λ = 2[A + BC][BλC], Rλλ = ∂
2R
∂λ2 = 2

[
[BλC]2 + [BλλC][A + BC]

]
,

Rλθ = Rθλ = ∂2R
∂λ∂θ
= 2

[
[Aθ + (BθC +CθB)

][
BλC

]
+ [BλθC +CθBλ][A + BC]

]
.

. (4.9)

4.2. Bayesian estimates of R using the MCMC approach

Computing the analytical expression for the posterior marginal distribution function can be difficult,
which poses a barrier when using the Bayesian technique for statistical inference. In this sub-section,
the BEs of θ, α, and λ have been taken into consideration, utilizing SELF and PLF and making use of
the Gibbs sampling method suggested by Geman and Geman [26] (for recent studies refere to, [2, 39]).
The main advantage of the Gibbs sampling technique is its simplicity in execution and the tendency of
its iterations to converge. The Bayes estimate of R, represented as R̂BS GS , can be derived as the mean
of the posterior function, as outlined below.

The posterior conditional distributions of parameters θ, α, and λ are proportional to the following,
considering Equation (4.3):

π∗(θ|λ, x) ∝ θn+a1−1e−θ{b1+
∑r

i=1(exi−1)+
∑n

i=r+1[λ(exi−eτ)+(eτ−1)]},

π∗(α|y) ∝ αm+a2−1e−α{b2+
∑m

j=1(ey j−1)},

π∗(λ|θ, x) ∝ λn−r−1e−λ{θ
∑n

i=r+1(exi−eτ)}.

The MCMC approach has been employed to generate a sample with the Gibbs sampling algorithm
to obtain the Bayesian estimates of the SSP R, as outlined in Algorithm 1: as follows:

Algorithm 1 : Bayes estimate of R based on Gibbs sampling approach
1. Assign starting values to the unknown parameters θ, α, and λ, represented as θ(o), α(o) and λ(o).
2. Set ν=1.
3. Generate θ(ν) from Gamma

(
n + a1, b1 +

∑r
i=1(exi − 1) +

∑n
i=r+1[λ(exi − eτ) + (eτ − 1)]

)
.

4. Generate α(ν) from Gamma
(
m + a2, b2 +

∑m
j=1(ey j − 1)

)
.

5. Generate λ(ν) from Gamma
(
n − r, θ

∑n
i=r+1(exi − eτ)

)
.

6. Set ν = ν + 1.
7. Compute R(ν)

B at θ(ν), α(ν), and λ(ν).
8. Perform iterations 2-7 multiple times for a total of ν. Then, store the values of R(ν)

B for each
iteration, where ν ranges from 1 to N. In order to achieve convergence and mitigate the impact
of initial value selection, ignore the first M iterations to account for the burn-in period.

Under the guidance of SELF, compute Bayesian estimate values of the parameter R. The following is
the formula for each of these parameters in the sequence in which they are defined:

R̂GS =
1

N − M

N∑
i=M+1

R(ν)
B .
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Using PLF, Bayesian estimates for the SSP R were computed by applying the following formula:

R̂GP =

[
1

N − M

N∑
i=M+1

R(ν)
B

] 1
2

.

5. E-Bayes Estimate of R

As a consequence of the difficulty in identifying the hyperparameters, there is a certain degree of
unpredictability involved in the process. In this particular scenario, E-BEs are derived by calculating
the average of the Bayes estimates of Θ using hyperparameters ai and bi in the domain D. This section
will study the E-Bayes estimate of θ and α using SELF and PLF, given λ as a known parameter.
Estimation was considered in the following manner:

Θ̂EBE = E
[
Θ̂BE(ai, bi)

]
=

∫
D

∫
Θ̂BE(ai, bi)S (Θ|ai, bi)daidbi, i = 1, 2. (5.1)

As stated by Han [28], it is necessary to select ai and bi in a way to ensure that S (Θ|ai, bi) is a
decreasing function of Θ.

∂S (Θ|ai, bi)
∂Θi

=
bai

i

Γ(ai)
Θ

ai−2
i e−Θibi[(ai − 1) − biΘi].

Thus, the hyperparameters ai and bi should be in the ranges 0 < ai < 1; bi > 0, due to ∂S (Θ|ai,bi)
∂Θi

< 0
and therefore S (Θ|ai, bi) is a decreasing function of Θ. As bi bounds increase, the gamma density
function’s tail becomes thinner, resulting in low probability for extreme values. The thinner-tailed
prior distribution often leads to a decrease in the robustness of Bayesian estimation, as discussed by
Berger [12]. Consequently, bi must not exceed a specified upper limit c, where c > 0 is a constant to
be determined. Consequently, it is obligatory to select hyperparameters ai and bi within the constraints
of 0 < a < 1 and 0 < b < c.

Referring to Zhang et al. [52], two distinct prior distributions of the hyperparameters ai and bi have
been assigned to examine the impact of these various distributions on E-BEs of Θ. These distributions
are shown below as follows:

S 1(ai, bi) = 1
cB(W,V)a

W−1
i (1 − ai)V−1

S 2(ai, bi) = 2
c2B(W,V) (c − bi)aW−1

i (1 − ai)V−1 . (5.2)

The following subsections discuss E-BEs utilizing the Lindley approximation method and the MCMC
approach, assuming the parameter λ is known.

5.1. E-Bayesian estimation of R using Lindley approximation method

To obtain E-BEs, we need to obtain the expected values of ρθ and ρα given by Equation (A.1.1) in
Apendix A.1 over the prior distributions of the hyperparameters given by Equation (4.9), respectively.

(i) Expectation of ρθ.ı under S ı(a1, b1), where ı = 1, 2.
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ρθ.1 =

∫ c

0

∫ 1

0
ρθS 1(a1, b1) da1 db1

=

∫ c

0

∫ 1

0

[
(a1 − 1)
θ

− b1

]
1

cB(W,V)
aW−1

1 (1 − a1)V−1 da1 db1

=
1
θ

[
W

W + V
− 1 −

cθ
2

]
,

(5.3)

and,

ρθ.2 =

∫ c

0

∫ 1

0
ρθS 2(a1, b1) da1 db1

=

∫ c

0

∫ 1

0

[
(a1 − 1)
θ

− b1

]
2

c2B(W,V)
(c − b1)aW−1

1 (1 − a1)V−1 da1 db1

=
1
θ

[
W

W + V
− 1 −

cθ
3

]
.

(5.4)

(ii) Expectation of ρα.ı under S ı(a2, b2), where ı = 1, 2.

ρα.1 =

∫ c

0

∫ 1

0
ραS 1(a2, b2) da2 db2

=

∫ c

0

∫ 1

0

[
(a2 − 1)
α

− b2

]
1

cB(W,V)
aW−1

2 (1 − a2)V−1 da2 db2

=
1
α

[
W

W + V
− 1 −

cα
2

]
,

(5.5)

and,

ρα.2 =

∫ c

0

∫ 1

0
ραS 2(a2, b2) da2 db2

=

∫ c

0

∫ 1

0

[
(a2 − 1)
α

− b2

]
2

c2B(W,V)
(c − b2)aW−1

2 (1 − a2)V−1 da2 db2

=
1
α

[
W

W + V
− 1 −

cα
3

]
.

(5.6)

5.1.1. E-Bayesian estimates of R under SELF

Now, the different E-BE of R(Θ), say R̂EBS EL(Θ), can be obtained employing Lindley approximation
methods under SELF by substituting Equations from (5.4) to (5.6) in Equation (4.5), assuming the

parametric function R(Θ) =
α

θ + α
+

θα(1 − λ)
(θ + α)(θλ + α)

e−(θ+α)(eτ−1), and considering Appendix A.1 and
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A.2 as follows:

R̂ELS S ı(θ, α, λ) = R̂ML +
1
2

[
(Rθθ + 2Rθρθ.ı)σθθ + (Rλθ + 2Rλρθ.ı)σλθ + (Rαα + 2Rαρα.ı)σαα

+ (Rθλ + 2Rθρλ)σθλ + (Rλλ + 2Rλρλ)σλλ
]
+

1
2

[
σθθℓθθθ

(
Rθσθθ + Rλσθλ

)
+ σααℓααα

(
Rασαα

)
+ σλλℓλλλ

(
Rθσλθ + Rλσλλ

)]
,

(5.7)

where, ı = (1, 2) ≡ (S 1(ai, bi), S 2(ai, bi)).

5.1.2. E-Bayesian estimates of R under PLF

Similarly, E-BE under PLF can be obtained by substituting Equations from (5.4) to (5.6) in
Equation (4.5), taking into account Appendix A.1 and A.2, and assuming the parametric function

R(Θ) =
( α
θ + α

+
θα(1 − λ)

(θ + α)(θλ + α)
e−(θ+α)(eτ−1)

)2
as follows:

R̂ELPS ı(θ, α, λ) =
(
R̂ML +

1
2

[
(Rθθ + 2Rθρθ.ı)σθθ + (Rλθ + 2Rλρθ.ı)σλθ + (Rαα + 2Rαρα.ı)σαα

+ (Rθλ + 2Rθρλ)σθλ + (Rλλ + 2Rλρλ)σλλ
]
+

1
2

[
σθθℓθθθ

(
Rθσθθ + Rλσθλ

)
+ σααℓααα

(
Rασαα

)
+ σλλℓλλλ

(
Rθσλθ + Rλσλλ

)]) 1
2

,

(5.8)

where, ı = (1, 2) ≡ (S 1(ai, bi), S 2(ai, bi)).

The parametric function’s derivatives, given by Equations (4.7) and (4.8), will replace those in Equa-
tions (5.7) and (5.8), respectively. Appendix A.1 and A.2 provide a detailed explanation of the terms
mentioned above as well as other derivatives.

5.2. E-Bayesian estimation of R’s parameters using the MCMC approach

Algorithm 2 demonstrates the use of the MCMC method with the Gibbs sampling technique to
obtain the E-Bayesian estimates of the SSP R as outlined below:

Algorithm 2: E-Bayes estimate of R based on Gibbs sampling approach
1. Assign initial values to the unknown parameters θ, α, and λ. Assigned parameters are repre-

sented as θ(o), α(o), and λ(o).
2. Set the values of c,W, and V .
3. Set ν=1.
4. Generate samples from the Beta distribution a(ν)

i ∼ B(W,V) and uniform distribution b(ν)
i ∼

U(0, c) as stated by Equation (5.2).
5. Generate θ(ν) from Gamma

(
n + a(ν)

1 , b
(ν)
1 +

∑r
i=1(exi − 1) +

∑n
i=r+1[λ(exi − eτ) + (eτ − 1)]

)
.

6. Generate α(ν) from Gamma
(
m + a(ν)

2 , b
(ν)
2 +

∑m
j=1(ey j − 1)

)
.

continued on the next page
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continued f rom the previous page
Algorithm 2: E-Bayes estimate of R based on Gibbs sampling approach
7. Generate λ(ν) from Gamma

(
n − r, θ

∑n
i=r+1(exi − eτ)

)
.

8. Set ν = ν + 1.
9. Compute R(ν)

EBı
at θ(ν), α(ν) and λ(ν).

10. Repeat iterations from 2-9 many times until a total of N iterations have been completed. Next,
record the values of R(ν)

EBı
for every iteration, with N ranging from 1 to N. To achieve con-

vergence and minimize the influence of initial value selection, discard the first M iterations as
burn-in.

The formulas for each of the REB parameters are listed below, represented as REBS GS under the SELF
and REBPGS under the PLF.

R̂EGS S ı =
1

N − M

N∑
i=M+1

R(ν)
EBı
,

and

R̂EGPS ı =

[
1

N − M

N∑
i=M+1

R(ν)
EBı

] 1
2

.

6. Interval Estimation

This section proposes constructing the ACIs using the asymptotic features of maximum likelihood
estimators of θ and α. For the parameters θ and α, credible intervals are obtained using the MCMC
simulated variations of the BEs and E-BEs.

6.1. Approximate confidence intervals

The 100 (1 − Φ)% ACIs for Θ, where Θ ≡ (θ, α, λ), can be estimated using the inverse of the
observed FIM I(Θ̂) given in Equation (A.1.2) of Appendix A.1. To be exact, σi j represents the (i, j)th

element of the ℓi j inverse matrix, all evaluated at MLE of parameters.

I−1(Θ̂) =


−ℓθθ −ℓθα −ℓθλ
−ℓαθ −ℓαα −ℓαλ
−ℓλθ −ℓλα −ℓλλ


−1

=


σ̂θθ σ̂θα σ̂θλ
σ̂αθ σ̂αα σ̂αλ
σ̂λθ σ̂λα σ̂λλ

 . (6.1)

The second partial derivatives ℓi j, i = (1, 2, 3) ≡ (θ, α, λ), and j = (1, 2, 3) ≡ (θ, α, λ) are previously
reported in subsection (4.1). Under some mild regularity conditions, maximum likelihood estimators
of θ, α and λ are approximately distributed as normal distribution θ̂ ∼ N(θ, σθθ), α̂ ∼ N(θ, σαα) and λ̂ ∼
N(θ, σλλ), respectively. To construct the 100 (1 − Φ)% of ACIs of the SSP R, we need to approximate
the variance estimate of it.

The delta method, which is a general approach to obtain the approximate estimates of the variance
associated with maximum likelihood estimators of the SSP R is used for this purpose; for more details,
see [43]. However, according to the delta method based on Equation (6.1), the variance of R obtained
at their maximum likelihood estimators θ and α can be approximated as:
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σ̂2
R̂ =

[
▽R̂

]T I−1(Θ̂)
[
▽R̂

]
|(θ,α,λ)=(θ̂,α̂,λ̂), (6.2)

where ▽R̂ is the gradients of R with respect to θ, α, and λ, as

[
▽R

]T
=

[
∂R
∂θ
,
∂R
∂α
,
∂R
∂λ

]
.

Finally, substituting Equation (6.1) in Equation (6.2), the following formula is obtained:

σ̂2
R̂ =

(∂R
∂θ

)2
σ̂θθ +

(∂R
∂α

)2
σ̂αα +

(∂R
∂λ

)2
σ̂λλ + 2

(∂R
∂θ

∂R
∂λ

)
σ̂θλ.

Hence, the 100 (1 − Φ)% two-sided ACI for any function of R obtained based on R̂ is given by:

R̂ ± ZΦ
2

√
σ̂2

R̂
,

where ZΦ
2

is the
(Φ

2

)
-th upper percentile of the standard normal distribution.

6.2. Bayes and E-Bayes credible intervals

To construct the corresponding Bayesian and E-Bayesian credible intervals of any function of the
SSP R, the associated MCMC simulated obtained in Subsections (4.2 and 5.2) are used, respectively. To
construct the BCIs, order the simulated samples of Bayesian MCMC estimates R(N) for N = 1, 2, ...,M
after burn-in Mo as R(Mo+1),R(Mo+2), ...,R(M). Hence, the 100 (1−Φ)% two-sided BCIs of R is given by:(

R(M−Mo)(Φ2 ),R(M−Mo)(1−(Φ2 ))

)
.

Similarly, the 100 (1 − Φ)% two-sided E-Bayesian MCMC estimates for R can be easily constructed.

7. Real Data Application

This section examines the datasets that were first described by Efron [21] . The data collection
encompasses two distinct groups of persons diagnosed with head and neck cancer. The initial dataset
displays the survival time of 58 individuals diagnosed with head and neck cancer who underwent radi-
ation therapy. Conversely, the second dataset delineates the survival time of 44 patients who received
both radiation treatment and chemotherapy. The subsequent information has been compiled:
Radio (X): 523, 583, 594, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 84, 91, 160, 160, 165, 108,
112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 146, 149, 154, 157, 160, 160, 165, 173, 176,
218, 6.53, 7, 10.42, 225, 241, 248, 273, 277, 297, 405, 417, 53.62, 63, 64, 83, 420, 440, 1101, 1146,
1417.
Radio and chemotherapy (Y): 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 319, 339, 432, 469,
68.46, 78.26, 173, 179, 194, 195, 74.47, 81.43, 84, 92, 519, 633, 725, 94, 110, 112, 119, 127, 130,
133, 140, 146, 12.2, 23.56, 23.74, 155, 159, 209, 249, 281, 817, 1776.
Transformation has been carried out upon data by dividing both sets by 20000. The estimated parame-
ter, log-likelihood values, Cramér–von Mises criterion (CVM), Kolmogorov-Smirnov (K-S) distances,
and corresponding p-values are presented for the datasets in Table 1.
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Table 1. Parameters, log-likelihood, CVM, K-S distances, and p-values of the fitted GD to
radio (X) and radio and chemotherapy datasets (Y).

Data Set Estimated Log-Likelihood CVM K-S distances p-Value

Parameters Values

Radio (X)
θ 0.151

203.350 0.258 0.172 0.056
λ 592.171

Radio and chemotherapy (Y) α 88.077 153.533 0.190 0.149 0.255

Table 1 shows that goodness of fitness statistics indicate the GD is appropriate for both real datasets.
Although the log-likelihood suggests that the radio (X) dataset may initially appear to fit the model
better, CVM and K-S distances and p-value statistics consistently favor the combined treatment radio
and chemotherapy (Y) dataset.

Figure 4. Some non-parametric plots for radio (X) dataset.

Figure 5. Some non-parametric plots for the radio and chemotherapy (Y) dataset.

Figures 4 and 5 pertaining to the original datasets indicate that the probability density function
shapes depicted through non-parametric kernel density plots corroborate the right skewness evident in
the histogram, with peak density occurring at lower values (approximately 50–100) in both datasets.
The box plot identified the outliers, demonstrating their presence in both datasets, and the tiny in-
terquartile range suggests that most data points are proximate to the median. In the violin plot, the
wide portion in the plot indicates that most of the data points are clustered in that range (0, 200) and
(0, 250) for radio (X) and radio and chemotherapy (Y) datasets, respectively. Moving higher across the
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y-axis, the violin narrows significantly, indicating fewer data points in those regions.

Figure 6. Empirical CDF, histograms with Gaussian kernel density, Q-Q, and survival func-
tion plots for radio (X) dataset after transformation.

Figure 7. Empirical CDF, histograms with Gaussian kernel density, Q-Q, and survival func-
tion plots for radio and chemotherapy (Y) dataset after transformation.

Based on the evidence shown in Figures 6 and 7, the empirical CDF and the theoretical CDF are
highly aligned, indicating that the theoretical distribution well describes the sets of data, as well as the
histogram with kernel density plot. The quantile-quantile (Q-Q) plot indicates that the dataset has a
skewed or heavy-tailed distribution, making normality assumptions invalid.

The estimation of SSP varies with the stress change time τ, consistent with the implementation of
SSPALT for the strength variable. In this case, τ is set to 0.01. Using the real data previously mentioned
above, the MLE of R is R̂ML = 0.440023, with an ACI of (0.363526, 0.516520), a length of 0.152995,
and a coverage probability (CP) of 100%. To calculate the Bayesian estimates of R, prior distributions
for the parameters θ, α, and λ are defined. Take ai = bi = 0.0001 (for i = 1, 2) of the hyperparameters
for θ and α (see [19]) for more details. Lindley’s approximation method, in addition to the Gibbs
sampling technique, is applied to generate 5000 MCMC samples for posterior analysis. For the SELF,
the Bayesian estimate R̂LS is calculated as 0.440032 using Lindley’s approximation method. Under
the PLF, R̂LP is determined to be 0.663349. Using the Gibbs sampling method, the MCMC simulation
yields R̂GS = 0.472392 under SELF, with a 95% credible interval of (0.373293, 0.570910), a length of
0.197617, and CP of 95.0%. For PLF, the corresponding Gibbs sampling result is R̂GP = 0.687308.
The E-Bayesian estimation approach utilizes Lindley’s approximation to determine prior distributions
for the hyperparameters S ı(ai, bi) (for ı, i = 1, 2), with parameters W = 0.2, V = 0.3, and c = 0.1.
SELF-based E-Bayesian estimates are R̂ELS S ı = 0.440057 and 0.440048, while PLF-based estimates
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are RELPS ı = 0.663368 and 0.663361. Using Gibbs sampling for E-Bayesian estimation under SELF,
the estimated values R̂EGS S ı are 0.477689 and 0.477588, with 95% credible intervals of (0.370849,
0.583826) and (0.365000, 0.592551), lengths of 0.212977 and 0.227551, and a CP of 95.0%. For PLF,
the corresponding estimates are R̂EGPS ı = 0.691150 and 0.691077.

Figure 8. Trace and posterior density with normal curve for MCMC results under SELF for
Efron data.

Trace graphs for the MCMC outputs of R are presented in Figure 8, demonstrating satisfactory
convergence of the MCMC technique. Furthermore, the histogram plots of the generated samples
indicate a strong alignment with the theoretical posterior density functions.

8. Simulation Studies

To illustrate the behavior of the SSP R, various combinations of initial parameter values (θ, α, λ, and
τ) and differing sample sizes were simulated in Python for 5000 iterations to compute the average per-
formance of the proposed estimators. The effectiveness of maximum likelihood estimators, Bayesian
and E-Bayesian estimators, as well as ACIs, Bayes, and E-Bayes credible intervals, based on Lindley’s
approximation method and MCMC simulation, have been evaluated in terms of mean square error
(MSE), length, and CP. Within the context of E-Bayesian estimation, the estimation of λ is derived
by the Bayesian estimation technique. A comprehensive sample comprises a random sample of size
n representing the strength component of the GD with parameters θ and λ, denoted as x1, x2, . . . , xn,
alongside a random sample of size m for the stress component from GD with parameter α, represented
as y1, y2, . . . , ym. The examined sample sizes are (n,m) = (50, 50), (50, 35), and (90, 90) across dif-
ferent scenarios of true parameter values, stress change times, and acceleration factors. The cases are
enumerated as follows:

• Case I: θ=1.8, α=0.6, λ=2.5, τ=0.4, a1, a2, b1, b2=0.001 , W=0.8, V=1.5, and c=0.5.

• Case II: θ=1.8, α=3.5, λ=2.5, τ=0.4, a1, a2, b1, b2=0.001 , W=0.8, V=1.5, and c=0.5.
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Figure 9. The heatmaps of the simulated R of the MLE, Bayesian, and E-Bayesian estimation
under Lindley’s approximation method and MCMC simulation.

The simulation results of point and interval estimates were summarized in Tables B.1.1 - B.1.4 and
B.2.1-B.2.2 in Appendix (B), yielding the following observations:

1. Estimates of R for sample size (n,m) = (50, 50) and (90, 90) exhibit the property of consistency;
that is, the MSE decreases as the sample size increases.

2. All estimates of R possess highly accurate values that are theoretically comparable.

3. While the MCMC method involves higher computational complexity due to its iterative nature,
the significant reduction in MSE justifies the additional computation time compared to Lindley’s
approximation method.

4. Bayesian and E-Bayesian estimates utilizing the MCMC approach provide accurate R estimation
with reduced MSE in comparison to Bayesian and E-Bayesian estimation employing Lindley’s
approximation method.

5. In all cases, Bayesian and E-Bayesian estimates have MSE values that are roughly equal across
all sample sizes (n,m).

6. In all cases, Bayesian and E-Bayesian estimates under SELF have lower MSE compared to those
under PLF for all sample sizes (n,m).

7. According to the heatmap in Figure 9, all estimation methods at the true value of Case II demon-
strate a lower MSE than those in Case I, except for the MLE, as well as Bayesian and E-Bayesian
estimation utilizing Lindley’s approximation method under SELF.

8. Heatmap analysis illustrated a strong dependency between parameter combinations and estimator
performance. The visual patterns indicate that under certain parameter settings, Bayesian estima-
tors demonstrated their full potential. While in the case of lowering the initial value of α (Case I),
the MSE across most of the estimation methods widened significantly.

9. A high CP% indicates that the estimates of CIs, including Bayesian and E-Bayesian estimation,
are more effective than those of ACI.
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10. The CP% of the interval estimates in Case I, takes the largest values except for the ACI estimates
compared to the true value of Case II.

9. Conclusion

This study makes a significant contribution to the literature by providing a deeper understanding of
how the stress variable, modeled by GD(α), influences the strength variables governed by GD(θ) and
GD(θ, λ) within the framework of R = P(Y < X) under SSPALT. Through a combination of the Lindley
approximation method with Gibbs sampling, alongside SELF and PLF employing INF and NINF pri-
ors, E-Bayesian estimation, and E-BCIs of R have been computed to enhance computational precision
and ensure a comprehensive and rigorous analysis. In addition to that contribution, the observed FIM
was formulated to calculate the ACI, and the maximum likelihood estimation of R was derived. The
Bayesian estimate of R and its credible interval have been obtained. The precision of the data provided
is validated by a comprehensive simulation study. All estimates are capable of producing very accurate
results; E-BCIs outperform all other Bayes CIs in terms of CP. Real-world data representing stress
and strength variables have been evaluated using MLE, Bayesian, and E-Bayesian methods. In future
research, it would be interesting to analyze the estimation concerns of the same model adopted in the
current study in the presence of other censoring schemes and different estimation techniques such as
hierarchical Bayesian estimation.

Appendix A

A.1. Determine the theoretical components of the Lindley’s approximation formula.

In our estimation problem, we calculate the approximate Bayes estimates of θ, α, and λ utilizing
Equation (4.6), and we assess the relevant expressions as follows:

ρ = log S (Θ) ∝ (a1 − 1) log(θ) + (a2 − 1) log(α) − θb1 − αb2 − log(λ)

Later on, we obtain:

ρθ =
∂ρ

∂θ
=

(a1 − 1)
θ

− b1; ρα =
∂ρ

∂α
=

(a2 − 1)
α

− b2; ρλ =
∂ρ

∂λ
= −

1
λ
. (A.1.1)

The observed FIM matrix is written as:

I(Θ̂) = −



∂2ℓ(Θ|x,y)

∂θ2

∂2ℓ(Θ|x,y)

∂θ∂α

∂2ℓ(Θ|x,y)

∂θ∂λ

∂2ℓ(Θ|x,y)

∂α∂θ

∂2ℓ(Θ|x,y)

∂α2

∂2ℓ(Θ|x,y)

∂α∂λ

∂2ℓ(Θ|x,y)

∂λ∂θ

∂2ℓ(Θ|x,y)

∂λ∂α

∂2ℓ(Θ|x,y)

∂λ2


(θ̂,α̂,λ̂)

=


−ℓθθ −ℓθα −ℓθλ

−ℓαθ −ℓαα −ℓαλ

−ℓλθ −ℓλα −ℓλλ

 . (A.1.2)

Hence, ℓi j is acquired in the following manner for i, j = 1, 2, 3:

ℓθθ = −
n
θ2

; ℓθλ = −

n∑
i=r+1

(exi − eτ); ℓαα = −
m
α2 ; ℓλλ = −

(n − r)
λ2 . (A.1.3)
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Given Equation (A.1.3), the subsequent results were deduced concerning σi j as follows:

σθθ = −
ℓλλ

ℓθθℓλλ−(ℓθλ)2 =
n−r

n(n−r)
θ2
−
(
λ
∑n

i=r+1(exi−eτ)
)2 ,

σθλ =
ℓθλ

ℓθθℓλλ−(ℓθλ)2 = −
∑n

i=r+1(exi−eτ)
n(n−r)
θ2λ2
−
(∑n

i=r+1(exi−eτ)
)2 ,

σαα = − 1
ℓαα
= α

2

m ,

σλλ = −
ℓθθ

ℓθθℓλλ−(ℓθλ)2 =
n

n(n−r)
λ2
−
(
θ
∑n

i=r+1(exi−eτ)
)2 .

(A.1.4)

The values of ℓi jk are derived as follows for i, j, k = 1, 2, 3:

ℓθθθ =
2n
θ3

; ℓααα =
2m
α3 ; ℓλλλ =

2(n − r)
λ3 . (A.1.5)

It was definitely worth emphasizing that ℓθα = ℓαθ = ℓαλ = ℓλθ = ℓλα = ℓθαθ = ℓθλθ = ℓαλθ = ℓααθ =
ℓλλθ = ℓθθα = ℓθαα = ℓθλα = ℓαλα = ℓλλα = ℓθθλ = ℓθαλ = ℓθλλ = ℓαλλ = ℓααλ = σθα = σαθ = σαλ = σλα =

0.

A.2. Determine the parametric functions and their related differentiated terms under SELF and PLF.

Given the parametric function under SELF, R = A + BC, considering its related terms A =
α

θ + α
,

B =
θα(1 − λ)

(θ + α)(θλ + α)
, and C = e−(θ+α)(eτ−1). Thus, the partial differentiation of these terms will be given

as follows:

(1) The first partial derivative with respect to θ.

Aθ = −
α

(θ + α)2 ; Bθ =
α(1 − λ)(α2 − θ2λ)
(θ + α)2(θλ + α)2 ; Cθ = −(eτ − 1)e−(θ+α)(eτ−1). (A.2.1)

(2) The second partial derivative with respect to θ.

Aθθ = 2α
(θ+α)3

Bθθ = −
2α(1−λ)

[
θλ(θ+α)(θλ+α)+(α2−θ2λ)(α+αλ+2θλ)

]
(θ+α)3(θλ+α)3

Cθθ = (eτ − 1)2e−(θ+α)(eτ−1)

(A.2.2)

(3) The first partial derivative with respect to α.

Aα =
θ

(θ + α)2 ; Bα =
θ(1 − λ)(θ2λ − α2)
(θ + α)2(θλ + α)2 ; Cα = −(eτ − 1)e−(θ+α)(eτ−1). (A.2.3)

(4) The second partial derivative with respect to α.

Aαα = − 2θ
(θ+α)3

Bαα = −
2θ(1−λ)

[
θαλ(2α−θ)−θ3λ(1+λ)+α2(2θ+3α)

]
(θ+α)3(θλ+α)3

Cαα = (eτ − 1)2e−(θ+α)(eτ−1)

(A.2.4)
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(5) The first and the second partial derivative with respect to λ.

Bλ = −
θα

(θλ + α)2 ; Bλλ =
2θ2α

(θλ + α)3 . (A.2.5)

(6) The second-order partial derivative with respect to θ, after taking the first derivative with respect
to λ.

Bλθ =
α(θλ − α)
(θλ + α)3 = Bθλ. (A.2.6)

Appendix B

B.1. Average estimates (first row), biases (second row), and MSE (third rows)

Table B.1.1. Initial values involves θ=1.8, α=0.6, λ=2.5, τ=0.4, a1 = a2=2, b1 = b2=1,
and actual R=0.209346.

n, m MLE Bayesian estimation

Lindley’s approximation MCMC method
method

SELF PLF SELF PLF
50, 50 0.151070 0.151117 0.389125 0.234376 0.482437

-0.058276 -0.058229 0.179778 0.025029 0.273090
0.003396 0.003391 0.032320 0.000626 0.074578

50, 35 0.152374 0.152422 0.389077 0.234313 0.482825
-0.056972 -0.056925 0.179731 0.024967 0.273479
0.003246 0.003240 0.032303 0.000623 0.074791

90, 90 0.152755 0.152231 0.388068 0.231273 0.480199
-0.056591 -0.057115 0.178721 0.021927 0.270853
0.003203 0.003262 0.031941 0.000481 0.073361

Table B.1.2. Initial values involves θ=1.8, α=3.5, λ=2.5, τ=0.4, a1 = a2=2, b1 = b2=1,
and actual R=0.643934.

n, m MLE Bayesian estimation

Lindley’s approximation MCMC method
method

SELF PLF SELF PLF
50, 50 0.507919 0.507424 0.712212 0.653524 0.807832

Continued on next page
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Table B.1.2– Continued from previous page

n, m MLE Bayesian estimation

Lindley’s approximation MCMC method
method

SELF PLF SELF PLF
-0.136014 -0.136509 0.068278 0.009590 0.163898
0.018500 0.018635 0.004662 0.000092 0.026863

50, 35 0.509102 0.507843 0.711770 0.651516 0.806305
-0.134832 -0.136090 0.067837 0.007582 0.162372
0.018180 0.018521 0.004602 0.000057 0.026365

90, 90 0.509300 0.508155 0.711832 0.652456 0.807414
-0.134633 -0.135779 0.067898 0.008523 0.163480
0.018126 0.018436 0.004610 0.000073 0.026726

Table B.1.3. Initial values involves θ=1.8, α=0.6, λ=2.5, τ=0.4, W=0.8, V=1.5, c=0.5,
and actual R=0.209346.

n, m E-Bayesian estimation

Lindley’s approximation method MCMC method

S 1(θ, α) S 2(θ, α) S 1(θ, α) S 2(θ, α)

SELF PLF SELF PLF SELF PLF SELF PLF
50, 50 0.151143 0.389206 0.151151 0.389233 0.236284 0.484420 0.236245 0.484384

-0.058203 0.179859 -0.058195 0.179887 0.026938 0.275074 0.026898 0.275038
0.003388 0.032349 0.003387 0.032359 0.000726 0.075666 0.000724 0.075646

50, 35 0.152484 0.389157 0.152506 0.389184 0.235432 0.483988 0.235438 0.483998
-0.056862 0.179811 -0.056840 0.179837 0.026086 0.274642 0.026092 0.274652
0.003233 0.032332 0.003231 0.032342 0.000680 0.075428 0.000681 0.075434

90, 90 0.152295 0.388100 0.152317 0.388111 0.231765 0.480719 0.231834 0.480787
-0.057051 0.178754 -0.057029 0.178765 0.022419 0.271373 0.022488 0.271441
0.003255 0.031953 0.003252 0.031957 0.000503 0.073643 0.000506 0.073680
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Table B.1.4. Initial values involves θ=1.8, α=3.5, λ=2.5, τ=0.4, W=0.8, V=1.5, c=0.5,
and actual R=0.643934.

n, m E-Bayesian estimation

Lindley’s approximation method MCMC method

S 1(θ, α) S 2(θ, α) S 1(θ, α) S 2(θ, α)

SELF PLF SELF PLF SELF PLF SELF PLF
50, 50 0.507594 0.712451 0.507649 0.712531 0.651563 0.806625 0.651564 0.806627

-0.136340 0.068518 -0.136285 0.068597 0.007630 0.162691 0.007630 0.162694
0.018589 0.004695 0.018574 0.004706 0.000058 0.026468 0.000058 0.026469

50, 35 0.508181 0.712007 0.508293 0.712085 0.649168 0.804865 0.649083 0.804814
-0.135752 0.068073 -0.135640 0.068152 0.005234 0.160931 0.005149 0.160881
0.018429 0.004634 0.018398 0.004645 0.000027 0.025899 0.000027 0.025883

90, 90 0.508497 0.711951 0.508610 0.711989 0.651193 0.806636 0.651269 0.806682
-0.135437 0.068017 -0.135323 0.068056 0.007260 0.162702 0.007335 0.162748
0.018343 0.004626 0.018312 0.004632 0.000053 0.026472 0.000054 0.026487

B.2. Upper bound (first rows), lower bound (second rows), average range (third rows), length (fourth rows),
and Coverage Probability (fifth rows) of the estimates

Table B.2.1. Initial values involve θ=1.8, α=0.6, λ=2.5, τ=0.4, a1 = a2=2, b1 = b2=1,
W=0.8, V=1.5, c=0.5 , and actual R=0.209346.

n, m ACI BCIs E-BCIs

S 1(θ, α) S 2(θ, α)

50, 50 0.12612 0.18723 0.17337 0.17322
0.17625 0.28518 0.30573 0.30591
0.05013 0.09794 0.13236 0.13269

4.82 83.68 88.94 88.94

50, 35 0.11176 0.17181 0.16703 0.16692
0.19349 0.31783 0.31405 0.31410
0.08173 0.14602 0.14701 0.14718
28.58 88.36 90.92 90.92

90, 90 0.11886 0.17700 0.18520 0.18516
0.18602 0.30840 0.28332 0.28336
0.06715 0.13140 0.09812 0.09820
18.92 87.00 86.00 86.00

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 348–378



374

Table B.2.2. Initial values involve θ=1.8, α=3.5, λ=2.5, τ=0.4, a1 = a2=2, b1 = b2=1,
W=0.8, V=1.5, c=0.5 , and actual R=0.643934.

n, m ACI BCIs E-BCIs

S 1(θ, α) S 2(θ, α)

50, 50 0.45460 0.54945 0.57836 0.57820
0.56409 0.73472 0.71960 0.71968
0.10950 0.18527 0.14124 0.14148

2.80 94.80 93.26 93.26

50, 35 0.43831 0.53457 0.54051 0.54009
0.57973 0.73712 0.74579 0.74599
0.14142 0.20255 0.20528 0.20591

9.12 95.28 94.74 94.74

90, 90 0.46633 0.57587 0.55351 0.55328
0.54965 0.71657 0.74107 0.74130
0.08332 0.14070 0.18756 0.18802

0.26 94.20 93.70 93.70
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