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Abstract 

Water contamination represents a significant threat to both ecological 

sustainability and human life. 80% of the global population suffers from severe 

water pollution. Different types of pollutants adversely affect water resources. 

The most significant health risks associated with drinking water in developing 

countries are caused by pathogens, which are microorganisms causing diseases 

including bacteria, viruses, and parasites that are transmitted via the oral-fecal 

pathway. Most water-borne diseases result from microbial pollution, according 

to the WHO's drinking water quality guidelines, fourth edition. It is essential to 

diagnose these pathogens rapidly to impede the spread of the corresponding 

diseases. This review presented the most common bacterial detection techniques, 

microbiological culturing method, enzyme-linked immunosorbent assay 

(ELISA), and polymerase chain reaction (PCR) technique, and discussed the 

laser induced fluorescence (LIF) spectroscopy technique as a potential method 

for bacterial detection, which is a sensitive, accurate, and dependable method for 

quickly and immediately identifying harmful bacteria. 
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1. Introduction 

1.1. Water pollution 

Water scarcity exists in many areas worldwide, with over one billion people 

missing the accessibility of clean water (Kılıç, 2020). According to some recent 

estimates, about 900 million people in the world are without access to safe 

drinking water and about 2.6 billion people are without improved sanitation 

facilities (Nations, 2012; Organization, 1950). Water contamination is a key 

factor in the water crisis (Dwivedi, 2017). Water pollution refers to any change 

in the physical, chemical, or biological characteristics of water that has a negative 

impact on the health of all living beings (DeZuane, 1997). The term "water 

pollution" refers to the procedure resulting in water being unsafe for 

consumption due to the introduction of excessive levels of harmful substances 

(Olaniran, 1995). 80% of the global population suffers from severe water 

pollution (Owa, 2013). 

 Different types of pollution adversely affect water sources (Chaudhry & Malik, 

2017), such as the discharge of heated water from geothermal or nuclear power 

plants and industries where water is used as a coolant results in rising water 

temperature, which is a form of physical pollution. As the temperature rises, the 

dissolved oxygen in the water reduces which adversely affects aquatic life. 

Furthermore, in case organic materials are present in water, the multiplication of 

bacteria and depletion of the dissolved oxygen will occur (Davidson & 

Bradshaw, 1967). Dye, cosmetic, and petroleum waste are significant examples 

of organic contaminants that constitute substantial hazards to animals, plants, 

and humans and cause severe burns, vomiting, epileptic attacks, and 

carcinogenic effects (Hanafi & Sapawe, 2020). Inorganic nitrogen compounds 

(nitrate, nitrite, and ammonium) and inorganic phosphates that result from the 

mailto:sarah.ezz.ha@gmail.com


LIRA (Vol.1-Issue 2- Jan 2025)                                                                      Retna et al.,   

__________________________________________________________________________  

 

Page 73 of 38 

release of agricultural, domestic, and industrial waste. Nitrite causes hazards to 

human health, such as stomach and liver diseases and esophageal cancer (Rekha 

Kathal et al., 2016). Radioactive materials may be released into water sources, 

where they are consumed by living things and passed on to people, resulting in 

different genetic mutations. The most significant radiation that results in bone 

cancer is radium. Additionally, a physiological alteration results from the 

accumulation of radioactive substances in water (Eisenbud & Paschoa, 1989; 

Hatch, 1953). Pathogenic bacteria, viruses, and parasites are examples of 

significant contaminants that cause biological pollution. The feces of both people 

and animals are the carriers of these contaminants. When they combine with 

wastewater or agricultural runoff water, they are transmitted to the water, 

resulting in many infectious diseases in humans, like cholera (Pandey et al., 

2014). Low water quality is estimated to cause increasing mortality worldwide 

every year, with pathogenic bacteria thought to be responsible for approximately 

26% of all mortality (Carr & Neary, 2008). 

1.2. Pathogenic bacteria 

Pathogens are microbes causing disease including viruses, bacteria, and parasites 

that are transmitted by the oral-fecal pathway and are the most significant health 

hazards related to drinking water in developing countries (Ashbolt, 2004; Gerba, 

2009). Human feces and untreated sewage discharge into water are the two main 

sources of pathogens found in water resources (Naidoo & Olaniran, 2014). 

Clostridium perfringens, Escherichia coli, Enterococcus faecalis, and Coliforms 

bacteria are the most frequent pathogens in water (Some et al., 2021). The most 

typically investigated biomarkers determining the degree of fecal pollution are 

E. Coli and Enterococcus. faecalis (Hussain et al., 2007). Extended 

environmental survival—especially in the maritime environment—is a 

distinguishing characteristic of Enterococci over coliforms such as E. coli 

(Figueras et al., 2010). They are consequently two times as resistant to treatment 

as fecal coliform (Scully Jr et al., 1999). Enterococcus faecalis is the causative 

agent of up to 90% of human enterococcal infectious diseases (Kayaoglu & 

Ørstavik, 2004). E. faecalis is now one of the three most prevalent pathogens 

responsible for clinical infections in the aged and people with immune 

deficiencies, such as urinary system infections, bacteremia, and bacterial 
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endocarditis (Morrison & Wenzel, 1986; Murray, 2000).  The primary agent of 

water-related infections like digestive tract infections is E. Coli (Ashbolt, 2004). 

A variety of diseases, such as dysentery, sepsis, urinary system infections, and 

diarrhea-associated consequences resulting in hemolytic-uremic disorder, can be 

induced by Escherichia coli (E. coli) (Pokharel et al., 2023). These illnesses still 

claim the lives of hundreds of millions of individuals each year all over the world 

(Croxen & Finlay, 2010; Donnenberg, 2002). Intestinal and urinary system 

infections are the most prevalent infectious diseases detected in healthcare 

settings that are typically caused by E. coli (Chakupurakal et al., 2010; Murugan 

et al., 2012). It is essential to diagnose these pathogens rapidly to impede the 

spread of the corresponding diseases (Hoorfar, 2011; Tängdén & Giske, 2015).  

1.3. Most common bacterial detection techniques 

The most prevalent techniques employed for bacterial identification are the 

microbiological culturing method, enzyme-linked immunosorbent assay 

(ELISA), and PCR technique (Shen et al., 2021; Wang et al., 2021). 

I. Microbiological culturing technique 

The bacterial culture method is a process in which the enrichment of a specific 

bacteria on specific mediums is used to separate it from the surrounding 

microorganisms (Kim & Kim, 2021). Numerous culture mediums are available, 

including liquid cultivation media and semi-solid agar plates (Bonnet et al., 

2020). Agar-based multi-purpose media such as blood agar have been utilized in 

the cultivation procedure because they enable the enrichment of a variety of 

pathogens (Kim et al., 2022). It is crucial to employ a selective culture medium 

to identify specific bacteria (Rajapaksha et al., 2019). Since the selective cultural 

medium limits the number of circulating microorganisms that can proliferate, 

increasing the possibility of separating specific bacteria (Váradi et al., 2017). 

Species-level characterization for several prevalent and newly discovered 

diseases of samples from nature is unreliable by applying culture techniques and 

biochemical approaches (Dong et al., 2008). Conventional detection methods are 

unsuitable in the case of the intended bacteria being encased in biofilms. 

Pathogenic bacteria may pass into a viable but non-culturable phase after long-

term contact with water, during which they maintain their infectious capability 
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but cannot be identified by culture (Cenciarini-Borde et al., 2009). For instance, 

several microorganisms, like Helicobacter pylori and Vibrio cholera, cannot be 

cultivated on prevalent culturing media as they can be found in food, water, or 

ecological samples in a stage known as "viable but not cultivable" (VBNC) (Law 

et al., 2015b; Ramírez-Castillo et al., 2015). Furthermore, 

bacterial concentrations could be sufficient to induce infection even when they 

are too low for identification by cultures (De Kievit & Iglewski, 2000). These 

procedures take a long time, it takes 18 to 72 hours to cultivate bacteria to a 

density that can be detected (Zeng et al., 2018). Genus- and species-

level identification follows isolation, and commercially accessible kits of 

biochemical assays are commonly used for this purpose (Herbel et al., 2013).  

II. Biochemical techniques 

One of the most effective traditional techniques for identifying pathogenic 

bacteria is the biochemical procedure, which is typically carried out the 

following the culture procedure (Chauhan et al., 2017). Biochemical analyses 

mainly work on variations in bacterial biochemical reactions (Rodrigues et al., 

2017). For example, the capacity to decompose starch (Hameed et al., 2018). 

Several drawbacks have been observed with this method (Granada, 2018). In 

particular, certain biochemical tests are insufficient for detecting specific 

bacteria, necessitating the use of a supplementary set of biochemical analyses 

(Ogunware et al., 2020).  Another drawback has been investigated regarding the 

precision of the biochemical method. For instance, the latest research examining 

the antibacterial effect of dyes from soil bacteria indicated that E. coli, which is 

positive for methyl red and has even been employed as a traditional positive 

control for the methyl red test, is negative (Qayyum et al., 2020). It may be 

concluded that the biochemical method of detecting bacterial infections in 

nutrients, water, and ecosystems is ineffective and imprecise (Nnachi et al., 

2022). 

III.  Immunoassay technique 

According to the concept that antibodies and antigens bind selectively 
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immunological assays are employed as a bacterial detection method (Chang et 

al., 2016). The prevalent immunological methods for identifying pathogenic 

bacteria are the enzyme-linked immunosorbent assay (ELISA), immuno-

magnetic separation (IMS) (Välimaa et al., 2015), and enzyme immunoassay 

(EIA) (Chapman et al., 1997; Qadri et al., 1990). Compared to a culture, they 

take a shorter time for the test (Mattingly et al., 1988). 

A. Enzyme-linked immunosorbent assays (ELISA) 

Using a specific antibody that has been attached to an enzyme when the antibody 

and antigens are linked, an unidentified bacterial antigen is identified via ELISA. 

A perceptible color variation will result from the correct attachment (Koivunen 

& Krogsrud, 2006). False-positive results could arise from the antibody's 

influence on the interaction and cross-reactivity, which could lead to low 

selectivity and precision. ELISA is frequently used in conjunction with 

additional identification methods to avoid this (Diaz-Amigo et al., 2010; 

Hayrapetyan et al., 2023). This method lacks the ability for real-time 

identification of bacteria (Alahi & Mukhopadhyay, 2017). 

IV. PCR technique 

One of the most widely used techniques for identifying bacteria is the polymerase 

chain reaction (PCR) (Fratamico, 2003; Oh et al., 2016). Each type of 

bacteria is characterized by its nucleic acid composition  (Jensen et al., 1993; 

Naravaneni & Jamil, 2005). Nucleic acid (DNA or RNA) can be multiplied to 

produce billions of copies from a limited number of copies in a sample through 

PCR to assist pathogen detection and diagnosis (Bouchez et al., 2016). The 

polymerase enzyme is used in a sequence of heat-cycling procedures to 

accomplish this. High temperatures are used in the decomposing process of the 

double-stranded DNA molecules. Following that, the polymerase enzyme 

extends the primer-template complex after selected primers bind to 

complementary DNA strands. The amplified PCR product is observed as bands 

after being stained with ethidium bromide on an electrophoresis gel (Maurye et 

al., 2017). Quantitative PCR analysis determines the quantity of the DNA of a 

particular pathogen per mL of water (Brettar & Höfle, 2008). PCR technique is 

insensitive in case of a low concentration of pathogenic bacteria in water, so a 
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culture procedure must be performed for multiplication before starting the PCR 

procedure (Noble & Weisberg, 2005).  

Common sales reagents for PCR techniques are the Takara Genomic DNA 

extraction kit (Liu et al., 2019), QI Amp DSP DNA mini kit (Allard et al., 2019), 

and KAPA HiFi Hot Start Ready-mix (Pereira et al., 2017). One of the drawbacks 

of the PCR technique is the costly prices of these reagents (Hønsvall & 

Robertson, 2017). This method is technologically and financially inappropriate 

for countries with restricted resources because it requires efficiently prepared 

labs and expert technicians (Nnachi et al., 2022). Furthermore, the precision of 

the PCR process may be affected by particular variables, such as the efficiency of 

enzymes and DNA template characteristics, that inhibit primer annealing to the 

DNA template (McDOWELL et al., 1999). PCR requires that the intended 

genetic code be known beforehand (Blankenship & Yayanos, 2005). For on-site 

testing, the PCR technique is unsuitable because of the complicated procedure 

that requires bacterial genome extraction and the utilization of a thermocycler 

(Ma et al., 2021; Saptalena et al., 2015).  

Most conventional detection techniques for water quality use chemicals, 

however, using chemicals during testing may result in additional pollution to the 

ecosystem (Chen et al., 2022). Moreover, the highly costly chemicals used, the 

long time to obtain results, and the complicated operation methodology 

constitute significant drawbacks of the techniques mentioned above (Lazcka et 

al., 2007; Shih et al., 2015). The time-consuming conventional detection 

methods of pathogens may result in fatal harm to the patients undergoing 

medication because they are at risk of bacterial infections resistant to antibiotics 

(Giana et al., 2003). As a result of these limitations, a rapid method of diagnosis 

of pathogens is highly needed to preserve public health (Law et al., 2015a; 

Ramírez-Castillo et al., 2015). Intrinsic fluorescence spectroscopy is highly 

recommended as a rapid technique for bacterial detection throughout numerous 

samples because it is an easy, reliable, and affordable way to identify pathogens 

without the need for labelling (M. S. Ammor, 2007; Shelly et al., 1980). Laser-

induced fluorescence spectroscopy (LIF) has been widely used to monitor water 

quality (Du et al., 2022b; McLellan et al., 2012). 
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V. Laser-induced fluorescence spectroscopy technique  

When atoms absorb photon energy, they undergo a transition into a 

certain excited energy state, then they de-excite and return to the ground state via 

multiple pathways, among them fluorescence emission (Telle et al., 2007). 

Therefore, various mechanisms and phenomena that occur during the de-

excitation process need to be studied to understand how matter interacts with 

light radiation.  

A. Luminescence phenomena 

The light emission known as luminescence occurs when incident photons 

are absorbed by matter and released as light photons; the emission wavelength is 

specific to the matter (Ashraf et al.).  

Types of Luminescence: 

Based on the energy source, luminescence is categorized into 

photoluminescence, electroluminescence, chemiluminescence, and 

bioluminescence (Murthy, 2015). The phenomenon of photoluminescence 

results from light photon absorption (Shinde et al., 2012). There are two 

pathways of photoluminescence: fluorescence and phosphorescence based on the 

type of excited state and lifetime (Valeur & Berberan-Santos, 2011).  

B. Decay Process of Excited States: 

A Jablonski diagram is mainly employed for explaining the mechanisms 

that occur throughout both light absorption and emission process (Jabłoński, 

1935), as shown in Figure 1 (Bose et al., 2018b). It also demonstrates the 

transition probabilities that take place in excited states (Douglas et al., 2013). 

The singlet states (S) and triplet states (T) represent the electronic states of most 

matters (Itoh, 2012). Various vibrational energy levels exist in these electronic 

energy states (denoted by 0, 1, 2, etc.) (Möller & Denicola, 2002). The transition 

probabilities and the excitation energy determine the possibility of the molecule 

existing in one of the singlet excited states, Sn (Cartwright, 1978). Transitions 

are allowed from singlet excited states, where the excited orbital electron is 

coupled (on opposing spin) with the second orbital electron of the ground state, 



LIRA (Vol.1-Issue 2- Jan 2025)                                                                      Retna et al.,   

__________________________________________________________________________  

 

Page 79 of 38 

to the ground state (Yang et al., 2016). Transitions are not allowed from triplet 

excited states, where the excited orbital electron shares the same spin direction 

as the ground-state electron, to the ground-state (Lower & El-Sayed, 1966). 

Multiple mechanisms often take place upon light absorption (Berera et al., 2009).            

 

    Fig. 1. A Schematic illustration of the Jablonski diagram. (Bose et al., 2018b)   

1. Fluorescence 

When molecules are excited to a higher excited singlet state (Sn), they decay to 

the higher vibrational level of the lower excited singlet state through a process 

called internal conversion (Zigmantas et al., 2001). Vibrational relaxation causes 

molecules at a higher vibrational level to rapidly descend to the lowest 

vibrational level of this state by transferring energy to other atoms through 

collisions (Rich & Treanor, 1970). Internal conversion is a non-radiative decay 

to lower excited energy that occurs between two electronic states with identical 

multiplicity, for instance, triplet-to-triplet or singlet-to-singlet states (Kalyani et 

al., 2017). When two electronic energy states are sufficiently close to cross-

connect their vibrational energy levels, as is the case between S1 and S2, the 

internal conversion is easier to accomplish (Macpherson & Gillbro, 1998).  

Internal conversion typically occurs before emission because the fluorescence 

lifetime is  10-8 seconds (Noomnarm & Clegg, 2009). The emission of 
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fluorescence typically results from an excited state that has reached thermal 

equilibrium, the lowest vibrational level of S1, to a higher vibrational level of the 

ground state, followed by fast decay to the lowest vibrational level of the ground 

state in 10-12 seconds (Knox, 1999). 

 

2. Phosphorescence 

When the vibrational levels of two states of excitation (T1, S1) intersect, 

electrons in the S1 state change their spin orientation as in the first triplet state T1 

(Samanta et al., 2017). This process is termed intersystem crossing (Chuang et 

al., 1987). Phosphorescence is the emission from the triplet state T1 to the singlet 

ground state, which is typically altered to longer wavelengths (lower energy) 

than fluorescence (Fleischauer & Fleischauer, 1970). Phosphorescence rates are 

many times lower than fluorescence because the transition from T1 to the singlet 

ground state is very restricted (Crosby & Demas, 1970). Typically, the emission 

spectrum is used to represent data from the fluorescence spectrum (Warner et al., 

1977). It represents fluorescence intensity vs wavelength (in nm) or wavenumber 

(in cm-1) (Jameson et al., 2003). 

C. Characteristics of the fluorescence emission spectrum 

1. Stock shift 
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Emission energy is less than absorption energy as demonstrated in the Jablonski 

diagram (Lichtman & Conchello, 2005). Consequently, fluorescence 

predominantly shifted to longer wavelengths (Mukherjee & Chattopadhyay, 

1995), as shown in Figure 2 (Mazi, 2019).  

 Fig. 2. A representation diagram of Stokes's shift. (Mazi, 2019) 

This principle is known as the "Stokes  shift" was first demonstrated in 

Cambridge in 1852 by Professor G. G. Stokes (Stokes, 1854). 

2. Emission Spectra is independent of the excitation wavelength  

Kasha's rule states that the fluorescence emission spectrum is independent of the 

wavelength of excitation (Kasha, 1950). The fluorophore decays to the lowest 

vibrational level of S1 after the extra energy is rapidly lost following excitation 

into higher energy states (Bogdanov, 2002). Due to the quick relaxation that 

takes place in approximately 10-12 seconds, the emission spectra are typically 

unrelated to the excitation wavelength (Cushing et al., 2014). 

 3. Mirror image rule 

This rule states that the emission spectrum of a fluorophore is frequently a mirror 

image of its absorption spectrum, especially when associated with the S0 to S1 

transition (Sassara et al., 1997). The equivalent transitions contributing to both 
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absorption and emission processes are the cause of this phenomenon (Meredith 

et al., 2006). Moreover, the ground and excited state vibrational energy levels 

are spaced identically. Consequently, there is a similarity in the vibrational 

structures observed in the emission and absorption spectra (Laane, 1999).     

 

Fig.3. A diagram illustrates the Mirror-image rule through anthracene absorption and emission 

spectra. The numbers 0, 1, and 2 refer to vibrational energy levels. (Laane, 1999) 

D. Factors Affecting Fluorescence        

1. The nature of substituent groups 

The fluorescence intensity is enhanced by molecules with electron-donating 

functional groups such as hydroxyl and amino groups (Zhao et al., 2021), 

weakened by molecules with electron-withdrawing functional groups such as 

Nitro, and carboxylic (Ansi et al., 2020), and uninfluenced by molecules with 

other groups, such as So3H or NH4+ (Xiao et al., 2022). 

2. Effect of temperature 

While certain temperature-related procedures taking place in a matter may alter 

the fluorescence intensity, the fluorescence lifetime is typically not affected by 

temperature (Paviolo et al., 2013). An explanation for the drop in the 

fluorescence intensity with higher temperatures is the rising rate at which 
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electronic energy transforms into vibrational energy (internal conversion) 

(Andersson et al., 1995). The alternative theory is the intersystem crossing 

process or transition from a singlet excited state to a nearby nonfluorescent 

triplet state (Patil et al., 2013). 

3. Quenching process 

Quenching is the term describing any process causing the loss in the fluorescence 

intensity of a sample, and quenchers are compounds that may cause this loss 

(Green et al., 1992). Molecular oxygen, which inhibits nearly all 

recognized fluorophores, is one of the widely existing quenchers (Ware, 1962; 

Wilkinson, 1997). Halogens, amines, and acrylamide are also significant 

quenchers (Davis, 1973). The Stern-Volmer equation, equation 1 can illustrate 

the fluorescence quenching (Lakowicz, 2006): 

[Q]                   Eq. [1]·  Fτ·  q/I = 1 + KoI 

Where: 

: the intensity without a quencheroI 

I: the intensity with a quencher 

: the quencher constantqK 

: the fluorescence lifetimeFτ 

Q: the quencher’s concentration 

4. Solvent effect 

The solvent utilized in the fluorophore solution can have an impact 

on  fluorescence spectra (Diwu et al., 1997). The variation of the position, 

intensity, and broadness of the fluorescence emission band are all indications of 

the solvent influence (Gemeda, 2017). The Fluorescence spectrum tends to alter 

to longer wavelengths (known as "red shift") as the solvent polarity is raised 

(Zhang et al., 2017).  

5. Fluorophore concentration  

There is a direct relationship between the concentration of the fluorophore and 

the fluorescence intensity (Bose et al., 2018a), according to the equation 
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that follows, equation 2 (Zacharioudaki et al., 2022). 

C)                Eq. [2]·b·(Ɛ· Φ·  oI· = k  FI 

Where: 

: Fluorescence intensityFI 

k: a constant related to the instrument 

: the incident radiation oI 

Φ: the quantum yield 

Ɛ: the molar absorptivity 

b: the path length 

C: the concentration of a molecule 

E. Fluorophores  

In contrast to chromophores, which only absorb light, fluorophores absorb light 

and then radiate it back (Blohm et al., 2020; Pittalis et al., 2012). There are two 

main categories of fluorophores: intrinsic and extrinsic (Sahoo, 2011). 

Fluorophores introduced to a material to enhance its fluorescence emission 

spectrum are termed extrinsic fluorophores (Gonçalves, 2009). The 

fluorophores naturally found in cells and tissues are known as intrinsic 

fluorophores (Talamond et al., 2015). Nucleic acids, aromatic amino acids, and 

coenzymes are examples of intrinsic fluorophores that exhibit signature 

fluorescent characteristics and can be used as biologic indicators (Dunlap, 2008). 

Coenzymes and aromatic amino acids, like tryptophan, tyrosine, and 

phenylalanine, constitute the majority of bacterial intrinsic fluorophores (M. S. 

J. J. o. f. Ammor, 2007). Since aromatic amino acids make up 1% to 5% of the 

dry weight of a bacterium, they can be applied as biosensors to identify the kind, 

quantity, and class of bacteria (Pan & Transfer, 2015). Microorganisms differ in 

the types and amounts of lipids, coenzymes, and amino acids, which cause 

variations in the fluorescence emission spectra that can be used to distinguish 

between various bacterial species (Du et al., 2022b). Quantum yield, 

fluorescence lifetime, extinction coefficient, the maximum wavelength of 

absorption and emission, and their bandwidths (full width at half maximum) 
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constitute the significant optical characteristics of fluorophores (Joung et al., 

2020). 

F. Characteristics of fluorophores  

The fluorophore quantum yield and fluorescence lifetime are the two most 

critical features (Zhang et al., 2014). 

1. Quantum yield 

It's represented as the ratio of photons emitted to photons absorbed (Crosby & 

Demas, 1971).  

 As shown by this equation, equation 3 (Lakowicz & Lakowicz, 1999): 

𝖰 =
Γ

Γ+knr
                                    Eq. [3] 

Q is the quantum yield, Γ is the number of emitted photons and knr is the 

nonradiative decay rate. 

Any decay that doesn't induce photon emission is termed nonradiative decay 

(Schuurmans & Van Dijk, 1984). Such as transferring excess energy from 

an excited state to water's rotational and vibrational modes (Prezhdo & Rossky, 

1996). If the rate of nonradiative decay is significantly lower than the rate of 

radiative decay, the quantum yield may approach unity, knr << Γ (Hanifi et al., 

2019). 

2. Lifetime 

It is known as the median duration time the fluorophore stays in the excited state 

before its decay to the ground state (Douglas, 1966). Since the fluorescence 

emission takes place quickly,  the fluorescence lifetime is approximately a few 

nanoseconds (Clegg et al., 2003). The measured lifetime is the inverse of the 

overall decay rate, as shown in equation 4.1 (Alcala et al., 1987). The intrinsic 

lifetime is the fluorophore's lifetime regardless of any nonradiative decay and is 

determined by equation 4.2 (Beechem & Brand, 1985). Fluorophores in a 

sample can be distinct, utilizing the average lifetime of the excited state of each 

fluorophore (Fries et al., 1998).  



Laser Innovations for Research and Applications                                    

___________________________________________________________________________  

 

τ =
1

Γ+knr
                                                       Eq. [4.1] 

  τn =1/Γ                                                           Eq. [4.2]    

G. Fluorescence spectroscopy 

It is a precise light emission technique in which a light source induces the 

substance molecules (DaCosta et al., 2003). Then, the relaxation of these 

molecules occurs by emitting radiation that can be detected, and the intensity is 

measured (Naresh, 2014). The fluorescence emission spectra represent the 

vibrational levels in the electronic ground and the excited states respectively 

(Yamanouchi et al., 1990).  

I. Fluorescence spectroscopy components 

1. Light source 

Several light sources may induce fluorescence emission, such as lasers, light-

emitting diodes, arc lamps (which include deuterium, xenon, or mercury), and 

tungsten-halogen bulbs (Khan et al., 2019). 

2. Filters and monochromators 

A monochromator or spectrum filter is employed to specify the wavelength 

of excitation for broad-spectrum sources of light (Brydegaard et al., 2011). 

3. Detectors 

A photomultiplier tube (PMT), avalanche photodiodes (APD), or a charge-

coupled device (CCD) are commonly used to reveal the fluorescence radiation 

and measure its intensity (Pawley, 2019). Most fluorescence spectroscopy 

devices employ a photomultiplier tube (PMT) because of its sensitivity to reveal 

the fluorescence emission at low intensities (Simões & Dong, 2018). It is 

composed of a vacuum glass tube involving a photocathode where incident 

light stimulates electron generation, an anode, and many dynos for multiplying 

electrons (Polyakov, 2013). The photomultiplier’s spectral range is influenced 

by the substance type of photocathode (Seib & Aukerman, 1973). When the 
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excitation source employed in spectroscopic devices is a laser they are known as 

laser-induced fluorescence spectroscopy (Hausmann et al., 2014). 

II. Laser characteristics in LIF spectroscopy 

With lasers, as opposed to broad-spectrum sources, it is possible to excite 

fluorophores very specifically because they are monochromatic, extremely 

coherent, and highly directional (Shin et al., 2021). Any wavelength, ranging 

from the near ultraviolet to the near-infrared, can be available using laser devices 

(Johansson & Pettersson, 1997). Spectroscopic devices supplied with lasers may 

significantly minimize or even eliminate interference. Furthermore, real-time 

acquisition of high sensitivity, high temporal and spatial resolution, and 

concurrent detection of several factors (Rajapaksha et al., 2019). Pulsed lasers 

are the most prevalent type used in LIF spectroscopy (Daily, 1997). Their higher 

power makes them distinct from continuous lasers (Petrash, 1972). High peak 

power pulses enable frequency mixing, doubling, or tripling in non-linear 

material, such as crystals (Lin, 1990). This results in the generation of high-

powered UV and VUV laser pulses, which enable LIF to be applicable in many 

fields (Raarup, 2001).  

III. Tunable femtosecond laser in LIF spectroscopy 

Femtosecond laser sources are commonly employed due to their superior 

characteristics over nanosecond and continuous laser sources, including a 

shortened pulse duration and a more substantial peak intensity. Additionally, 

laser pulses can be centered in a small area, resulting in a highly significant 

power density (Hannaford, 2004). Concerning living organisms, the main 

significant characteristic of femtosecond laser systems is their avoidance of heat 

influence due to the short exposition time through the fs pulse, which has a 

favorable impact on the survival of biological samples (Vyunisheva et al., 2023). 

The femtosecond laser's electric field is either equivalent to or superior to the 

nucleus's Coulomb field, making atomic-level detection feasible (Krainov & 

Smirnov, 2002). Laser-based approaches to diagnosis were substantially 

enhanced with the advent of femtosecond (fs) lasers (Xie et al., 2021). In LIF, 

the femtosecond lasers have several benefits, including being adaptable 

Femtosecond lasers in LIF offer numerous advantages over conventional 



Laser Innovations for Research and Applications                                    

___________________________________________________________________________  

 

spectrofluorometers, such as being tunable sources with higher specificity and 

sensitivity that enable LIF to be employed for a variety of applications (Valeur 

& Berberan-Santos, 2013).  The Ti: sapphire laser device is the most 

predominantly employed femtosecond laser source in spectroscopic techniques 

(Fisher et al., 1997).  

H. The working principle of LIF 

Laser-induced fluorescence spectroscopy (LIF) works based on exposing the 

sample under study to accurate, monochromatic laser light to induce a 

fluorescent response (Ghervase et al., 2010). The key principle of LIF 

spectroscopy in the detection of microorganisms is that diverse microorganisms, 

such as bacteria, viruses, fungi, etc. differ in their molecular structure and have 

a variety of fluorophores, including coenzymes and amino acids (Hill et al., 

2013). When they are stimulated by laser radiation at a specific 

wavelength, distinct fluorescence emission spectra are obtained (Ramanujam, 

2000). Consequently, fluorescence emission spectra are considered as a 

fingerprint and the fluorescence intensity is highly proportional to the 

concentration (Pu, 2017; Sierra et al., 2005). These characteristics  allow laser-

induced fluorescence (LIF) spectroscopy to be an efficient approach for the 

identification and classification of microorganisms like pathogens 

and facilitate the creation of an exact device for real-time detection (Hülseweh 

& Marschall, 2013). 

 

I. LIF spectroscopy advantages 

It is a fast detection method (Utkin et al., 2011), requiring little to no sample 

methodology (Lymer et al., 2020), and technically easy (Ahmed et al., 1978). 

When applied in optimal circumstances, LIF is a non-invasive, non-contact 

detection method that maintains the objective surface intact (Fotakis et al., 2006). 

Technological developments, particularly in spectroscopic instruments, 

enable LIF devices to be portable and facilitate real-time and outdoor detection 

(Angheluta et al., 2008; Marques da Silva & Borissovitch Utkin, 2018). 

Compared to near-IR (infrared) spectroscopy, LIF is a non-destructive technique 
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that can be sensitive at long distances (Gameiro et al., 2016; Minasny et al., 

2009). Employing the UV laser as the excitation source has been demonstrated 

to significantly increase LIF spectroscopy sensitivity (Sivaprakasam et al., 

2004). 

J. LIF spectroscopy applications  

This method has evolved from its origin in the 1970s into an analysis approach 

in a wide variety of applications, including industry, biochemistry, biophysics, 

medicine, ecological preservation, and even heritage studies (Borisova et al., 

2013; Grönlund et al., 2006; Spizzichino et al., 2015; Utkin et al., 2014). Based 

on intrinsic fluorophores in bacteria, laser-induced fluorescence (LIF) 

spectroscopy is particularly efficient for identifying bacteria (Du et al., 

2022a).The LIF technique was used to differentiate between E. coli and E. 

faecalis by irradiating them with femtosecond laser pulses (100 fs) delivered by 

the INSPIRE HF100 laser system which was pumped by a mode-locked 

femtosecond Ti: sapphire MAI TAI HP laser, the repetition rate was 80 MHz. 

By analyzing the LIF spectrum of the two bacteria, it was found that the 

fluorescence emission spectrum of E. coli represents a fluorescence peak at 502 

nm, and the fluorescence peak of E. faecalis was at 512.5 nm. E. coli and E. 

faecalis have different LIF fluorescence peak central wavelengths and FWHM, 

which might be used as a fingerprint (Ezzat et al., 2024).  

 

 

2. Conclusion  

This article review discussed the most prevalent techniques employed for 

bacterial identification, the microbiological culturing method, enzyme-linked 

immunosorbent assay (ELISA), and PCR techniques. It was found that the highly 

costly chemicals used, the long time to obtain results, and the complicated 

operation methodology constitute significant drawbacks of these techniques. 

Thus, this review pointed out the femtosecond LIF spectroscopy technique that 

is highly recommended as a rapid technique for bacterial detection throughout 
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numerous samples because it is an easy, reliable, and affordable way to identify 

pathogens without the need for labelling.  
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