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Zero-valent iron/copper nanoparticles were effectively achieved utilizing an extract and a green 
synthesis technique. Dispersive X-ray spectroscopy (EDAX), Fourier transform infrared 
spectroscopy (FT-IR) and scanning electron microscopy (SEM) demonstrate the Ficus Benjamina 
nano zero-valent iron/copper FB-nZVFe/Cu synthesis. The obtained nanoparticles are between 19 
and 63 nm in size. The different circumstances were examined to adjust the removal efficiency of 
Malachite green. Langmuir data (R2 = 0.999), with (qmax = 16.33 mg g-1) better fits the adsorption 
data. Consistent with kinetic studies, Malachite green uptake is pseudo-second order. All things 
considered; FB-nZVFe/Cu is a dedicated unique sensible for extracting Malachite green from 
solutions. When we used linear regression analysis to appraise the impacts of functional 
parameters, we discovered that they accounted for over 97% of the variables influencing the 
removal process. The data collected, and the successful analysis indicate that the FB-nZVFe/Cu 
green adsorbent is an intriguing material for removing Malachite green from wastewater.  
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INTRODUCTION 

Malachite green (MG) is a cationic dye solvable in 
water and classified as a triarylmethane dye; it is a 
green crystalline powder [1, 2]. In industry, MG is 
extensively utilized in dyeing, distilleries, and 
producing paints and printing inks. On the other hand, 
it is also most commonly used as an external 
antiseptic on ulcers and wounds, and not orally 
because it is hazardous, toxic, and may cause cancer 
[3]. Furthermore, it is also  used as an antiseptic and 
fungicide to control fish disease and parasites in the 
aquaculture industry [4, 5]. Large volumes of 
Malachite green-colored wastewater are released 
into streams contaminated with dye from industrial 
finishing and dyeing processes. This causes harmful 
impacts on aquatic life and also affects the 
environment and human health [6, 7].  Among the 
worst contaminants in the water is Malachite green, 
which damages the aquatic ecosystem by lowering 
dissolved oxygen, blocking sunlight, and destroying 
the aesthetic quality of the water [8]. The detrimental 
effects of this dye on human health include its high 
toxicity and danger to mammalian cells, as well as its 
ability to promote liver tumors [9]. The MG dye has a 
molecular structure depicted in Figure 1. 

To overcome these limitations, researchers have 
concentrated on creating novel methods utilizing 
nanotechnology. Fe nanoscale particles have been 
employed for water treatment since the 1990s due to 
their benefits, which include their unique adsorption, 
wide scattering of reactive sites, and good surface 
area [10, 11]. Copper nanoparticles have a large 
surface area, low cost, and [chemical–physical] 

characteristics [12-14]. Among these zero-valent 
metals, Cu-NPS are the most stable [15, 16]. The 
eradication of pollutants from aquatic environments 
is a significant function of nanoparticles [17, 18]. 
Recently, NaBH4 has been used to manufacture 
nanoscale particles, but these particles lead to 
considerable contamination [10,19,20]. Conventional 
techniques such as vacuum sputtering, thermal 
decomposition, physical approach [attrition], and 
sonochemical synthesis were used to create Fe-NPS or 
Cu-NPS. Due to their numerous limitations, such as 
high temperatures, pressures, or energy 
requirements, these techniques are relatively 
expensive [21, 22]. Finding alternate, affordable, and 
ecologically friendly techniques is consequently 
necessary. Green synthesis is a low-cost and beneficial 
method for creating nanoparticles. It uses plant leaf 
extract its abundant in capping and reducing agents 
resembling flavonoids, and polyphenols, which 
convert iron and copper ions to zerovalent and 
prevent accumulation [23-25].  

N(Me)2

N(Me)2  
Figure 1. Malachite green molecular structure 
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The benefits of plants in the water treatment process 
include their availability, affordability, effectiveness, 
and non-toxicity [26-28]. A new concept for removing 
pollutants is Ficus Benjamina nano zerovalent 
iron/copper FB-nZVFe/Cu.  Extracting from Ficus 
Benjamina leaves offers a quicker, more cost-
effective, and eco-friendly way to create 
nanoparticles of the right size [29-31]. Green 
nanoparticles stop the growth of bacteria, fungi, and 
other microorganisms [32, 33]. Green synthesis-
produced copper and iron nanoparticles have so far 
shown promise in eliminating a wide range of 
pollutants [34, 35]. Limited information has been 
made on the use of green synthetic iron-copper 
bimetallic nanoparticles despite studies showing that 
the green synthesis of nZVFe/Cu is feasible. 
Numerous investigations have demonstrated that 
bimetallic nanoparticles outperform monometallic 
ones in terms of efficiency [36, 37]. 

𝑛𝑛𝑛𝑛𝑛𝑛+2 + 𝑛𝑛𝑛𝑛𝑛𝑛+2 +4𝑛𝑛𝑛𝑛𝑛𝑛 − (𝑂𝑂𝑂𝑂)𝑛𝑛    
→  𝑛𝑛𝑛𝑛𝑛𝑛0 / 𝑛𝑛𝑛𝑛𝑛𝑛0+ 4𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑂𝑂 + 4𝑛𝑛𝑛𝑛+    (1) 

The simplest and most effective method for treating 
water is adsorption using green plant nanoparticles 
[38], it is also a cost-effective method. There are many 
different types of functional groups in it. Additionally, 
they don't release chemicals, are non-toxic, and have 
no effect on the quality of treated water. The novel 
concept of Ficus Benjamina-nZVFe/Cu is employed to 
eliminate malachite green. Thus, the target of this 
study is to appraise FB-nZVFe/Cu's potential for the 
restoration of MG-polluted water. Nanomaterials are 
profitable and simple to produce and have high 
removal efficacy. 

MATERIALS AND METHODS  
Chemicals  

The chemicals employed were of analytical quality 
and high clarity. The pH was adapted by employing 
0.1M HCl and 0.1M NaOH.  

Synthesis of FB-nZVFe/Cu 

Ficus Benjamina (FB) leaves were cleaned with tap 
and then distilled water to get rid of dirt; next dried in 
a furnace at 50°C.  A 2.5 mm sieve was then used to 
filter the leaves after they had been chopped into tiny 
bits. 20 grams of leaves and 100 mL of distilled water 
were intermixed in an Erlenmeyer flask, heated to 60 
oC for 5 minutes, and then filtered. The filtrate was 
then kept at 4oC until it was needed as a capping and 
reducing agent [39, 40]. 1.93g of FeSO4.2H2O and 
0.18g of CuSO4.5H2O were dissolved in 100 mL of 
distilled water to create a solution of Fe[Ⅱ] and Cu[

Ⅱ]. 50 mL of FB leaf extract supplemented to solution 
drop by drop with stirring for 20 minutes to synthesize 
FB-nZVFe/Cu nanoparticles. The development of 
nanoparticles was demonstrated by the solution's 
color changing from yellow to brown and finally black. 
After centrifugation for 10 minutes, distilled water 
and anhydrous alcohol were used to wash the FB-
nZVFe/Cu particles. After being heated to 65 °C in a 
drier oven, FB-nZVFe/Cu was kept in a desiccator until 
it was needed [39-42]. 

Characterization technique 

FT-IR spectroscopy for multi-functional group 
analysis, EDAX, and SEM (JEOL-JSM-5410, Japan) was 
utilized to explore the morphological surface of FB-
nZVFe/Cu sample.  

Batch adsorption studies 

In batch adsorption, 0.4 g L-1 of FB-nZVFe/Cu was 
mixed with MG solution at 5, 10, 15, and 20 mg L-1 at 
λmax 617 nm to assess the removal process. The MG 
removal was estimated utilizing the ensuing formula:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 [%]  =  [𝐶𝐶𝑜𝑜 −  𝐶𝐶𝑒𝑒]/𝐶𝐶𝑜𝑜 ×  100          (2) 

where C0 and Ce, are the MG starting and equilibrium 
concentration (mg L-1). The adsorption capability of 
MG was identified utilizing the subsequent formula.   

qe [mg g-1] = [[Co − Ce] V]/ m             (3) 

 where V is the solution volume (L), m is the adsorbent 
weight (g), and qe is the adsorption capability (mg g-

1)[43]. 

Adsorption isotherms study 

Freundlich is an experiential computation utilized for 
stamping multilayered dissimilar surfaces and is 
donated by this equation [44]: 

𝐿𝐿𝐿𝐿 𝑞𝑞𝑒𝑒 =  1/𝑛𝑛 𝑙𝑙𝑙𝑙 𝐶𝐶𝑒𝑒 +  𝑙𝑙𝑙𝑙 𝐾𝐾𝑓𝑓               (4) 

Adsorption intensity and capacity are measured by 
the Freundlich constants n (dimensionless) and Kf 
((mg g-1) (mg L-1)1/n) and computed using the intercept 
and slope values of the graph of ln Ce vs. ln qe. 

This equation provides Langmuir's estimate of the 
smooth mono-layer of MG across an adsorbent 
surface [45]: 

Ce / qe= 1 / [KL qmax] + Ce/q max                        (5) 

Where qe (mg g-1) is the quantity of dye absorbed 
/mass of employed adsorbent and Ce (mg L-1) is the 
dye equilibrium concentration. The maximal 
monolayer adsorption capacity, qmax (mg g-1), and KL (L 
mg-1) were acquired utilizing the slope and intercept 
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of the graph of Ce vs Ce/qe.    

Kinetic study 

Pseudo-first-order (PFO) and pseudo-second-order 
(PSO) kinetic models were utilized to explain the 
behavior of solid-liquid systems at various contact 
times, such as 15, 30, 45, 69, 90, and 120 minutes by 
0.4 g L-1 of adsorbent,  pH 8, and 100 rpm of stirring 
[39, 40]. 

The PFO utilized to designate the adsorption rate, 
which is stated as follows: 

ln[qe-qt] = ln qe- K1 t                    (6) 

The plot of ln (qe-qt) against t yields the first-order 
equilibrium constant K1, and the concentration of the 
dye's adsorption values in media at equilibrium and 
at time t is (qe and qt).       

The most widely utilized and simplified kinetic 
equations are PSO equations. The following is a 
typical description of the pseudo-second-order 
kinetic model: 

       𝑡𝑡/𝑞𝑞𝑞𝑞 =  1/ 𝐾𝐾2𝑞𝑞𝑞𝑞2 + 𝑡𝑡/𝑞𝑞𝑞𝑞                (7) 

where K2 (g/mg.min) represents the adsorption rate 
constant and qe and qt (mg g-1) represent the 
adsorption capacities at equilibrium and time t (min), 
respectively. Drawing t/qt versus t is the method used 
to determine K2 values. 

Reusability study  

The adsorbent's reusability is a crucial aspect in 
determining its cost-effectiveness and meeting both 
ecological and economic demands.  MG was absorbed 
into FB-nZVFe/Cu at a concentration of 10 mgL-1. The 
studies were replicated up to five times by subjecting 
FB-nZVFe/Cu to a new MG solution to investigate 
reusability further. Before being utilized for the 
subsequent adsorption recycling, the FB-nZVFe/Cu 
was always extracted from the medium by 
centrifugation for 10 min, cleaned with ethanol, and 
dried in a furnace at 45 °C.  

Statistical analysis utilizing Linear modeling algorithms 

IBM SPSS Statistics 24 was utilized to do a linear 
regression analysis to inspect the influence of diverse 
operating factors. The ANOVA program displayed the 
sum of squares and the overall model's impact. If the 
P value is less than 0.05, the model is regarded are 
successful [46, 47]. 

Response Surface Methodologies [RSM] The 
influence of varying working settings was assessed, 

and the results obtained validate the practical 
findings. The effect is considered significant for the 
removal process if the P value is less than 0.05; if the 
P value is more than 0.05, the effect is respected as 
not significant. Equation 8 can be used to infer the 
removal equation:  

R % = Bo + B1X1 + B2X2+ B3X3+ B4X4 + B5X5  (8) 

The variables X1, X2, X3, X4, and X5 represent the 
influences of pH, contact duration, adsorbent 
dosage, stirring rate, and concentration, respectively; 
B0 is a constant; and R is the removal percentage [48, 
49]. 

Artificial neural network [ANN] To estimate the 
removal efficacies of wastewater contaminants, an 
artificial neural network [ANN] with input, hidden, 
and output layers called "Multilayer Perceptron 
Backpropagation [MLPB]" was created. One of the 
neural network topologies that is most frequently 
utilized is multilayer perception. The hidden layer 
held several neurons, whereas the input layer 
received data from the five testing aspects (pH, 
contact time, amount of adsorbent, stirring speed, 
and beginning concentration). Trial and error were 
used to determine the number of neurones and 
hidden layers. Typically, all accessible data is 
separated into standard values for testing methods 
[20%], validation [20%], and training [60%]. Through 
an ongoing simulation process, the ANN's link weight 
and bias are adjusted through network training. To 
change the weights and biases, the mean squared 
error [MSE], which traveled back from the output 
layer to the input layer, was calculated by comparing 
the output with the target. ANN models that use 
backpropagation show the significance and 
normalized significance of each covariable in addition 
to the link concerning trained and tested values [50]. 

RESULTS AND DISCUSSION  
Characterization of FB-nZVFe/Cu 

SEM and EDAX Fiscus Benjamina-nZVFe/Cu particles 
have a semi-spherical form and span in size from 
about 19 to 63 nm, consistent with the SEM image. As 
seen in Figure 2, numerous pores enhance the MG 
removal procedure. Bimetallic nZVFe/Cu particle 
synthesis is indicated by EDAX analysis. The presence 
of bimetallic is shown by the Fe and Cu peaks. Figure 
3 displays additional peaks of the fiscus extract, like C, 
O, Si, and S [39, 41]. 

FT-IR measurements The FT-IR spectra of FB-
nZVFe/Cu before the reaction is displayed in Figure 4 
and fall between 400 and 4000 cm-1. The incidence of  
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Figure 2. SEM of FB-nZVFe/Cu sample 

 

 
 

Figure 3. EDAX of prepared FB-nZVFe/Cu sample 

 

 
Figure 4. FT-IR spectrum prepared FB-nZVFe/Cu sample 
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polyphenols, which might increase material stability, 
are indicated by the bandwidth at 3400 to 3000 cm-1, 
which was ascribed to the O-H band [13, 39, 51]. The 
band of C=O was detected at 1615 cm-1[51, 52]; Ficus 
amide was found at 1539 cm-1 [42, 53, 54]; 
polyphenols' aromatic ring C=C stretched vibration 
was found at 1362 cm-1[12, 40, 53]; and C-O-C 
symmetric stretched vibration was found at 1102 cm-

1[55, 56]. Figure 4 displays the survival and intensity 
of phenolic compound peaks, which are a reliable 
indicator of synthesized FB-nZVFe/Cu [39-42]. 

Effect of operational parameters 

Effect of pH The pH procedure, which regulates 
adsorbent surface charge and capacity as well as 
adsorbate solubility qualities via alkalinity or acidity, 
is the utmost crucial in the MG elimination process. 
The effectiveness of MG elimination at various pH 
levels 4, 6, 8, and 10, as exemplified in Figure 5, the 
elimination efficiency was 19, 30, 57, and 48% as FB-
nZVFe/Cu dose was 0.4 g L-1, the concentration was 
10 mg L-1, and the stirring was 100 rpm.  It was 
perceived that pH 8 is the best proper for the MG 
removal. The zero charge point of Ficus Benjamina is 
a low 4.85 [57]. The positively charged surface of FB-
nZVFe/Cu caused repulsion with Malachite green at 
pH< pHpzc (At pH4), resulting in low removal 
effectiveness. Additionally, the removal will be 
significantly diminished at a higher pH (pH10) since a 
significant portion of the material will precipitate in 
the solution. Maximum Malachite green elimination 
occurs at pH 8 owing to the attraction between 
negatively charged FB-nZVFe/Cu and  positively 
charged MG, as well as a large number of available 
unoccupied sites that interfere with the bimetallic 
nanoparticles and the contaminant [58, 59]. 

The effects of contact time Utilizing 0.4 g L-1 of FB-
nZVFe/Cu at pH 8, the effects of various times 30, 45, 
60, 90, and 120 minutes on the removal of Malachite 
green 10 mg L-1 were investigated. The stirring rate 
was set at 100 rpm, and the removal percentage was 
52.57, 62, 63, 64, and 64%, as depicted in Figure 6. 
Gradually increasing the contact time increased the 
number of molecules created by the electrical 
attraction between negatively charged FB-nZVFe/Cu 
and positively charged MG molecules, increasing the 
concentration of pollutants in the empty spaces of the 
nanoparticles. The effectiveness with which the MG 
dye is removed increases when the contact time 
interval increases, reaching a maximum and 
remaining relatively constant. A contact time of 45 
minutes results in the highest % of elimination. 

Effect of adsorbent dosage The efficacy of removing 
Malachite green was assessed related to the dose 
impact of the adsorbents, which varied from 0.3 to 0.6 
g L-1, as well as other operational factors, 45 minutes 
and a pH of 8. As seen in Figure 7, the ideal adsorbent 
dosage for removing Malachite green was determined 
to designate around 0.4 g L-1. The concentration of 
MG is 10 mg L-1, and the removal percentages were 
44, 62, 76, and 90%. As anticipated, the number of 
unoccupied sites increases with rising FB-nZVFe/Cu 
dosage, followed by an increase in removal.  

Effect of stirring rate The removal of MG by FB-
nZVFe/Cu as an indication of the stirring rate is 
demonstrated in Figure 8. The stirring rate was 
adjusted between 100 and 250 rpm, pH 8 and time of 
45 minutes. The removal ratios were 62, 63, 63, and 
63 percent, while the MG concentration was 10 mg L-

1. 100 rpm was determined to be the ideal stirring rate 
for MG removal.  

Effect of the concentration Ficus-ZVFe/Cu particle 
removal tests were conducted on MG solutions with 
varying concentrations 5, 10, and 15 mgL-1, at pH 8, 
for 45 minutes and with an adsorbent dosage of 0.4 g 
L-1. The removal was 89, 62, 43, and 32 %, as seen in 
Figure 9. Due to the presence of many vacant 
adsorption sites, which are big about the pollutant 
concentration, and the percentage of removal 
without rising concentration, the removal ratio is high 
at low concentrations at the start of the study.  

Adsorption isotherm  

The two most popular isotherms applications, 
Freundlich and Langmuir isotherms, predict and 
estimate the adsorption capability of FB-nZVFe/Cu, as 
illustrated in Figures 10–12. According to Table 1, 
Langmuir model had a maximum adsorption 
capability of 16.33 mg g-1 and was well fitted with 
isotherms in both linear and non-linear forms by 
having better determination coefficients R2 and a 
lower error total than Freundlich. 

Kinetics studies 

As illustrated in Figures 13–15, Table 2 demonstrates 
that PSO model fits the data more accurately than 
PFO, both linearly and non-linearly. For Malachite 
green, the value qe [cal]= 16.99 is almost equivalent 
to qe [exp]= 16.2. The findings indicate that the PSO is 
being followed by MG absorption on FB-nZVFe/Cu. 

Statistical analysis 

After calculating the impact of the subsequent 
variables on the removal strategy, R2 = 0.980 was  
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Figure 5. Effect of pH on Malachite green removal 
 

 
Figure 6. Effect of contact time on Malachite green removal 
 

 
Figure 7. The optimum dose and uptake for Malachite green 
removal 

 
Figure 8. Effect of stirring rate on Malachite green removal 
 

 
Figure 9. Effect of concentration on Malachite green removal 
 

Table 1. Isotherm models for removal of Malachite green 

Parameters Freundlich Langmuir 
          Kf= 12.30 

n= 8.311 
          Qo= 16.33 
b= 2.796 

 - Linear  
R2 0.91 0.999 
 - Non-Linear  
Errors:   
CHI  0.1884 0.1306 
ERRSQ 2.0534 1.9630 
HYBRD 0.1703 0.1277 
MPSD 0.0144 0.0084 
ARE 0.1811 0.1619 
EABS 2.3436 2.4176 
Error sum 4.9512 4.8092 
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Figure 10. Freundlich for Malachite green contributing component 
 
 

 
Figure 11. Langmuir for Malachite green contributing component 
 

 
Figure 12. Isotherm studies for nonlinear models 

 

Table 2. Kinetic models for the removal of Malachite green 

Parameters PFO PSO 
 Qe= 7.94 

K1= 0.058 
Qe= 16.63 
K2= 0.015 

 - Linear  
R2 0.978 0.999 
 - Non-Linear  
Errors:   
CHI  0.265 0.018 
ERRSQ 6.704 0.270 
HYBRD 1.847 0.019 
MPSD 0.129 0.001 
ARE 0.709 0.064 
EABS 10.289 0.934 
Error sum 19.943 1.307 

 

 
Figure 13. The PFO kinetics model for Malachite Green 

 

 
Figure 14. The PSO kinetics model for Malachite green 

 

 
Figure 15. Kinetic studies for nonlinear models. 
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determined. Given the extremely low estimate error 
(3.61299), this indicates that the variables under 
study accounted for over 98% of all the elements 
influencing the process. The data provided by the 
ANOVA program demonstrated that the model is 
successful when the P value is less than 0.05. 

Response Surface Methodologies (RSM) Utilizing 
linear regression analysis (IBM-SPSS Statistics), the 
implication of several considerations was inspected; 
the findings corroborate the empirical findings. All 
factors had an impact on the removal approach, 
according to the data in Table 3. However, the stirring 
rate's effect was deemed to be insignificant when the 
P value was more than 0.05, meaning it could be 
disregarded during the removal process. The removal 
equation can be inferred by using the B values 
displayed in Table 3, which are as follows:  

R% = Bo + B1X1 + B2X2+ B3X3+ B4X4 + B5X5                            (8) 

= 64.972 + (−4.924) 𝑋𝑋1 + (0.295) 𝑋𝑋2 + (145.764) 𝑋𝑋3
+ (0.006) 𝑋𝑋4 + (−3.551) 𝑋𝑋5 

The variables X1, X2, X3, X4, and X5 represent different 
variables in the given equation. They include the 
effects of pH (4, 6, 8, and 10), contact time (15, 30, 45, 
60, 90, 120, and 150 min), adsorbent dose (0.3, 0.4, 
0.5, and 0.6 g L-1), stirring rate (100, 150, 200, 250, and 
300 rpm), and concentration (5, 10, 15, and 20 mg L-

1).  

Artificial neural network 

The Multilayer Perceptron neural network model 6-4-
1 was used to train the ANN model. Sample training 
and testing were used for MG removal, with no results 
excluded. A total of 24 runs were directed, with the 
sum of squares errors for training and testing of 0.727 
and 0.632, respectively, and relative errors of 0.090 
and 0.126. To advance the artificial intelligence of the 
output layer (elimination percentage), Figure 16 
displays neural network models with five covariables 
as input layers coupled in a hidden layer and bias. The 
normalized value and the predicted values differ 
slightly, as seen in Figure 17. Figure 18 illustrates the 
actuality of the result and the efficacy of the model 
results in defining the adsorption of MG onto the FB-
nZVFe/Cu surface by showing a slight discrepancy 
between the residual value and the prediction value 
(-10, 10%). Figure 19 illustrates the significance of 
each covariable in the removal efficiency, revealing 
that stirring rate was the least effective parameter 
and pH was the most effective. The normalized 
importance is reliable with analyses of impact of RSM 
statistical algorithm and operational parameter.  

Table 3. Malachite green statistical analysis 

Model B Sig. 
(Constant) 

pH 
Time 
Dose 

Stirring 
Concentration 

64.972 
-4.924 
0.295 

145.764 
0.006 
-3.551 

0.008 
0.030 
0.014 
0.000 
0.775 
0.000 

 

 
Figure 16. Malachite green multilayer perceptron neural network 
 

 
Figure 17. Malachite green predictive values 

 

 
Figure 18. Malachite green residual values 
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The ANN outcomes were in concord with 
experimental data and RSM results.  

Reusability study 

As shown in Figure 20, removal efficiency is reduced 
with each round of remedies. Therefore, after being 
utilized up to five recycles, respectively, the removal 
efficiency was 60, 58, 55, 53, and 51%. Even after the 
fifth recycling, MG's elimination efficiency remained 
strong. The reduction in removal suitability may have 
been brought on by an irreversible filling of 
adsorption sites or by the loss of nano-absorbent. 
After five recycling cycles, the regenerated adsorbent 
still had good adsorption capacity. According to these 
findings, green-nZVFe/Cu has a great chance of being 
employed frequently to remove MG without 
noticeably lowering removal suitability.  

Finally, the outcomes obtained indicate that FB-
nZVFe/Cu is an ecological adsorbent that effectively 
removes Malachite green dye from wastewater and 
yields high-quality handled effluent after five 
recycles. 

 
Figure 19. Malachite green importance for each covariable 

 
Figure 20. Reusability cycles 

CONCLUSIONS   

Green zero-valent Fe/Cu nanoparticles are used in 
this study to remove MG under a variety of operating 
conditions. At pH 8, the maximum amount of MG was 
eliminated. With 0.4 g L-1 of FB-nZVFe/Cu, a stirring 
rate of 100 rpm, a pH of 8, and a contact time of 45 
minutes, the removal efficiency was between 89 and 
32% when Malachite Green was used at 
concentrations of 5, 10, 15, and 20 mg L-1. The 
removal efficacy rose by 46% (C0 = 10 mg L-1) when 
the dose was raised from 0.3 to 0.6 mg L-1. A more 
significant correlation coefficient (R2 = 0.999) with 
qmax = 16.33 mg g-1 designates that Langmuir model is 
more proper with the isotherm. With a greater R2 

than PFO, the PSO model better fits the kinetic model 
data. The study's findings indicate no distinction 
between linear and non-linear models. After five 
uses, the substance still operates well, removing 
more than 50% of the material. Ficus Benjamin is used 
to create iron and copper nanoparticles in a green 
way. This substitutional process is environmentally 
beneficial and can result in high-quality treated 
wastewater.  
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