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Abstract:

Social media advertising is creating a revolution in digital marketing. It offers businesses an unparalleled and significant
opportunity to instantly connect with millions of active users around the world. This paper presents a marketing model
that merges two pivotal approaches: direct word-of-mouth promotion and advertisements on social media platforms. The
model is used to examine their critical impact on consumer behavior. The existence of steady states is explored through
graphical representations of nullclines, and their local stability is examined using the coefficients of the characteristic
equation. Our results suggest that the model undergoes a Hopf bifurcation, which highlights the presence of periodic
solutions. Additionally, a sensitivity analysis is performed to evaluate how changes in parameters impact clients. Our main
findings emphasize the substantial impact of social media advertising on sales. Consequently, the model offers valuable
and perceptible insights for developing effective promotional strategies. These strategies drive consumer engagement and
increase revenue.
keywords: Social media, marketing, stability, sensitivity analysis, bifurcation.

1 Introduction

Marketing is not only a process but also a driving
force that captures consumers’ attention, enhances
product visibility, and creates unforgettable brand
identity. There are numerous methods to market a
product or service. This paper focuses on two such
methods: direct word-of-mouth and advertisements on
social media platforms. Social media has become an
integral part of our lives, enabling us to communicate,
share content, and gather information on online
platforms. These platforms come in various forms,
including forums, social networking sites, and
bookmarking services. Well-known examples include
X, Facebook, Instagram, LinkedIn, Wikipedia,
Pinterest, and Google Plus [1,2]. Advertising on
social media platforms significantly influences
consumers’ perceptions of products and their
purchasing decisions. Creative advertisements convey
compelling ideas that capture attention and spark
desire to buy, building brand awareness and
implementing measures for long-term profitability. In
contrast, short-term strategies typically focus on
reducing prices of goods or services to generate
immediate revenue [3].

Advertising on social media platforms is widely
used to increase product and service awareness,
promote brands, retain existing customers, and attract
new prospects. Consumers check online reviews to
learn more about products and assess companies’
credibility, reputation, and background before making
purchases. Additionally, social media facilitates
knowledge sharing and expertise exchange,
accelerating innovation and enabling new product
development based on consumer feedback and
recommendations. Capitalizing on the surge in online
shopping, many businesses, both new and established,
have launched promotional activities on social media
platforms to enhance brand visibility and boost sales.
Given that advertising and word-of-mouth effects are
dynamic economic phenomena, numerous studies
have utilized the Innovation Diffusion Theory since
its emergence in the 1960s, owing to its significant
economic relevance [4]. Various mathematical models
have been developed to analyze new product
marketing, and sales promotions have been
extensively examined from both mathematical and
economic perspectives. Many of these models focus
on explaining new product diffusion [3].
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Word-of-mouth (WOM) communication is a
widespread and fascinating phenomenon. People can
share their experiences about products with their
family and friends. Their positive or negative
comments impact the purchase decision. WOM
network significantly influences the performance of
viral marketing [5]. Word-of-mouth equity enables
companies to measure how much word-of-mouth
communication influences the success of brands and
products. For instance, when Apple’s iPhone was
launched in Germany, its share of word-of-mouth
conversations was smaller than that of the market
leader. However, the iPhone’s influence was much
stronger because of the buzz generated by its earlier
launches in other countries. Consequently, the
iPhone’s word-of-mouth equity score jumped up by
30% because three times as many individuals
endorsed it compared to competing phones. In this
context, sales driven by recommendations of the
iPhone exceeded the sales of Apple’s paid advertising
by some six times. Two years after its release, the
iPhone achieved sales of almost 1 million units a year
in Germany [6].

Mathematical modelling is systematically
representing real-life problems in a mathematical
form. This involves solving and analyzing the
mathematical problems arising in reality with their
interpretation in a logical or applicable model. In the
event of direct or simple access to the real object,
system, or situation being infeasible, the need for a
model becomes apparent. For example, architects
resort to building physical models of structures that
they wish to build. In the same way, human models
wear clothes designed by fashion designers who also
create them. In terms of children’s toys, cars and
trains are toys that depict ordinary objects, which are
usually simplified by a mathematical model of
complicated systems. These examples show how
physical as well as mathematical models transform
concepts into workable patterns in a manner that
makes it possible to analyze forecasts and make
decisions [7]. There are other examples of
mathematical modeling, such as ecological balance
[8,9]. Our understanding of it is heavily dependent on
mathematical models of ecosystems. Forecasting and
controlling natural systems, these models assist in
establishing conservation strategies and ensuring
biodiversity [10,11].

In [12], Feichtinger introduced an advertising
diffusion model and investigated how advertising
effectiveness influenced goods diffusion between
prospective purchasers and clients. Later, Landa
improved Feichtinger’s model by incorporating the
influence of marketing activities and analyzing its
dynamic behavior [13]. In [14], Nicoleta analyzed the
advertising diffusion model by accounting for a time
lag caused by economic, cultural, social, and other
influencing factors. In [15], Yang and Zhang
developed a stochastic diffusion model that accounted
for the impacts of word-of-mouth and advertising on
product diffusion. In [16], Paolo et al. employed

statistical correlation models to analyze consumer
behavior and addressed several methodological
challenges in implementing discrete graphical models
for market basket analysis data. In [17], Jiang and Ma
examined a differential advertising model with
internet sales promotions and applied bifurcation
theory to determine the conditions for the existence
and stability of periodic solutions. In [3], Nie Peidi
utilized the logistic curve to describe the change of
advertising influence over time. Promotions were
considered as factors influencing the stability of
differential advertising models by triggering
bifurcations and potentially leading to chaotic
behavior. In real-world scenarios, when the total cost
is fixed, companies can optimize their promotion
strategies by adjusting promotional parameters to
maximize revenue and, ultimately, profits.

The paper’s primary aim is to investigate the
impact of word-of-mouth and social media
advertisements on consumer behavior simultaneously.
We will use the model of Australian scholar
Feichtinger [12] and add to it the new compartment
that represents advertisements on social media
Holling type II. We use the saturation effect because
people can’t see all advertisements on social media.
Our model provides traders with theoretical guidance
for taking action in response to changes in the market.

This paper is organized as follows. In Section 2,
we design the proposed model based on Feichtinger’s
advertising diffusion model. Section 3 provides a
qualitative analysis of the model. Section 4 presents
numerical simulations to deepen our understanding of
the model. Finally, Section 5 presents the conclusion
of this study.

2 Mathematical model

Word of mouth is a significant factor in
impacting consumers’ decisions when making
purchases. Prior to making a purchase, many
consumers make a point to ask for suggestions from
friends and family. A favorable recommendation can
greatly influence their choice to select a specific
product or service. In Feichtinger’s advertising
diffusion model [12], he assumed that the market’s
population can be divided into two distinct states:
U(t) is the number of prospective purchasers, and
V (t) is the number of clients. The model is:

dU
dt = k−αUV 2 +bV,
dV
dt = αUV 2 − (b+ p)V.

(1)

According to his marketing initiatives, he assumed
that new individuals were consistently entering the
market, becoming prospective customers at an
average rate of k > 0. He also supposed that αUV 2

represents the interaction between prospective
purchasers and clients, and α is the rate at which
clients attract prospective purchasers. The term V 2

means that the impact of clients on prospective
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purchasers grows quadratically, so as the number of
clients increases, their ability to influence potential
buyers grows at an increasing rate. This suggests that
having more clients triggers a snowball effect, which
significantly increases the number of new prospective
purchasers. It was assumed that current customers
switched to a competitor brand at a consistent rate of
b > 0, with the magnitude of this factor being affected
by the emergence of other related brands or
companies offering similar products. Since
individuals had the option to switch back to the
original brand, they continued to be part of the
potential customer group. Moreover, in a scenario
where current customers permanently departed from
the market due to mortality, this occurred at a rate of
p > 0.
Let u = αk

(b+p)pU , v = p
k V , τ = (b+ p)t, γ = ak2

(b+p)p2 ,

φ = b
(b+p) , we get

du
dτ

= γ − γuv2 + γφ(v−1),
dv
dτ

= uv2 − v.
(2)

In today’s digital age, marketing products to boost
sales relies not solely on word of mouth but also
hinges on online advertisements. Hence, our model is
designed with the inclusion of a novel compartment
n(t) that signifies the number of advertisements on
social media platforms. Advertisements on social
media platforms motivate individuals to shift from
prospective purchasers to consumers at rate cu n2

n2+d .
On the other hand, social media advertising has a
naturally limited effect on the public. This is because
individuals cannot view all social media
advertisements, so a saturated function is utilized. We
assume that the growth rate in social media
advertising as r(1− q v

v+e )v, where q ∈ (0,1). Ads on
social media are growing at a rate rv. However, as
clients base expand, this r diminishes due to a factor
F(v) = rq v

v+e [1]. Over time, the effectiveness of
certain social media advertisements in enticing
individuals to become customers may diminish.
Therefore, social media promotions diminish with a
rate of r0(n− n0), with n0 representing a fixed value.
Subsequent to these assumptions, the non-linear
system transforms into the following:

du
dτ

= γ − γuv2 + γφ(v−1)− cu n2

n2+d ,
dv
dτ

= uv2 − v+ cu n2

n2+d ,
dn
dτ

= r(1−q v
v+e )v− r0(n−n0).

(3)

Table (1) provides a detailed description of the
parameters for model system (3).

Parameter Description
k The influx of prospective purchasers in the

market.
a The influence of Word-of-Mouth on prospective

purchasers.
b The rate of clients converting to prospective

purchasers once more.
p The existing clients exit the market forever.
c The rate at which clients and prospective

purchasers become more aware due to
advertisements on social media platforms.

d Half-saturation point for the impact of social
media advertisements on prospective purchasers.

r Social media advertising growth rate.
q Decay coefficient in social media ads as a result

of rising numbers of customers.
e Half-saturation point for F(v) as it reaches half

of its maximum potential rq when clients arrive
at e.

r0 The decline in social media advertising rates as
a result of the inability to encourage people to
become clients.

n0 The number of social media advertisements
always maintained by the companies on social
sites and is called as baseline number of social
media advertisements.

Table 1: A description of the model’s parameters

3 Qualitative analysis of uvn model (3)

In this section, we investigate the analysis of the
unv model (2.3), highlighting the positivity and
boundedness of the solutions, steady states, and their
stability.

Theorem 1. All solutions of the uvn model (3) with
non-negative initial conditions are positive for τ ≥ 0.

Proof. From the second equation of system (3),

du
dτ

= uv2 − v+ cu
n2

n2 +d
, (4)

we claim that v(τ)≥ 0 for all τ ≥ 0. Assume contrary,
there exists τ1 > 0 such that v(τ1) = 0, and
dv
dτ

∣∣
τ=τ1

≤ 0. Hence, dv
dτ

∣∣
τ=τ1

= cu(τ1)
n(τ1)

2

n(τ1)2+d ≤ 0.

This implies either (i) u(τ1) > 0 and n(τ1)
2

n(τ1)2+d ≤ 0, or

(ii) u(τ1) < 0 and n(τ1)
2

n(τ1)2+d > 0. For case (i), this

condition is not satisfied because n(τ1)
2

n(τ1)2+d ≥ 0, which
results in a contradiction. Therefore, v(τ) is positive.
For case (ii), there exists τ2 ≤ τ1 such that u(τ2) = 0
and du

dτ

∣∣
τ=τ2

≤ 0. Hence,
du
dτ

∣∣
τ=τ2

= γ(1 − φ) + γφv(τ2) ≤ 0, but
v(τ2) > 0 and φ ∈ [0,1), it follows that
γ(1 − φ) + γφv(τ2) ≥ 0. Therefore, du

dτ

∣∣
τ=τ2

≥ 0,
which leads to a contradiction, and thus u(τ) must be
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positive. Similarly, for the third equation of system
(3) there exist τ3 ≤ τ2 ≤ τ1 such that n(τ3) = 0, and
dn
dτ

∣∣
τ=τ3

≤ 0. Hence,
dn
dτ

∣∣
τ=τ3

= r(1 − q v(τ3)
(τ3)+e )v(τ3) + r0n0 ≤ 0, but

v(τ3) > 0 and q ∈ (0,1), it follows that
r(1 − q v(τ3)

(τ3)+e )v(τ3) ≥ 0. Therefore, dn
dτ

∣∣
τ=τ3

≥ 0,
which leads to a contradiction, and thus n(τ) must be
positive. This completes the proof.

3.1 Existence and Stability of Steady States

To find the interior equilibrium points for unv
model (3), we set du

dτ
= F1(u,v,n), dv

dτ
= F2(u,v,n) and

dn
dτ

= F3(u,v,n) and then solve
F1(u,v,n) = F2(u,v,n) = F3(u,v,n) = 0. Due to the
difficulty of obtaining fixed points explicitly, we
initially assumed that γ = 1 for the first case and
γ ̸= 1 for the second case.
First Case: For γ = 1
In this case, we obtain a single fixed point
E0 = (u0,1,n0), where

u0 =
(d +(n0)2)

(c+1)(n0)2 +d
, n0 = n0 +

r(1+ e−q)
r0(1+ e)

. (5)

Second Case: For γ ̸= 1
To determine the interior equilibrium points, we need
to locate where the three equations in (3) intersect
within the positive quadrant. We will accomplish this
by identifying the system’s nullclines.
From the second equation of (3), we get:

u =
(d +n2)v

cn2 +(d +n2)v2 . (6)

Substitute from Eq. (6) into the first equation of (3),
we have:

n2(γ(v−1)(φ −1)v2 + c(−v+ γ + γφ(v−1)))

+dγ(v−1)(φ −1)v2 = 0,

and the equation’s roots are

n=±

√
−dγ(v−1)(φ −1)v2

(γ(v−1)(φ −1)v2 + c(−v+ γ + γφ(v−1)))
.

From the third equation of (3), we yield

n =
e(n0r0 + rv)+ v(n0r0 − (−1+q)rv)

r0(e+ v)
.

So, we can determine the interior equilibrium points
of the system (3), as the intersection points of the
following nullclines:

n=M1(v)=

√
−dγ(v−1)(φ −1)v2

(γ(v−1)(φ −1)v2 + c(−v+ γ + γφ(v−1)))
,

(7)

n = M2(v) =
e(n0r0 + rv)+ v(n0r0 − (−1+q)rv)

r0(e+ v)
. (8)

We take the positive square in Eq. (7), if the square root
is negative then n < 0, and hence there is no branch
appearing in the positive quadrant. The function M1(v) in
Eq. (7) is located in the first quadrant of the v− n plan for
v ∈ [0,1]. It is increasing at (0,0) and decreasing at (1,0) and

vmax =
1+3γ−4γφ+

√
(1−γ)(1−9γ+8γφ)

4(1−γφ)
such that

0 < vmax < 1. In contrast, M2(v) is an increasing function of
v that intersects with the n-axies at (0,n0). M2 exists in the
first quadrant of the v−n plan for n ∈ [0,∞). If we represent
the interior equilibrium point as E∗

j (u
∗
j ,v

∗
j ,n

∗
j) (where j= 1,

2, 3), then u∗j , v∗j and n∗j indicate to the positive solutions for
the given equations:

n =
e(n0r0 + rv)+ v(n0r0 − (−1+q)rv)

r0(e+ v)
, (9)

u =
(d +n2)v

cn2 +(d +n2)v2 , (10)

and

W (v)= a7v7+a6v6+a5v5+a4v4+a3v3+a2v2+a1v+a0 = 0,
(11)

where

a7 = γr2(φ −1)(q−1)2,

a6 =−((q−1)r(r(q+2e−1)+2n0r0)γ(φ −1)),

a5 = (er2(2q+ e−2)+2n0rr0(−1− e(q−2)+q)

+(d +n2
0)r

2
0)γ(φ −1)+ cr2(q−1)2(γφ −1),

a4 = γ(−2er0(n2
0r0 −n0r(q−2)(φ −1))

− (d +n2
0)r

2
0(φ −1)− e2r(r−2n0r0)(φ −1))

− c(q−1)r(rγ(q−1)(φ −1)+2er(γφ −1)

+2n0r0(γφ −1)),

a3 = er0γ(−2en0r+ r0(e−2)(d +n2
0))(φ −1)

+ c(e2r2(γφ −1)+n0r0(2rγ(q−1)(φ −1)

+n0r0(γφ −1))+2er(rγ(q−1)(φ −1)

−n0r0(q−2)(γφ −1))),

a2 =−e2r2
0γ(d +n2

0)(φ −1)

+ c(n2
0r2

0γ(φ −1)+2en0r0(rγ(q−2)(φ −1)

+n0r0(γφ −1)+ e2r(−rγ(φ −1)+2n0r0(γφ −1))),

a1 = cen0r0(−2erγ(φ −1)−2n0r0γ(φ −1)

+ en0r0(γφ −1)),

a0 =−ce2n2
0r2

0γ(φ −1).

It is challenging to determine the intersection point
analytically, so we attempt to find these points graphically,
as shown in Fig. 1. If we change the values of γ while
keeping all other parameters fixed, the number of
equilibrium points changes from one to three, as shown in
Fig. 1. If we change the values of γ while keeping all other
parameters fixed, the number of equilibrium points changes
from one to three, as shown in Fig. 1. Fig. 1(a) exhibits that
there is unique interior fixed point at γ = γ1 = 0.1. while
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when γ = γ2 = 0.09 the number of interior equilibrium
points changes from one to three, as seen in Fig. 1(b).
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Figure 1: Graphical representations of nullclines and
the number of equilibrium points changes from one to
three. [parameters: φ = 0.5,c = 0.1,d = 3,r = 0.1,q =
0.3,e = 0.1,r0 = 0.2,n0 = 0.5,(a)γ1 = 0.1,(b)γ2 =
0.09]

3.2 Local stability of equilibria

This subsection focuses on examining the local stability
of the equilibrium points. Therefore, we determine the
Jacobian matrix as follows:

J =

F1u F1v F1n
F2u F2v F2n
F3u F3v F3n

 , (12)

where F1u = −c n2

n2+d − v2γ , F1v = γ(−2uv + φ),

F1n = − 2cdnu
(n2+d)2 , F2u = v2 + cn2

n2+d , F2v = 2uv − 1,

F2n =
2cdnu
(n2+d)2 , F3u = 0, F3v = r+ rq( e2

(e+v)2 −1), F3n =−r0.

The Jacobian matrix (12) for the first case at E0 takes the
following form:

J|E0 =

 f1(n0) f2(n0) f3(n0)
f4(n0) f5(n0) f6(n0)

0 r− rq (1+2e)
(e+1)2 −r0

 , (13)

where f1(n0) = − c(n0)2

(n0)2+d − γ , f2(n0) =
−2(d+(n0)2)
d+(c+1)(n0)2 + φ ,

f3(n0) = − 2cdn0

((n0)2+d)2(d+(c+1)(n0)2)
, f4(n0) = 1 +

c(n0)2

(n0)2+d ,

f5(n0) =
2(d+(n0)2)

d+(c+1)(n0)2 −1, f6 = 2cdn0

((n0)2+d)2(d+(c+1)(n0)2)
.

Consequently, the characteristic equation takes the
following form:

λ
3 +A2λ

2 +A1λ +A0 = 0, (14)

where
A2 = r0 − ( f1(n0)+ f5(n

0)),

A1 = f1(n0) f5(n
0)− f2(n0) f4(n0)

+ f6(n
0)r

(
q(1+2e)
(e+1)2 −1

)
− r0( f1(n0)+ f5(n

0)),

A0 = r0( f1(n0) f5(n
0)− f2(n0) f4(n0))

− r( f3(n0) f4(n0)− f1(n0) f6(n0))((1+ e)2 −q(1+2e))
(e+1)2 .

Based on the Routh–Hurwitz criterion, the stability of the
equilibrium E0 = (u0,1,n0) depends on the condition that
all roots of the characteristic equation have negative real
parts. This occurs when Ai > 0 for i = 0, 1, 2, and
A2A1 −A0 > 0.

Next, the Jacobian matrix (12) for the second case at E∗

is presented as follows:

J|E∗ =

 g1(v∗,n∗) g2(v∗,n∗) g3(u∗,n∗)
g4(v∗,n∗) g5(u∗,v∗) g6(u∗,n∗)

0 g7(v∗) −r0

 , (15)

where g1(v∗,n∗) = − c(n∗)2

(n∗)2+d − (v∗)2γ ,

g2(v∗,n∗) = γ(−2u∗v∗ + φ), g3(v∗,n∗) = − 2cdn∗u∗
((n∗)2+d)2 ,

g4(v∗,n∗) = (v∗)2 +
c(n∗)2

(n∗)2+d , g5(v∗,n∗) = 2u∗v∗ − 1,

g6(v∗,n∗) = 2cdn∗u∗
((n∗)2+d)2 , g7(v∗) = r+ rq( e2

(e+v∗)2 −1).
Therefore, the characteristic equation is given by:

λ
3 +B2λ

2 +B1λ +B0 = 0, (16)

where
B2 = r0 − (g1(v∗,n∗)+g5(v

∗,n∗)),

B1 = g1(v∗,n∗)g5(v
∗,n∗)+g6(v

∗,n∗)g7(v∗)−g2(v∗,n∗)g4(v∗,n∗)

− r0(g1(v∗,n∗)+g5(v
∗,n∗)),

B0 = g3(v∗,n∗)g4(v∗,n∗)g7(v∗)+ r0g1(v∗,n∗)g5(v
∗,n∗)

−g1(v∗,n∗)g6(v
∗,n∗)g7(v∗)− r0g2(v∗,n∗)g4(v∗,n∗).

Therefore, the equilibrium point E∗ is stable when Bi >
0 for i = 0, 1, 2, and B2B1 −B0 > 0.

Next, we plot the coefficients of the characteristic
equation (16) to identify the number of fixed points and
analyze their stability. For γ ∈ [0, 0.09) and
γ ∈ (0.0959,1.5], there is only one fixed point. However, for
γ ∈ [0.09,0.0959], three fixed points are observed in Figs.
2(a), 2(b), 2(c). First, within the range γ ∈ [0, 0.09), we find
that B2,B0, and B2B1 −B0 are positive, indicating that the
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fixed point in this interval is stable as shown in Fig. 2(a).
Secondly, for γ ∈ [0.09,0.0959], three fixed points emerge.
Fig. 2(a) illustrates one of these points has B2,B0 < 0, and
B2B1 − B0 > 0 making this fixed point unstable for
γ ∈ [0.09,0.9464). In the interval γ ∈ [0.9464,1.5] we find
that B2,B0, and B2B1 − B0 are positive, which indicates
stability for the fixed point in this range, is stable as shown
in Fig. 2(a).
The bifurcation diagram provides insight into how the
stability of fixed points shifts as the parameter γ changes,
revealing key details about the system’s behavior during
these transitions. Using XPPAUT software [14], we
generate this diagram for our system, with γ as the variable
parameter, shown in Fig. 2(d). In the diagram, black lines
denote unstable equilibria, while red lines indicate stable
equilibria. As γ increases, we initially observe one stable
fixed point. With further increases, three fixed points
emerge E∗

1 and E∗
2 , both are unstable and E∗

3 is stable. One
of these points persists as γ continues to increase. With
more increase in γ , this interior point becomes unstable
once γ surpasses the first Hopf bifurcation point (HB1),
resulting in the appearance of a stable periodic solution.
Interestingly, this point regains stability as γ crosses the
second Hopf bifurcation point (HB2).

Lemma 1. The unv model (3) has no closed orbits if r0 > 1.

Proof. Let P= {(u,v,n)∈R3
+|u> 0,v> 0, n> 0}. Consider

the real-valued function

G(u,v,n) =
1
v2 > 0.

lets consider

Hu = γ − γuv2 + γφ(v−1)− cu
n2

n2 +d
,

Hv = uv2 − v+ cu
n2

n2 +d
,

Hn = r(1−q
v

v+ e
)v− r0(n−n0).

(17)

Then we have

∂

∂u
(GHu)+

∂

∂v
(GHv)+

∂

∂n
(GHn)

=−
(

cn2(2u+ v)
(d +n2)v3 +

(d +n2)v(−1+ r0 + v2γ)

(d +n2)v3

)
< 0,

for r0 > 1, γ = 1.

According to Dulac’s criterion, the uvn model (3) has no
closed orbits if r0 > 1.
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Figure 2: The graphical representations of the
coefficients in the characteristic equation (16) for
γ ∈ [0, 1.5] are presented. Within the interval γ ∈
[0.09,0.0959], there are three equilibrium points: (a)
the first equilibrium point, (b) the second equilibrium
point, and (c) the third equilibrium point. (d) The
bifurcation diagram for our system is plotted with the
parameter γ . The red line represents stable equilibria,
while the black line indicates unstable equilibria. The
points labeled HB1 and HB2 mark the locations of
Hopf bifurcations.
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Figure 3: Indicators of sensitivity to buyers (v). Non-
zero PRCCs of the parameters are distinguished with
(∗).

3.3 Sensitivity analysis

This subsection explains the sensitivity analysis of uvn
model (3), highlighting the key parameters that significantly
influence product sales within the context of social media
advertising and its effect on marketing dynamics. The core
of this analysis is to identify the factors that most
significantly influence the model’s results, mainly sales
volume. We utilize the methodologies of Partial Rank
Correlation Coefficient (PRCC) and Latin Hypercube
Sampling (LHS) [19,20] to evaluate the impact of various
model parameters methodically. We apply these methods to
determine the sensitivity of the model’s predictions to
changes in parameters, amid the inherent uncertainty that
characterizes real-world applications [20,21]. Such
uncertainty necessitates a thorough analysis to confirm the
reliability of the model’s predictions. The PRCC values
were calculated for the buyers (v) concerning the model’s
parameters. This analysis is pivotal, as (v) represents the
number of consumers who initially are prospective
purchasers and later become actual consumers through the
influence of social media advertisements. In our analysis,
the parameter values are: γ = 0.09,φ = 0.5,c = 0.1,d =
3,r = 0.1,q = 0.3,e = 0.1,r0 = 0.2,n0 = 0.5. Fig. 3.
illustrates that γ,φ ,c,d,r,r0 and n0 exhibit the highest
PRCC values. The parameters q and e have a minimal
impact on (v). The density of clients increases with an
increase in γ,c,r,r0, and n0, or decreases in φ and d. This is
beneficial to increasing sales.

4 Numerical simulation

In this section, we present the numerical simulations
conducted to verify the analytical results related to stability

conditions using a hypothetical set of parameter systems for
nonlinear ordinary differential equations. For the numerical
simulation, the parameter values are selected as follows:

γ = 0.09,φ = 0.5,c = 0.1,d = 3,r = 0.1,q = 0.3,e =
0.1,r0 = 0.2,n0 = 0.5.

(a)

(b)

Figure 4: Graphical representations of the numerical
solutions of the system are shown in 3D space, with
fixed points marked in red. The parameters used are:
φ = 0.5,c = 0.1,d = 3,r = 0.1,q = 0.3,e = 0.1,r0 =
0.2,n0 = 0.5. (a) γ = γ1 = 0.09, (b) γ = γ2 = 0.9.

Using the aforementioned parameters, we find that the
system exhibits three fixed points:
E∗

1 (2.08061,0.451789,0.670408),E∗
2 (3.71877,0.222417,

0.588193), and E∗
3 (5.27284,0.0766056,0.533318). At E∗

1 ,
we calculate the numerical values of the coefficients of the
characteristic equation (16) using the selected parameter
values. The results are
B2 = −0.648594 < 0,B1 = −0.165388 < 0, and
B0 = −0.0010599 < 0 with B2B1 − B0 = 0.10833 > 0.
Similarly, for E∗

2 , we obtain
B2 = −0.439443 < 0,B1 = −0.122809 < 0, and
B0 = −0.00107753 < 0 with B2B1 −B0 = 0.0550451 > 0.
Since E∗

1 and E∗
2 have negative coefficients, they are both

unstable. Conversely, E∗
3 is stable, as shown by the

coefficients B2 = 0.40133 > 0,B1 = 0.054887 > 0, and
B0 = 0.000367087 > 0 with B2B1 −B0 = 0.0216607 > 0,
as illustrated in Fig. 4(a). Next, if we choose γ = γ2 = 0.9,
the system has a unique fixed point,
E∗(0.98464,0.995655,0.86211), as illustrated in Fig. 4(b).
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By calculating the coefficients of the characteristic equation
(16) with the chosen parameter values, we obtain
B2 = 0.151324 > 0,B1 = 0.4459440 > 0, and
B0 = 0.090372 > 0 with B2B1 − B0 = −0.0228901 < 0.
The Routh–Hurwitz stability criterion is not satisfied by
These values. Consequently, the system exhibits a limit
cycle around the equilibrium point E∗.

In the context of marketing campaigns, a limit cycle
represents a recurring pattern in the dynamics of prospective
purchasers and client interactions, driven by the interplay
between social media advertisements and word-of-mouth
(WOM) marketing. As a catalyst, social media ads pique
consumers’ interest and start conversations that spread
word-of-mouth. WOM creates a natural buzz that keeps the
campaign’s influence going after its active phase as
customers share their experiences, increasing the reach and
efficacy of ads. After a while, both WOM and advertising
become saturated, which causes engagement to drop until a
new stimulus, like a new campaign, sparks interest again.
The idea of a limit cycle is mirrored in this periodic pattern
that demonstrates the dynamic synergy between advertising
and WOM. The graph is an effective tool for understanding
the relationships between prospective purchasers, clients,
and advertisements on social media. Marketers can enhance
engagement, increase conversions, and ultimately increase
sales by examining these links and adjusting their tactics
accordingly. In addition to increasing marketing efficacy
right away, this data-driven strategy creates the framework
for future expansion and client loyalty. Businesses can
adjust and improve their marketing efforts by utilizing the
graph’s data, guaranteeing that they reach and surpass their
sales goals.
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Figure 5: Plots illustrating the variation of u(τ),v(τ)
and n(τ) with respect to time τ for various values of c.

We now analyze the impact of the advertisement rate on
social media platforms, c, on system dynamics for various
values. Figs. 5(a), 5(b), and 5(c) illustrate the variation of
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u(τ), v(τ), and n(τ) with respect to time τ for different
values of c. These plots reveal that as c increases, the
density of prospective purchasers u(τ), decreases, while the
densities of clients v(τ) and social media advertisements
n(τ) rise. The higher the value of c, the greater the
conversion of potential consumers into clients, indicating
the existence of market sales because of intensified social
media advertisement activities. Therefore, parameter c is
one of the most important factors determining the dynamics
of prospective purchasers and clients. Higher values of c
more average awareness increase prospective purchaser’s
density and actual conversion rates into clients. Firms need
to redirect their marketing resource allocations towards
making advertising strategies that give more attention to
enhancing customer awareness, thus eventually leading to
better marketing performance and sales.
Fig. 6 illustrates the variation of u(τ),v(τ) and n(τ) for
different values of r0. As shown in Fig. 6(a), the density of
prospective purchasers, u(τ), increases, which indicates that
fewer individuals are being attracted to the product due to
ineffective advertising strategies. This trend stems from a
reduction in social media advertising rates, represented by
r0, which fails to effectively convert individuals into clients.
At the beginning of the marketing campaign, the density of
clients and social media advertisements increases. As r0
rises beyond the advertisements diminish, leading to a
decline in both client density and social media
advertisements, as depicted in Figs. 6(b) and 6(c). Also as
social media advertising rates go down, sales can rise with
organic engagement and word-of-mouth, which can drive
higher conversion rates. With less advertising, the company
can develop more targeted and personalized campaigns that
reach an increasingly interested audience, further driving up
sales.
Finally, we examine how u(τ),v(τ), and n(τ) are affected
by the baseline number of social media ads n0. It refers to
the initial or standard number of ads displayed on social
media platforms before any changes or adjustments in
strategy or advertising budget. This figure is used as a
reference to compare the impact of modifications to
advertising campaigns. Figure 7(a) depicts how the density
of prospective buyers, u(τ), reduces as n0 rises. while both
the density of clients, v(τ), and the number of
advertisements on social media platforms, n(τ), increase, as
shown in Figs. 7(b) and 7(c). This suggests that sales
improve as the baseline number of social media
advertisements, n0, rises, attracting more individuals to
become clients. The dynamics between prospective
purchasers and clients are significantly shaped by the
baseline quantity of social media ads, n0. Higher values of
n0 lead to increased visibility, higher conversion rates, and
more effective advertising strategies. Therefore, companies
should prioritize maintaining an optimal baseline of
advertisements to maximize marketing outcomes and
guarantee steady audience engagement.
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Figure 6: Plots illustrating the variation of u(τ),v(τ)
and n(τ) with respect to time τ for various values of
r0.
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Figure 7: Plots illustrating the variation of u(τ),v(τ)
and n(τ) with respect to time τ for various values of
n0.

5 Conclusions

Social media has brought changes in people’s lives, as they
use these platforms for a variety of purposes, including
communication, e-business, and buying and selling.
Advertising on social media platforms effectiveness and
word-of-mouth continue to play a vital role in shaping
consumer behavior and influencing market trends. Its ability
to spread information and influence people’s decisions
ensures its ongoing significance in the business world. It
passes traditional advertising by providing a more authentic
and trustworthy mode of communication. Based on the
advertising diffusion model [12], we have formulated our
model to incorporate the impact of advertising on social
media platforms and word-of-mouth in consumers’
decisions.

In our model, consumers can be classified into four
distinct categories: prospective purchasers (U), actual
purchasers (V ), and advertisements on social media
platforms (n). An essential part of our model examines the
consequences of advertising and word-of-mouth effects on
consumer behavior. The graphical representations of
nullclines have provided insights into the number of
equilibria present. It has shown that the number of
equilibrium points changed from one to three. The stability
of each equilibrium point has been assessed through
graphical representations of the coefficients in the
characteristic equation. Additionally, we have explored the
dynamics associated with the Hopf bifurcation. According
to Dulac’s criterion, the model (3) has no closed orbits if
r0 > 1. A normalized sensitivity analysis was performed to
determine the most sensitive parameters and their impact on
clients. It was found that the density of clients increases
with an increase in γ,c,r,r0, and n0, or decreases with φ and
d.

Numerical simulations in our model exhibited how
parameter changes significantly affect consumer behavior
and illustrate the impact of social media advertising on
market dynamics. As the value of c rises, the conversion
rate of prospective purchasers into clients increases,
signaling a more dynamic market and driving sales growth
through intensified social media advertising efforts. On the
other hand, the density of clients increases as r0 rises;
however, beyond a certain point, the effectiveness of the
advertisements diminishes, leading to a decline in client
density. This suggests that sales grow when social media
campaigns successfully convert individuals into clients but
decline when these advertisements lose their impact. As n0
increases, it leads to an increase in the number of clients.
The baseline number of social media advertisements, n0,
plays a crucial role in shaping the dynamics between
prospective and actual buyers.

Our findings validate the model’s effectiveness and
emphasize the crucial role of parameters such as c, r0, and
n0 in shaping the outcomes of social media advertising and
marketing strategies. By comprehending these impacts,
companies should focus on refining their advertising
strategies to capitalize on social media advertisements to
enhance client awareness, ultimately driving better
marketing outcomes and increased sales.
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