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Abstract: Artificial intelligence (AI) has demonstrated significant promise in medical 

diagnostics. Healthcare providers can enhance patient outcomes and advance personal-

ized healthcare systems by utilizing these AI-driven tools to make quicker, more accurate 

diagnoses. Despite its capabilities, AI has not yet achieved the same level of human intel-

ligence. The main contribution of this paper is to present a new strategy called Adaptive 

Disease Diagnosis Strategy (ADDS). ADDS introduces a new approach to disease diag-

nosis, particularly for emergent diseases such as monkeypox virus (MPXV), by imitating 

human learning processes in contrast to conventional diagnostic procedures that depend 

on static models. ADDS uses the binary groupers and moray eels (BGME) optimization 

algorithm to select the most critical features from the MPXV dataset. ADDS is based on a 

modified version of Naive Bayes (NB), which is called Enhanced Incremental NB (EINB). 

EINB emulates how humans acquire knowledge by continually adapting to new infor-

mation while building upon prior knowledge. It modifies its diagnostic capabilities 

without necessitating complete retraining. EINB optimizes the model's efficacy by adding 

a selective data approach that only incorporates the most significant information into the 

learning process, thereby avoiding useless updates from irrelevant data. This selective 

approach enables the model to retain previous information, guaranteeing that past data is 

valuable as new insights are incorporated into the model. The results demonstrate that the 

ADDS significantly enhances the performance of the monkeypox diagnostic system with 

an accuracy value equal to 99.46%, ensuring that the model remains accurate, adaptive, 

and ready for emerging challenges. 

Keywords: Enhanced Incremental Artificial intelligence, disease diagnosis, Enhanced 

Naïve Bayes, and MPXV detection.  

1. Introduction 

Delivering precise and easily obtainable diagnoses is a major obstacle for healthcare systems worldwide. Ap-

proximately 5% of outpatients in the United States are given an incorrect diagnosis annually. These errors fre-

quently occur when diagnosing patients with severe medical problems, with over 20% of these patients being 

misdiagnosed in primary care. Furthermore, one out of every three of these misdiagnoses leads to significant 

harm to the patient. Artificial intelligence (AI) and machine learning (ML) have recently become potent tools for 
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addressing intricate challenges across various fields[1]. Specifically, using ML in diagnosis can transform 

healthcare greatly[2]. Despite extensive studies, diagnostic algorithms have faced challenges in matching the 

accuracy of doctors in differential diagnosis. This is particularly true when several potential explanations exist 

for a patient's symptoms[3]. Furthermore, healthcare systems consistently gather a significant volume of data, 

which continues to grow exponentially. The analysis of medical data involves several challenges and concerns, 

which can be listed as follows: (i) the process of obtaining large amounts of data with clear indications necessi-

tates a significant investment of human resources, materials, and time, (ii) once the dataset hits a specific 

threshold, the training period of the dataset becomes significantly prolonged, leading to time consumption, 

(iii)when retraining the dataset using traditional methods, the program will enter a closed state, which is not 

appropriate for online applications, (iv)the general ML classification approach is unable to automatically iden-

tify and update a new class as it is formed. Therefore, it is unable to fulfill the current requirements, and (v) over 

time, the distribution and characteristics of the data will inevitably change. Then, the developed classification 

model that uses past data may become inadequate for certain new data [4]. 

 

Due to the previous problems, there has been an increasing need for Incremental Artificial Intelligence (IAI). It 

is an AI model that learns and improves its knowledge in stages. In simple terms, it emulates human learning 

patterns by gaining new information over time while maintaining and expanding the existing knowledge. IAI is 

critical when data arrives in sequential order or when storing all data for processing becomes impossible. From 

the standpoint of computational intelligence, IAI holds significance for at least two key reasons. First, from a 

data mining viewpoint, many modern applications require algorithms that can continuously learn from large 

and ever-changing data streams to enhance future learning and decision-making processes[5]. Secondly, from 

the perspective of ML, biological systems inspire IAI by demonstrating the ability to learn incrementally and 

form associations over time to achieve objectives. This approach is especially valuable in real-world applica-

tions, as it allows models to update themselves with new data, eliminating the need to rebuild models entire-

ly[6]. This method upgrades the existing AI models to an accurate one by replacing the traditional methods, 

which necessitate constructing a new model from scratch[7]. 

 

IAI has many challenges, such as catastrophic forgetting, difficulty handling concept drift, the risk of overfit-

ting, and the new data quality [6]. When the model tends to forget old information as it gets new data, this is 

called catastrophic forgetting [7]. Concept drift refers to the dynamic changes in the data distribution or rela-

tionships between input features and the target feature over time. Overfitting risk occurs when an incremental 

learning algorithm over-adjusts its parameters based on recent data, which may not accurately reflect the 

overall distribution [8]. New data quality denotes that inconsistent, incorrect, or noisy data can impact the 

model's predictions, resulting in poor learning. This paper introduces Enhanced IAI (EIAI) to implement prac-

tical approaches to overcome the challenges inherent to IAI.  

 

This paper introduces the Adaptive Disease Diagnosis Strategy (ADDS), a new strategy to address the urgent 

need for early diagnosis of the monkeypox virus (MPXV) and overcome existing challenges in MPXV diagnosis. 

Leveraging the Enhanced IAI (EIAI) in combination with the Binary Groupers and Moray Eels (BGME) opti-

mization algorithm. The BGME is a binary version of the GME optimization algorithm[9]. BGME emulates the 

associative hunting behavior observed between groupers and moray eels. Associative hunting, or cooperative 

hunting among distinct species of animals, is exceedingly uncommon. This hunting practice contrasts with that 

of conspecific groups owing to the elevated coordination between the two species. BGME algorithm may effec-

tively evade the local optima trap. This occurred due to a combination of evidence derived from the behaviors 

of two distinct species, each exhibiting a unique movement manner. This yields comprehensive search domain 

coverage and a balanced approach between the exploitation and exploration phases. GME is uncomplicated to 

implement in relation to most metaheuristic algorithms. It comprises four phases: primary search (PS), pair 

association (PA), encircling or extended search (ES), and attacking and catching (AC). The optimization rule in 

BGME generally entails choosing the optimal solutions, continuing the process for a certain number of itera-
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tions or until a termination criterion is met, such as achieving the desired solution quality or completing a 

predetermined number of iterations. ADDS uses the BGME to enhance the strategy’s predictive accuracy by 

identifying the most significant features of MPXV. 

 

ADDS is based on EINB which is a modified version of Naive Bayes. It is distinguished by its continuous ability 

to improve performance. It begins training with an appropriate amount of examples and then starts working 

initially, even in degraded performance. Then, it has the ability to adjust performance by taking advantage of 

experiences gained from new cases that it diagnoses without losing previous experiences or retraining. Thus, it 

mimics the way humans learn. The EINB learns from continuous unprocessed data, accumulates experience 

over time, and utilizes this knowledge to enhance future learning and the performance of medical systems. 

Additionally, it seeks to address the limitations of IAI.  

IAI is advantageous for the diagnosis of MPXV for a variety of reasons: 

1.  In the case of an emergent disease such as MPXV, the quantity of historical diagnostic data may be re-

stricted. IAI can resolve this by progressively integrating new data from ongoing outbreaks, research 

studies, and clinical observations. This guarantees that diagnostic models enhance over time.  

2. The disease's changing patterns: As MPXV spreads across various regions and populations, patterns of 

symptoms, characteristics, transmission dynamics, and viral variants may change over time. IAI can 

manage this concept drift and enable the diagnostic model to continuously update its knowledge base 

with the most recent data, guaranteeing that it remains pertinent and accurate in diagnosing new cases 

under various conditions. 

3. Enhanced diagnostic accuracy: IAI enhances diagnostic accuracy as additional cases are diagnosed and 

more data becomes available. This necessitates improved differentiation between MPXV and compara-

ble diseases (such as chickenpox or smallpox), which is crucial for implementing appropriate treatment 

strategies. 

 IAI in the diagnosis of MPXV mimics human learning from several perspectives, such as;  

• Mimicking human memory: Humans use memory to remember past cases and diagnose current issues. A 

doctor may recall how a symptom appeared in prior situations to help diagnose current patients. IAI sys-

tems learn new information while retaining old. 

• Mimicking human learning over time: Humans continuously learn from their encounters with the world. 

Doctors and researchers improve their diagnostic skills with new cases, symptoms, and studies. More data 

improves IAI models, making them more accurate. As cases increase, the algorithm improves its ability to 

diagnose MPXV. 

 Similar to Human Experience: Learning from past cases, medical research, patient histories, and new 

symptoms improve disease diagnosis over time. Medical data are used to train an IAI diagnosis algorithm. 

The system incrementally learns from recent information (such as outbreak reports, symptom changes, or 

demographic patterns) without forgetting past knowledge. 

The main advantages and the key contributions of this paper are summarized below; 

 This paper presents the Adaptive Disease Diagnosis Strategy (ADDS), a new strategy to meet the critical 

demand for early diagnosis of the MPXV.  

 ADDS consists of two stages, which are the preprocessing stage and the classification stage.  

 The preprocessing stage focuses on feature selection, where the most relevant features are identified to 

improve the efficiency and accuracy of the model. The classification stage then utilizes EINB) to classify 

patients. 

 BGME, which mimics the rare phenomenon of associative hunting between different species in nature, is 

employed to select the most significant features from the MPXV dataset. Experimental results show that 

the BGME outperforms comparable algorithms in feature selection issues.  

 EINB updates the model's parameters (class priors and feature likelihoods) after each Incremental Update 

Trigger value denotes as (IUT), instead of updating them for every new data. This approach has many key 
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benefits, such as reducing computational overhead, smoothing learning, avoiding overfitting, and being 

beneficial for handling concept drift. 

 The process of updating the training set with new data relies on evaluating its accuracy. This is done to 

ensure that the model's performance improves or, at the very least, does not deteriorate. The updating 

mechanism can be understood through three scenarios: 

o When accuracy increases: 

If the model’s accuracy improves compared to the previous iteration, the new data points (or cases) are 

added to the training set. This triggers an update of the model, allowing it to learn from the additional 

data that positively contributes to its performance. 

o When accuracy decreases or remains the same: 

The new data points are not added to the training set if the accuracy decreases or remains the same. This 

ensures the model does not incorporate data that could degrade its performance or provide no added 

value. 

 EINB addresses catastrophic forgetting because it retains knowledge from earlier iterations, ensuring 

that valuable information learned previously is not overwritten or forgotten. 

 EINB is efficient in memory utilization. Instead of retaining the complete dataset, only feature statis-

tics and class counts need to be preserved and updated when new data arrives.  

 EINB is recoverable; it can restore its performance after a decline, enabling it to return to its previous 

optimal performance despite a decrease in accuracy during certain learning phases. 

 EINB is suitable for diagnosing different diseases, especially emerging diseases because it is trained to 

work with incomplete or limited data, unlike traditional methods that rely on large datasets for accurate 

results. This is crucial when new diseases emerge, and the data is limited or restricted, making it harder 

to diagnose and predict the disease's behavior. 

 The results of the experiments proved the efficiency and accuracy of the strategy in diagnosing MPXV 

compared to other methods.  

The paper's structure is as follows: Section 2 provides an overview of AI classification based on various learning 

methods. Section 3 reviews the related work in the field. Section 4 provides a detailed explanation of the ADDS. 

Section 5 evaluates the proposed strategy's performance, presenting results and analysis. Finally, the paper 

concludes with a summary and remarks in Section 6. 

2. AI Classification  

AI can be classified based on its capabilities, functionality, and underlying technologies [8]. In terms of capa-

bilities, examples include general AI (strong AI), narrow AI (weak AI), and super intelligent AI. Classification 

by functionalities includes types such as limited memory systems, theory of mind AI, reactive machines, and 

self-aware AI. Additionally, AI leverages technologies like ML, Deep Learning (DL), Robotics, Natural Lan-

guage Processing (NLP), Expert Systems, and Computer Vision. In this paper, we classify AI specifically based 

on the learning methods, introducing categories such as batched AI, incremental AI (IAI), online AI, active AI, 

adaptive AI, transfer AI, federated AI, ensemble AI, and enhanced incremental AI, as illustrated in Figure 1. 

The next subsection provides a brief explanation of AI classification based on these learning methods. 

 

2.1. Batched AI  

In batch learning, the ML model is trained using the entire dataset that is available at a particular time. The 

training procedure is considered complete when the model achieves satisfactory performance on the test set. 

This approach is also referred to as offline learning, as it does not continuously adjust to new data. In the event 

that the model requires updating, it must be retrained from scratch using a combination of the previously ac-
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quired and newly acquired data samples if additional data becomes available at a later time. Nevertheless, 

batch learning is not appropriate for situations in which the data is perpetually generated from the source, as it 

is unable to effectively manage real-time updates or incremental learning requirements[10][11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Transfer AI 

The capacity of the system to recognize and apply the knowledge and skills acquired from prior tasks to new 

tasks is referred to as transfer AI. Transfer learning is defined as the process of extracting knowledge from one 

or more sources of tasks and applying it to a target task [12]. The Domain and the task are two fundamental 

concepts in transfer learning. The learning process involves inputting data into the model for training to derive 

the prediction function required for the task in each domain [13]. Knowledge is transferred from the source 

domain to the target domain. Typically, the source domain contains a substantial amount of labeled training 

data, while the target domain has either a minimal amount or none. Transfer learning addresses the issue of 

insufficient training data in the target domain, enabling better performance in the subject of interest. 
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2.3. Ensemble AI  

Ensemble AI is fundamentally based on the concept of aggregating the predictions of multiple models, each of 

which may possess its strengths and weaknesses. This can result in enhancing the efficiency ,achieving superior 

predictive performance compared to a single model, and generalization[14]. 

2.4. Federated AI 

Federated AI is a configuration in which a central aggregator coordinates the efforts of multiple clients to re-

solve ML challenges. Additionally, this configuration permits the decentralization of training data to guarantee 

the privacy of each device[15]. 

 

 

2.5. Online AI  

Online AI is a learning technique that involves the model learning incrementally from a stream of data elements 

in real-time. It is a dynamic process that adjusts its predictive algorithm over time, enabling the model to evolve 

in response to new data. This approach has paramount importance in rapidly changing data environments, as it 

provides precise timely predictions. Although incremental learning and online learning both process data in-

crementally, there are slight differences. In contrast to incremental learning, which processes data in batches at 

predetermined intervals, online learning processes data in real-time and modifies its model continuously. 

2.6. Active AI 

Active AI is an ML methodology wherein a learner requests an oracle, acting as an instructor, to label particular 

ambiguous samples that will yield relevant insights for the learning process. Consequently, the learner en-

hances the learning performance by employing fewer training examples. It is highly effective in situations 

where there is a substantial amount of unlabeled data, but the annotation process is either costly or 

time-consuming. This method involves the learner being in control of the data and requesting annotations from 

an entity with extensive domain knowledge (usually a human expert) for unlabeled examples[16]. 

2.7. Incremental AI (IAI) 

In IAI, the learning process continues as new data instances become available[17]. The algorithm updates the 

current data model in accordance with the knowledge it has acquired from the most recent data instances. Ini-

tially, a data model is developed and subsequently updated in response to the arrival of new data. This method 

updates the existing model to an accurate version, in contrast to conventional methods that involve the con-

struction of a new model from the start [18]. Figure 2 illustrates the challenges of IAI.  
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2.8. Enhanced Incremental AI (EIAI) 

In the field of ML, there has long been an underlying assumption that a "good" training set is readily available 

for any domain. A training set is considered "good" if it includes all the critical knowledge necessary for a 

learning algorithm to perform effectively. This means that once the algorithm learns from this dataset, it should 

be able to apply the acquired knowledge accurately to any new examples within the same domain. As a result, 

traditional ML approaches focus on maximizing the information extracted from this pre-defined dataset. 

However, this ideal scenario often fails to align with the complexities of real-world applications. For example, 

the environment constantly changes in dynamic control systems, disease diagnosis, web mining, and time se-

ries analysis. These applications generate data that evolves, meaning the learning algorithms must work with 

training sets that are updated or expanded incrementally. In such cases, the learning process becomes contin-

uous, requiring the algorithm to adapt to new information as it becomes available rather than relying solely on 

a static dataset prepared in advance. 

 

Therefore, IAI methodologies are designed to address challenges associated with continuously evolving data by 

enabling models to incorporate newly acquired information while modifying their structure. However, IAI 

faces several significant challenges, including difficulty handling concept drift, catastrophic forgetting,the risk 

of overfitting, and the new data quality [17][19]. Enhanced IAI (EIAI) is introduced to implement effective 

strategies to overcome the challenges inherent to IAI. First, EIAI must handle scenarios where the entire dataset 

is unavailable during initial model development, allowing the system to learn incrementally. Second, EIAI must 

integrate new data seamlessly without compromising the knowledge already acquired. Third, it must balance 

stability (preserving existing knowledge) and plasticity (adapting to new data).  

 

3. Related Work 

Diagnosis is the most difficult challenge, as certain symptoms and indications are ambiguous.ML is a discipline 

that can assist in the disease diagnosis by utilizing prior training data [20]. The most effective methods for re-

ducing disease-related mortality rates are early diagnosis and timely treatment. Consequently, the majority of 

researchers are attracted to the development of predictive model that are founded on ML or Deep Learning 

(DL) to predict diseases. In this section, the previous efforts in disease diagnosis will be discussed. Table 1 pro-

vides a comparison between the state of the art methods for diagnosing MPXV.  

 

The authors in [14] proposed an ensemble-based approach employing DL and ML models (EMLDL) to forecast 

an individual's propensity to develop cardiovascular disease. In order to forecast cardiovascular disease, they 

implemented an ML-based ensemble model that includes K nearest neighbor (KNN), Extreme Gradient 

Boosting (XGB), and Decision Tree (DT). Deep Neural Network (DNN), Keras Deep Neural Network (KDNN), 

and ML ensemble models are used to improve the classification results. A dataset of cardiovascular disease 

cases is employed to train the models. Random forest (RF) is used to extract critical cardiovascular disease 

features. The EMLDL model obtains a disease prediction accuracy of 88.70%, as evidenced by the experiment 

results. 

 

In [17] , an approach for developing predictive models of the SEIRD (Susceptible, Exposed, Infected, Recovered, 

and Dead) variables for the COVID-19 pandemic is proposed. The incremental learning architecture considered 

into account two critical processes: feature engineering and incremental learning. ILA is a two-step process that 

is founded on the Ensemble Learning paradigm: The incremental learning model employs a bagging scheme in 

the initial stage to generate predictions that are derived from a variety of predictive models that have been 

constructed using a variety of machine learning techniques. Next, the most accurate prediction is chosen as the 
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output by this model. In the event that the outcome is inadequate, it either constructs new prediction models 

(possibly utilizing new machine learning techniques) or modifies the existing models.  

 

The study in[21] aims to identify MPXV through its clinical symptoms, which comprise boolean and categorical 

variables. It utilizes several ML models (MLM): DT, logistic regression, NB, support vector machine (SVM), 

random forest, and Adaptive Boosting. Data preprocessing techniques were employed to clean and prepare the 

dataset for ML analysis. The data cleaning process involved eliminating nonessential variables, verifying 

missing values, identifying duplicates, assessing conflicting values, and converting all binary variables to 0 and 

1. The optimal model was achieved using the support vector machine, yielding the largest area under the pre-

cision-recall curve at 79.67%, with a recall of 88.35%, precision of 72.86%, and an F2-score of 84.53% under the 

baseline model configuration. 

 

In the event of a potential pandemic, the authors in [13] utilized DL techniques to identify MPXV through skin 

lesions efficiently. The study incorporated hyperparameter tuning and transfer learning (TL) technologies to 

enhance the performance of the DL models. By modifying the TL model and incorporating hyper-parameters, a 

hybrid function learning model was developed within the framework of Convolutional Neural Networks 

(CNNs). This approach was applied to multiple models, including Xception, Vgg19, DenseNet121, ResNet50, 

EfficientNetV2, and MobileNetV3-s. Metrics such as AUC, accuracy, recall, loss, and F1-score were used for 

performance evaluation. Among the models, the optimized hybrid MobileNetV3-s achieved the best results, 

with an average F1-score of 0.98, AUC of 0.99, accuracy of 0.96, and recall of 0.97. 

 

The researcher in [22] Proposed a federated learning-based architecture (FLA)utilizing deep learning models 

for the secure classification of MPXV and other pox viruses. The proposed framework comprises three principal 

components: (a) a cycle-consistent generative adversarial network for data sample augmentation during train-

ing; (b) DL models including MobileNetV2, Vision Transformer (ViT), and ResNet50 for classification; and (c) a 

flower-federated learning environment to ensure security. The ViT-B32 model has an accuracy value of 97.90% 

in the testing.  

 

A methodology based on ensemble learning to detect the MPXV in skin lesion images is proposed in [23]. The 

approach begins with fine-tuning three pre-trained base learners, Inception V3, Xception, and DenseNet169. 

Probabilities generated by these deep models are then incorporated into an ensemble framework. A normali-

zation technique based on the Beta function is employed to effectively combine the outputs, enabling efficient 

aggregation of complementary information from the base learners. The final ensemble decision is achieved us-

ing the sum rule. The deep learning framework (DLF) is rigorously evaluated on a publicly available MPXV 

skin lesion dataset using a five-fold cross-validation technique. This methodology demonstrates strong per-

formance, achieving average accuracy, precision, recall, and F1 scores of 93.39%, 88.91%, 96.78%, and 92.35%, 

respectively. 

 

The authors in [24] presented a hybrid architecture for the diagnostic of MPXV called the Accurate monkeypox 

diagnosis strategy( ADMS), utilizing a modified grey wolf optimization model for efficient selection of features 

and weighting. Furthermore, the system employs an ensemble of classifiers that utilizes a confusion-based 

voting mechanism for combining significant data features. Weighted Naïve Bayes Classifier (WNBC) is the ini-

tial classifier, and the subsequent classifier used in the pipeline is the Long Short-Term Memory (LSTM). The 

Fuzzified Distance-Based Classifier (FDBC) is the third classifier. The generalizability of the proposed model is 

assessed by evaluating its performance on external datasets for MPXV and COVID-19. The model attained an 

overall diagnosis accuracy of 98.00% for external COVID data sets and 99.00% for MPXV datasets. 

 

A novel detection strategy utilizing AI approaches is proposed in [25] for the early identification of 

MPXV patients. This approach is called the Human Monkeypox Detection (HMD) strategy and has two pri-
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mary phases: (i) Selection Phase (SP) and (ii) Detection Phase (DP). Improved Binary Chimp Optimization 

(IBCO) algorithm is presented in SP as a feature selection method prior to training an Ensemble Diagnosis (ED) 

model, which serves as a new diagnostic approach in the subsequent phase termed DP. The IBCO algorithm is a 

hybrid selection algorithm that incorporates both filter and wrapper approaches. Three diagnostic algorithms, 

Weighted Naïve Bayes (WNB), Weighted K-Nearest Neighbors (WKNN), and DL are integrated through a 

weighted voting technique to yield optimal diagnostic outcomes. The weighted values of the WNB algorithm 

are calculated by assessing the influence of each feature on the class categories, whereas the Grey Wolf Opti-

mization (GWO) algorithm is employed to ascertain the weighted values of WKNN. The HMD technique yields 

superior outcomes compared to other comparable strategies, achieving accuracy, precision, and recall scores of 

98.48%, 91.1%, and 88.91%, respectively, and the implementation time is 5.4 Sec.  

The objective of the research in [26] is to establish a model for differentiating monkeypox infection based on the 

clinical symptoms that manifest in the infected individual. The proposed model combined the adaptive artifi-

cial bee colony (aABC) algorithm with an artificial neural network (ANN). The results of the proposed model 

were compared to those of ten other ML models that were trained on the same dataset. The deep learning 

model obtained the highest accuracy, with a score of 75%. It was succeeded by the random forest model, which 

achieved an accuracy of 71.1%. 

 

The authors provided an approach to detect the MPXV by employing symptoms as the premise for detection as 

proposed in [27]. In order to accomplish this, a dataset was generated by utilizing published data on MPXV. The 

output of all models that have been presented is not interpreted, and they are similar to a black box. The prob-

lem was resolved by analyzing the model's output using Shapley additive explanation (SHAP). This study 

compared Random Forest, GBoost, CatBoost ,SVM and LightGBM , all gradient-boosting algorithms that are 

frequently employed in ML The results of the study indicated that XGBoost was the most accurate in diagnos-

ing monkeypox based on symptoms. 

 

The authors in [28] suggested an approach (GWO-CNN) that employs CNNs to classify MPXV skin lesions. The 

MPXV prediction model is comprised of four stages: (1) Feature selection to identify the most significant 

symptoms that can improve the accuracy of MPXV diagnosis, (2) pre-processing of the MPXV data, (3) Mon-

keypox prediction using the CNN model, and (4) optimization of the CNN hyperparameters with the GWO 

algorithm. The optimized model attained an accuracy value of 95.3%. 

 

The research in [29] proposed a new method for precisely predicting confirmed MPXV cases with an optimized 

Long Short-Term Memory (LSTM) deep network. The model utilized the Al-Biruni Earth Radius (BER) opti-

mization process to refine the hyper-parameters of the LSTM-based deep network, resulting in the designation 

BER-LSTM for the proposed approach. The prediction model consists of five functional modules: input layer, 

hidden layer, output layer, network training, and network prediction. The Mean Bias Error of this model is 0.06. 

 

4. Adaptive Disease Diagnosis Strategy (ADDS) 

This section outlines the ADDS, an innovative strategy to meet the critical demand for early diagnosis of MPXV 

and overcome current challenges in MPXV diagnosis by utilizing the BGME and EIAI. ADDS consists of two 

stages: the preprocessing stage and the classification stage. The preprocessing stage focuses on feature selection, 

where the most relevant features are identified to improve the efficiency and accuracy of the model. The classi-

fication stage then utilizes EINB) to classify patients. Feature selection is performed to reduce dimensionality by 

identifying the most informative features, thereby enhancing model performance and computational efficiency. 

The BGME is employed as the feature selection method due to its proven effectiveness in real-world ML ap-

plications. [9]. Subsequently, an EINB is utilized to detect the presence of MPXV. This classifier is designed to 

adapt dynamically by incorporating enhanced incremental learning, making it particularly effective for evolv-

ing datasets.  
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Technique Description Advantages Disadvantages 

EMLDL [14] 

An ensemble-based approach using DL and machine ML models to predict 
cardiovascular disease risk (CVD). Six classification techniques to predict 
CVD. Random forest is used to extract important CVD features. The ML 
ensemble model achieved the maximum disease prediction accuracy of 
88.70%. 

-Combining DL and ML models yields a 
powerful strategy for accurate MPXV classi-
fication. 
-Successful ML-based ensemble model on 
given data. 
-Implementing STACKED ensemble model 
improves deep learning results 

-Low Accuracy 
-Because of limited data, DL models per-
formed poorly. 
-For better and more accurate results, addi-
tional datasets may be employed. 

ILA[17] 

A method for constructing COVID-19 pandemic predictive models of SEIRD variables 
is suggested. The incremental learning architecture (ILA) considered feature engi-
neering and incremental learning. In the initial step, the incremental learning model 
used a bagging scheme to generate predictions from a range of machine learn-
ing-based predictive models. Then, this model outputted the best accurate prediction. 
If the result is poor, it creates new prediction models (perhaps using machine 
learning) or adjusts existing ones. 

-Enhancement of prediction accuracy as the 
training process advances and the learning 
algorithm encounters a greater number of 
training examples. 

-The data dependency analysis was evalu-
ated only by one metric which is Mean Abso-
lute Percentage Error (MAPE), and the 
predictions were evaluated by MAPE, Mean 
Square Error (MSE), and coefficient of de-
termination (R2). 
-Sometimes he model had a problem in the 
prediction when data changes. 

MLM[21] 

The boolean and categorical data to detect MPXV through its clinical symptoms. DT, 
logistic regression, NB, SVM, random forest, and Adaptive Boosting were used. Data 
preparation cleaned and prepared the dataset for ML analysis. Data cleaning 
included removing unnecessary variables, validating missing values, detecting 
duplicates, and converting all binary variables to 0 and 1. The support vector machine 
produced the optimal model with the biggest area under the precision-recall curve at 
79.67%, 88.35% recall, 72.86% accuracy, and 84.53% F2-score under the baseline 
model setup. 

The model is easy and simple to implement. -The chi-square is used as a feature selection 
method. The limitation of using this method is 
the potential that the selected features may 
not be truly optimal, as the subset may still 
include irrelevant features. 
 

TL [13] 

DL was used to identify MPXV through skin lesions during an epidemic. Hyperpa-
rameter adjustment and TL improved the  DL model performance in the study. This 
method was used on Xception, Vgg19, Dense-Net121, ResNet50, EfficientNetV2, 
and MobileNetV3-s. Performance was measured by AUC, accuracy, recall, loss, and 
F1-score. Best model: optimized hybrid MobileNetV3-s, with an average F1-score of 
0.98, AUC of 0.99, accuracy of 0.96, and recall of 0.97. 

-Optimization and hyperparameter updates 
of CNN and transfer learning models led to 
high success and low loss rates. 
 

-Low-quality dataset. 
-Image datasets utilized for the detection of 
MPXV disease lack classification by accred-
ited medical professionals. No official dataset 
has been released by health institutions yet. 
 
 

FL [22] 

a deep learning-based federated learning-based architecture (FLA)  is proposed for 
secure MPXV and other pox virus categorization. The proposed framework includes 
a cycle-consistent generative adversarial network for data sample augmentation 
during training, DL models like MobileNetV2, Vision Transformer (ViT), and Res-
Net50 for classification, and a flower-federated learning environment for security. 
Testing shows 97.90% accuracy for the ViT-B32 model. 

-The first paper that used the federated 
learning to diagnose the MPXV. 

-The scalability and generalizability chal-
lenges of the suggested approach across 
Additional datasets and clinical environments 
require consideration. 
 

DLF[23] 

Ensemble learning that used to detect MPXV in skin lesion images is proposed. The 
process starts with fine-tuning three pre-trained base learners: Inception V3, Xcep-
tion, and Dense-Net169. These deep model probabilities are then used in an en-
semble framework. A Beta-based normalizing technique is used to efficiently ag-
gregate complimentary information from base learners and combine outputs. Sum 
rule determines ensemble decision. Five-fold cross-validation is used to thoroughly 
analyze the deep learning framework (DLF) using a publically available Monkeypox 
skin lesion dataset. The values of average accuracy, precision, recall, and F1 scores 
are 93.39%, 88.91%, 96.78%, and 92.35% respectively. 

-Addition of Gaussian noise reduced the 
overfitting and introduced               
variability in the learning process 

-The model achieved Low Accuracy. 
-Lack of attention-based methods to focus on 
important regions for better diagnosis. 
-The dataset is small 

ADMS[24] 

The paper presented a hybrid architecture for the diagnostic of MPXV, utilizing a 
modified grey wolf optimization model for efficient selecting of features and weighting. 
Furthermore, the system employs an ensemble of classifiers that utilizes a confu-
sion-based voting mechanism for combining significant data features. The general-
izability of the proposed model is assessed by evaluating its performance on external 
datasets for MPXV and COVID-19. The model attained an overall diagnosis accuracy 
of 98.00% for external COVID data sets and 99.00% for MPXV data sets. 

-Fast and accurate strategy for the diagnosis 
of MPXV. 
-Small number of hyperparameter. 
- 

-Small dataset is used. 

HMD[25] 

A novel AI-based strategy for early MPXV patient detection, called the Human 
Monkeypox Detection (HMD) strategy, is proposed in [25]. It consists of two phases: 
(i) Selection Phase (SP) and (ii) Detection Phase (DP). In SP, the Improved Binary 
Chimp Optimization (IBCO) algorithm is used for feature selection before training an 
Ensemble Diagnosis (ED) model in DP. IBCO is a hybrid algorithm combining filter 
and wrapper methods. Three diagnostic algorithms—Weighted Naïve Bayes (WNB), 
Weighted K-Nearest Neighbors (WKNN), and Deep Learning (DL)—are integrated 
using weighted voting for optimal results. WNB weights are based on feature influ-
ence, while Grey Wolf Optimization (GWO) is used to determine WKNN weights. The 
HMD approach outperforms comparable strategies, achieving 98.48% accuracy, 
91.1% precision, and 88.91% recall, with an implementation time of 5.4 seconds. 

-Several techniques are used in this strategy 
that obtain good results. 
-The strategy delivers results with a short 
implementation time of 5.4 seconds, making 
it suitable for real-time applications 

-Small dataset is used. 
-The integration of different algorithms require 
careful parameter tuning. 

aABC-ANN 
[26] 

A model for differentiating monkeypox infection based on the clinical symptoms that 
manifest in the infected individual. The proposed model combined the adaptive 
artificial bee colony (aABC) algorithm with an artificial neural network (ANN). 

-ANNs are highly flexible and capable of 
learning complex patterns in data. 

-The evaluation of the proposed diagnosing 
methodology is predicated on a very restricted 
dataset, which comprises only 240 suspect-
ed cases, of which 120 are normal and 
120 are infected. 

XGBoost[27] 

The authors provided an approach to detect the MPXV by employing symptoms as 
the premise for detection. In order to accomplish this, a dataset was generated by 
utilizing published data on MPXV. The output of all models that have been presented 
is not interpreted, and they are similar to a black box. The problem was resolved by 
analyzing the model's output using Shapley additive explanation (SHAP). This study 
compared Random Forest, SVM, XGBoost,, CatBoost, LightGBM, and all gradi-
ent-boosting algorithms that are frequently employed in ML The results of the study 
indicated that XGBoost was the most accurate in diagnosing MPXV based on 
symptoms. 

-Interpretability through SHAP. 
-First paper to diagnose the MPXV   using 
the clinical symptoms. 

-Risk of Overfitting 
-Complexity of the system. 

GWO-CNN[28] 

An approach (GWO-CNN) that employs CNNs to classify MPXV skin lesions. The 
MPXV prediction model is comprised of four stages: (1) Feature selection to identify 
the most significant symptoms that can improve the accuracy of MPXV diagnosis, (2) 
pre-processing of the MPXV data, (3) Monkeypox prediction using the CNN model, 
and (4) optimization of the CNN hyperparameters with the GWO algorithm. The 
optimized model attained an accuracy value of 95.3%. 

Enhanced the CNN model with the applica-
tion of the Grey Wolf Optimizer (GWO) 
algorithm, yielding substantial advancements 
in accuracy, precision, recall, F1-score, and 
AUC. 

-Further validation and testing of CNN models 
on more diverse and large datasets may be 
necessary to guarantee their robustness, 
generalizability, and reliability. 
-Training and optimizing CNN models may 
necessitate substantial computational re-
sources and specialized knowledge. 

BER-LSTM 
[29] 

The research in [29] proposed a new method for precisely predicting confirmed 
MPXV cases with an optimized Long Short-Term Memory (LSTM) deep network. The 
model utilized the Al-Biruni Earth Radius (BER) optimization process to refine the 
hyper-parameters of the LSTM-based deep network, resulting in the designation 
BER-LSTM for the proposed approach. The prediction model consists of five func-
tional modules: input layer, hidden layer, output layer, network training, and network 
prediction. The Mean Bias Error of this model is 0.06. 

The model consists of five clear functional 
modules: input layer, hidden layer, output 
layer, network training, and network predic-
tion. This modular design makes the model 
easy to understand, implement, and poten-
tially extend or modify for similar tasks. 

 

When evaluated on an extensive dataset, the 
equilibrium between exploration and exploita-
tion stages of the optimization algorithm is 
time-consuming. 
 

Table 1: State-of-the-art Methods for diagnosing MPXV.  
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ADDS achieves three key criteria for assessing the robustness of any learning algorithm, which include stability, 

improvement, and recoverability. Stability guarantees that the prediction accuracy on the test set remains con-

sistent during incremental learning phases, hence ensuring reliability throughout the learning process. Im-

provement denotes the algorithm's capability to attain a noticeable increase in prediction accuracy as it pro-

cesses additional training data, illustrating its proficiency in efficiently incorporating new knowledge. Recov-

erability refers to the algorithm's ability to restore its performance after a decline, enabling it to return to its 

previous optimal performance despite a decrease in accuracy during certain learning phases. Figure 3 shows 

the Advantages of ADDS. Figure 4 shows the first step of ADDS. Figure 5 shows the second step of ADDS. 

Figure 6 and Figure 7 shows the third and fourth steps of ADDS respectively. 
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Real-time adaptation 

Efficient learning 

Learning from non-stationary data 

Enhanced Retention 

Application-Oriented 

 

 

 

  

 

 
Efficient use of resources 

Figure 3. The Advantages of ADDS. 
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Dataset  

 
F1 F2 F3 F4 F5 F6 F7 Fn-1 Fn 

 
Outcomes of training dataset 

Patient  Non-Patient  

Class 2 Class 1  

feature Frequency Probability 
in class “   
patient “ 

F1   

F3   

F5   

F7   

Fn-1   

Fn   

 

feature Frequency Probability in 
class 

“Non-patient” 

F1   

F3   

F5   

F7   

Fn-1   

Fn   

 

Feature selection using GME  

 
 F1 F3 F7 F5 Fn-1 Fn 

Selected Features  

1 
The first step of the ADDS is to select the most important features from the MPXV dataset by using GME optimization algorithm, and then 

create the frequency distributions tables for each selected feature according to “ patient class “ and “ non –patient class ”  

Figure 4. The first step of ADDS. 

In the second step of ADDS, the EINB classifier is trained using the initial training set, and the initial accuracy of the model is 

calculated. When a new case arrives, the model will diagnose it. If the number of arrived cases equals to IUT value , the frequency 

distribution tables will be updated accordingly. If not, the model will remain the same. 

2 

 

Figure 5. The Second step of ADDS. 

 

Figure 6. The third step of ADDS. 

3 

In the third step of ADDS, if the no.of incoming cases equals the determined value of IUT, the frequency distribution tables 

will be updated. The initial test cases are used to determine the new accuracy of the model according to the updated val-

ues of the probability distribution tables. 

 Using the initial test 

cases to determine the 

new accuracy according 

to the updated values of 

the probability      

distribution   tables.                        

 

IUT == the set 

value? 

Yes  

 feature Updated 
Frequency 

Updated 
Probability in 
class “patient”  

F1   

F3   

F5   

F7   

Fn-1   

Fn   

 

feature Updated 
Frequency 

Updated 
Probability in 

class 
“non-patient”  

F1   

F3   

F5   

F7   

Fn-1   

Fn   



IJT’2025, Vol.05, Issue 01.       13 of 33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Binary Grouper and Moray Eel (BGME) Optimization Algorithm  

GME is a new algorithm that is inspired by the collaboration between moray eels and groupers, each of which 

employs a distinct attack strategy[9]. When these two predators combine their hunting capabilities, the prey has 

a low likelihood of survival due to the fact that multiple agents are searching for prey with varying strategies 

and rapid access. This cooperative behavior seems to suggest a high level of intelligence. The foraging between 

the same species yields inferior outcomes in comparison to the cooperation between the groupers and moray 

eels. During the foraging process, the grouper fish and Moray eel collaborate in four phases: (i) (PS) for a prey, 

(ii) PA, (iii) ES, and (iv) AC [9].  

 

This paper uses GME to select the most important features of MPXV. So, it is essential to develop a binary ver-

sion of GME (BGME) that can be implemented in response to the feature selection issue. A one-dimensional 

vector represents each solution, and its length is contingent upon the number of features in the dataset. One of 

two values can be assigned to each element in the vector: 1 or 0. An indicator value of 1 indicates that the cor-

responding feature is selected, while 0 indicates that the feature is not selected. Consequently, to implement the 

Compare the new accuracy with the previous value of it  

Don’t add the new cases i.e ignore them, and use the pre-

vious model to diagnose the incoming cases  

Acc (i+1)> Acc(i)   

 

Acc (i+1)≤ 

Acc(i)   

Training set 
Used to diagnose the new incoming cases 

then update the frequency distribution ta-

ble. 

Continue the process of Enhanced incremental learning until reach to the target accuracy. 

Update the training set with the new arrived cases and use 

the new training set to diagnose the incoming cases. 

After calculating the new accuracy of the model, it will be compared with the previous value of it .If it is equal to or less than the previous 

value, the new incoming data will not be added to the training set and the frequency distribution table will not updated. If the accuracy 

increases, the new incoming data will be added to the training set and the frequency distribution tables will be updated accordingly. 

4 

Figure 7.The fourth step of ADDS. 
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GME for the feature selection problem, a mapping mechanism from actual values to binary space must be im-

plemented by using the sigmoid function using (1), and (2).   

 

 

 

The most significant features of MPXV will be identified to evaluate the utility of the proposed BGME in fea-

ture selection. BGME initiates with search agents (S) that possess a set of search agents represented by Y and 

signifies a possible solution. A solution would specify the number of features selected to reduce the dimen-

sionality of a specific dataset. Let P denote the total number of iterations across the PS, ES, and AC phases, with 

the number of iterations of the PA phase (PAss) equaling 1. Consequently, the no.of iterations for PS, ES, and 

AC, represented as P_Search, P_Enc, and P_AC, can be determined using equations (3 → 5) as follows: 

 

 

 

The evaluation of these search agents should employ the accuracy metric of the K-Nearest Neighbor (KNN) 

classifier as a fitness function. The evaluation function can be expressed mathematically using (6). Figure 8 

shows the steps for the initialization of BGME.                  
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In the PS phase, the grouper begins to move in a zigzag movement. Then, the mth grouper's updated position is 

determined by equation (7), which varies by the number of hop, reflecting the moves in each iteration. When 

the number of hops is even, the new position is selected at random to exceed the current position, ensuring it 

remains within the maximum limit of the search space. In contrast, when the number of hops is odd, the new 

position is randomly selected to be less than the current one while adhering to the minimal boundary of the 

search region. Figure 9 shows the pseudocode of the PS phase. 

 

 

 

 

 

 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑌𝑚
𝑖 )  

1

1+𝑒−𝑌𝑚
𝑖     (1)  

 

𝑌𝑏𝑖𝑛𝑎𝑟𝑦_𝑚
𝑖 (𝑖 + 1)    

1               𝑖𝑓   𝑟𝑎𝑛𝑑(0,1) ≥ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑌𝑚
𝑖 )

 
0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

          (2) 

1. Each search agent indicates a potential solution which represents by the subset of features (1: selected, 0: not selected). 

 

2. Initialize the total no.of iterations (P), and calculate the no.of iteration in the search (𝑃𝑆𝑒𝑎𝑟𝑐ℎ), encircling (𝑃𝐸𝑛𝑐) , and attacking phases ( 𝑃𝐴𝐶). 

3. Initialize the no. of hops in each iterations (hop).  

Initialization 

4. The objective function that is used to evaluate the search agents is the accuracy of KNN classifier:- 

 

Figure 8. The initialization of BGME 

if No.of hop is even       )  𝑌𝑚
ℎ𝑜𝑝 
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 𝑅𝑎𝑛𝑑(𝑌) 
 pdated position ofThe u
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 (7) 

if No.of hop is odd     𝑚𝑖𝑛 (𝑌𝑚) ≤ 𝑌 <   𝑌𝑚
ℎ𝑜𝑝 

 Where,   𝑌𝑚
ℎ𝑜𝑝+1

 𝑅𝑎𝑛𝑑(𝑌) 

𝑃𝑆𝑒𝑎𝑟𝑐ℎ   
𝑃

3
  (3),   𝑃𝐸𝑛𝑐   

𝑃

3
       (4),  𝑃𝐴𝐶   𝑃 − 2 ∗

𝑃

3
     (5).                                                
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In the PA phase, the cooperation between the groupers and the eels allows them to discover new areas of the 

search domain. Each grouper fish will have an association with an eel according to the value of the objective 

function i.e. the grouper with the highest value of objective function associates with the eel that has the highest 

value of objective function and so on.  

 

In the ES phase, each pair endeavors to encircle the prey by moving independently, thereby facilitating the ex-

ploration of various regions within the search space. The logarithmic spiral has been designated as the principal 

mechanism for location updates for groupers throughout the ES phase while the sinusoidal wave is used for 

updating the positions of the eels. The position of the prey can be determined according to the following steps.  

 

Initially, Equation (8) is used to compute the differences between the location coordinates (∆y_m) of the group-

er's position (Y_gm) and the position of the eel (Y_Em ) in order to determine the position of the prey. The distance 

between the grouper and the eel is determined by squaring the differences for each axis, totaling them, and then 

taking the square root, as indicated in (9). Then, the position of the prey can be obtained by employing (10).  

     (   −    ) (8),         √∑ (   ) 
 
  1  ( ) ,              +

 

   
∗          (10). 

 

After obtaining the position of the prey, the grouper and the eel initiate their respective movements toward the 

prey after they have located it. The following steps are for updating the position of the grouper in this phase. 

Initially, determine the distance between the grouper and the potential prey by using (11).  

 1⃗⃗⃗⃗  ⃗  | ⃗     _ ( ) −  ⃗   ( )|       (11) 

The updated position of the mth grouper in the next hop is calculated by using (12). It depends on several fac-

tors: the distance D1  between the grouper and its prey, the constant k that defines the shape of the logarithmic 

spiral guiding the grouper’s path, and the predicted location of the prey at iteration i . Additionally, a value w, 

calculated using equation (13), is influenced by the number of encircling iterations  and the number of hops in 

the current iteration. These elements combine to determine the position of the grouper as it adjusts its move-

ment relative to the prey and the surrounding environment. 

 ⃗   (ℎ + 1)   1⃗⃗⃗⃗  ⃗       (2  ) +  ⃗     _  ( )  (12)                 ,      1 −
 ∗ℎ

         
       (1 )   

The positions of the moray eels are updated in this phase by using (14), (15), (16), and (17).   

  ( )  | ⃗   ( ) −  ⃗      ( )|  (14),           ⃗⃗⃗  ( )     ( ) ∗      (15) 

 ℎ                    ℎ  ℎ     
  

            ℎ   
    (1 ),              

 +1
=  ∗    ( ) ∗   *sin (g) +    

 
   (17) 

1. Partition the search agents to two equally sets which are; groupers and eels.  

 2. Randomly allocate the groupers and eels throughout the search space. 

3. Compute the objective function value for each search agent.  

4. Each grouper initiates the movement in a zigzag pattern.  

5. Determine the new position for each grouper depending on the number of movements in the iteration and 

compute the new objective function using (7).  

 

PS 

Phase  

6. The new positions of search agents (𝑌𝑏𝑖𝑛𝑎𝑟𝑦_𝑚
𝑖 (𝑖 + 1)) will be converted to a binary value by using the sigmoid function. 

7. Choose the best position of the grouper from all hops in the current iteration to serve as the initial position for the next 

iteration until reach to the number of P_Search 

  8. Select the best positions for the groupers to be the initial positions of the next phase.  

Figure 9. The pseudocode of the PS phase of BGME optimization algorithm. 
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Where λ  (i) denotes the difference between the positions of the moray eel and its prey, the wave amplitude       

(ƞ  (i)) will be ascertained by multiplying λ  (i) by a factor ξ. ξ possesses a stochastic value within the interval of 

0 to 1.   is a random value and sin (g) is the value of the sin angle. Figure 10 provides the pseudocode of the ES 

phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the AC phase, all search agents, regardless of being groupers or eels, engage in the assault on the prey 

after precisely encircling its position by constructing a circle with the prey positioned in its center. The proce-

dure for establishing the circle around the anticipated prey is as follows: initially, the position of the agent ex-

hibiting the optimal fitness function is presumed to be the location of the predicted prey. The distance between 

the expected prey and the other agents is subsequently computed. A circle is then established around the prey, 

with the radius (R) representing the distance from the prey to the most distant agent. To accommodate the 

numerous search agents and to minimize computational complexity, the radius of the subsequent circle can be 

determined using (18). During each iteration of the attack, the search agents approach the prey significantly 

closer until they successfully capture it.Figure 11 shows the pseudocode of the AC phase. 

  +1  (1 −  ) ∗      (18)  
Where the   denoted a shrinking ratio. Figure 6 shows the pseudocode of the AC phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The best positions of the groupers and moray eels from the PS phase will be used as the initial posi-

tions in the ES phase.   

ES 

Phase  

2. The logarithmic spiral has been designated as the principal mechanism for location updates for groupers throughout the ES 

phase according to the following steps, while the sinusoidal wave is used for updating the positions of the eels.  

 3. The location of the prey can be determined by using the equations (8 →10), and its location will be converted to a binary 

value by the sigmoid function by using (1) and (2).  

4. The groupers update their locations in the same iteration according to no.of (hop) by using the equations (11 →13), then the 

sigmoid function will be used to convert these locations to binary ones.  

5. The eels update their locations according to equations (14 →17), then the sigmoid function will be used to convert these lo-

cations to binary ones. 

6. The objective function will be calculated for each search agent.  

7. The steps from 4 to 6 will be repeated until reach to no. of 𝑷𝑬𝒏𝒄, then use the best position of each search agent to be the ini-

tial position of it in the next phase.  

 

Figure 10. The pseudocode of the ES phase of BGME optimization algorithm. 
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4.2. Enhanced Incremental NB (EINB) Classifier 

EINB, a modified version of NB, is an example of a probabilistic algorithm based on the Bayes theorem. It has 

the same concept as traditional NB, which is to compute the likelihood that the sample corresponds to each 

category based on the sample's feature value and then assign it to the category with the highest likelihood, but it 

operates through an incremental learning approach[10]. It intends to update the model when new data is re-

ceived without the necessity of complete retraining. Upon initially receiving a batch of data, the EINB functions 

identically to a conventional NB classifier.  

 

 

 

 

To classify the data point to the target class, the model assigns it to the class that maximizes the posterior 

probability. First, it calculates the class prior probability and conditional probability. Prior probability refers to 

the probability distribution of each class based on the available data. Conditional Probability denotes the like-

lihood of each feature belonging to a particular class. Posterior probability refers to the chance of an unclassified 

sample belonging to a particular class [30]. 

 

Consider {C1, C2, …,CK.., Cm } to be the names of the m distinct classes, Y is a data sample that consists of n 

features denoted as (x1,x2,x3,x4,…,xi..,xn). The class prior probability of a sample being a member of class Ck is 

denoted as P(Ck). P (Y|Ck) represents the conditional probability that a sample Y contains the same features as a 

sample whose class label is Ck. The posterior probability P (  |Y) can be calculated using (19).It is the multi-

plication of the conditional probabilities of all features given the class Ck (∏  (  
 
1     )) by the class prior 

probability ( (  )). For making a prediction, the model computes the posterior probability for each class , then 

it subsequently selects the class that possesses the highest posterior probability using (20).Figure 12 illustrates 

how the EINB works.  

 

P (  |Y) =[ (  ) ∗ ∏  (  
 
1     )]  (19). 

 

C =      
  

[ ( 
 
) ∗∏  (  

 
1     )]  (20) 

 

 

 

 

 

 

 

 

AC 

Phase  

1. Identify the position of the search agent exhibiting the best fitness function, which corresponds to the anticipated         

location of the prey.   

2. Compute the distance between the anticipated prey and all other agents. 

3. Determine the distance from the prey to the most distant agent and designate this as the radius (R) of the circle with the 

prey at its center.  

4. Randomly allocate the agents within the circle.  

5. Compute the objective function for each search agent.  

6. Select the search agent with the optimal value to serve as the prey in the subsequent iteration.  

7. The radius of the subsequent circles will be determined using (18).  

8. Upon determining the radius, the circle is established, with the prey situated at its center. 

9. Randomly allocate the search agent inside it. 

10. Compute the objective function for the search agent. 

11. The search agent with the optimal fitness function value will be designated as the prey. 

12. The previous steps will be repeated until reach to the no.of  𝑷𝑨𝑪 

13. Return with the search agent which has the best objective function to become the solution which represents the most 

important features.  

Figure 11. The pseudocode of the AC phase of BGME optimization algorithm. 
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4.3. Illustrative Example of EINB 

The following example illustrates how EINB works. Table 2 shows a dataset with nominal values. The dataset 

consists of no.of training data equals 15 patients, no.of testing data equals 5 patients, no.of features is 6, and the 

target classes are healthy and infected. The features are Platelet Count (PC), White Blood cell (WBC), Monocytes 

Count (MC), Aspartate aminotransferase (AST), Basophils Count (BC), and Lactate Dehydrogenase (LDH). Ta-

ble 3 shows the corresponding nominal values of each feature. Table 4 shows the frequency distribution tables 

for each feature compiled from the dataset where the probability of the class "healthy "is 10 /15, and the class 

“infected “is 5/15. The testing dataset is used to predict the accuracy of the model by using the confusion matrix. 

Pseudo Code for EINB Classifier  

 Training Phase 
1. Input Training Data: 

o Enter the training dataset, consisting of feature vectors and corresponding class labels (denoted as C). 

2. Calculate Prior Probabilities (P(C): 
o Determine the prior probabilities P(C) for each class C in the dataset. This is done by calculating the relative frequency 

of each class in the training set :  

P(C) = (Count of Class C / Total Cases) 

3. Create Frequency Distribution Tables: 
o Build frequency distribution tables for each feature across the classes. This involves calculating how often each feature 

value occurs in relation to each class. 

4. Calculate Conditional Probabilities P(Y∣C): 
o For each class C and each feature Y, determine the conditional probabilities P (Y∣C). These probabilities represent the 

likelihood of observing feature given class C. This is done using the frequency distribution tables.  

P (Y∣C) = (Count of feature value in class C/ Total instances in class C)   

 Testing Phase 
6. Input Testing Data: 

o Input a testing set, which consists of a feature vector Ytest, for which the class label is unknown. 

7. Compute Posterior Probabilities: 
o For each class C, calculate the posterior probability P(C∣Ytest) using Bayes’ theorem:  

P (C|Ytest) =𝐏(𝒀𝒕𝒆𝒔𝒕 𝐂)  ∗ 𝑷(𝑪) 

8. Prediction: 
o Choose the class with the highest posterior probability as the predicted class for the test instance. 

9. Accuracy Calculation: 
o Calculate the model's accuracy on the testing set by comparing the predicted class labels with the true labels. 

 Incremental Learning Process  
10. Set The incremental update trigger value (IUT): 

o Define the value of IUT, which determines how the frequently updates of the model are performed based on new 

incoming data. 

11. Wait until the no.of new incoming cases equals (IUT)value : 
o Wait until (IUT) new cases (incoming data points) are observed before performing an update. 

12. Class Prediction for Incoming Cases: 
o For each incoming case, use the current model to predict the class label. 

13. Update Frequency Distribution Tables: 
o After predicting the class label for each incoming case, update the frequency distribution tables for each feature and 

class. 

14. Update Conditional Probabilities: 
o Update the conditional probabilities P (Y∣C) for each feature in each class based on the updated frequency distribu-

tions tables. 

15. Update Prior Probabilities: 
o Update the prior probabilities P(C) for each class, incorporating the newly predicted class labels from the incoming 

cases. 

16. Recalculate Accuracy: 
o After updating the model, recalculate the accuracy of the model using the original testing set to evaluate the impact 

of the updates. 

 Selection of Data Addition 
16. Compare New Accuracy with Previous Accuracy: 

o Compare the accuracy obtained after the update with the previous accuracy. 

17. Decision on Data Addition: 
o If the accuracy has increased, add the new incoming cases to the training set to improve the model, and use this 

model to classify the cases that will come up again. 

o If the accuracy has decreased or remained the same, do not add the new incoming cases to                                        

the training set and retain the previous model as the current best model. 

Figure 12. The pseudocode of the EINB Classifier  
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Table 5 shows that the model classified 2 cases correctly, but 3 cases were classified incorrectly. Table 6 shows 

the confusion matrix where TP is the truly positive case, TN is the truly negative case, FP is the false positive 

case, and FN is the false negative case .By using (21), the initial accuracy of the model is calculated and equals 

0.4.  

Accuracy = (TP + TN) / (TP + TN + FP + FN)    (21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Patient   # Features of dataset Diagnosis 

PC WBC MC AST BC LDH 

Initial training  data (15 Patients ) 

1 Low Low Low High Normal Normal Healthy 

2 Low Low Normal High Normal High Healthy 

3 Low High Normal High Normal Normal Infected 

4 Low High Normal High High Normal Healthy 

5 Low Normal High High Normal Normal Infected 

6 Low Normal Normal High Normal High Healthy 

7 Normal Low Low High Normal Normal Healthy 

8 Normal High Normal High Normal Normal Infected 

9 Normal High Normal High High High Healthy 

10 Normal Normal High High Normal Normal Infected 

11 Normal Normal High High Normal High Healthy 

12 High Low Low Normal Normal Normal Healthy 

13 High Normal High Normal Normal Normal Infected 

14 High Normal High Normal High High Healthy 

15 High High Normal Normal Normal High Healthy 

Testing data (5  Patients) 

16 Low Normal High High High Normal Infected 

17 Normal Normal High High High Normal Infected 

18 High Low Low Normal Normal High Healthy 

19 Normal Normal Normal High Normal Normal Infected 

20 High High Normal Normal Normal Normal Healthy 

 

Table 2 . The dataset with nominal values. 

Feature of dataset 
Corresponding 

Nominal Values 

PC 

Low 

Normal 

High 

WBC 
Low 

Normal 

High 

MC 

Low 

Normal 

High 

AST 
High 

Normal 

BC 
High 

Normal 

LDH 
High 

Normal 

 

Table 3. Nominal values of each feature. 

Table 4. The frequency distribution tables compiled from the dataset. 

Feature Diagnoses ∑ Probability in Class 

Healthy Infected Healthy Infected 

PC 

Low 4 2 6 4/10 2/5 

Normal 3 2 5 3/10 2/5 

High 3 1 4 3/10 1/5 

∑ 10 5 15 
 

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

WBC 
Low 4 0 4 4/10 0/5 

Normal 3 3 6 3/10 3/5 

High 3 2 5 3/10 2/5 

∑ 
10 5 15 

 

 

(a)Platelet Count (PC). (b) White Blood cell (WBC). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

MC 

Low 3 0 3 3/10 0/5 

Normal 5 2 7 5/10 2/5 

High 2 3 5 2/10 3/5 

∑ 10 5 15  

 

Feature 

Diagnoses 

∑ 

Probability in Class 

Healthy Infected  Healthy Infected  

AST 
High 7 4 11 7/10 4/5 

Normal 3 1 4 3/10 1/5 

∑ 10 5 15  

 

(c ) Monocytes Count (MC). (d) Aspartate aminotransferase (AST). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

LDH 
High 6 0 6 6/10 0/5 

Normal 4 5 9 4/10 5/5 

∑ 10 5 15  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

BC 
High 3 0 3 3/10 0/5 

Normal 7 5 12 7/10 5/5 

∑ 10 5 15  

 

(e) Basophils Count (BC). 
(f)Lactate Dehydrogenase (LDH). 

Patient # P(Healthy) P(infected) Diagnoses  

Patient16 0.0006 0 Healthy × 

Patient 17 0.001 0 Healthy × 

Patient 18 0.003 0 Healthy √ 

Patient 19 0.0058 0.0512 infected √ 

  Patient 20 0.0025 0.0042 infected x 

 

Table 5. Testing the data to predict the accuracy of the initial model  

 
 

N=5 
 

Predicted 
Diagnoses 

 

Healthy  infected  

Actual 
Diagnoses 

Healthy TP=1 FN=1 2 

infected FP=2 TN=1 3 

3 2 5 
 

Table 6. Confusion Matrix 
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The previous steps are used to initially train the EINB classifier on a training dataset to establish baseline 

probabilities for classes and features. According to no.of incremental update trigger (IUT) value, the model 

updates incrementally by updating the prior probabilities for each class based on the new data. In this example, 

it is assumed that IUT =5. Then update the conditional probabilities of features within each class based on the 

occurrences of that feature in the new data and the existing data. Table 7 shows the five new incoming cases and 

their diagnosis by the model. The probability of class healthy is updated to 13/20, and the probability of class 

infected will be 7/20, as shown in Table 8. The updated frequency distribution tables for each feature based on 

new incoming cases are shown in Table 9 (a → f). Table 10 shows the diagnosis of the five test cases by the new 

model. If the accuracy of the updated model increases, the newly arrived cases will be added to the training set. 

If the accuracy not increase or remain as the previous value, the new cases will be deleted and not added to the 

training set. The Accuracy of the updated model = (TP + TN) / (TP + TN + FP + FN) = 0.6. The accuracy increases 

so that the five cases will be added to the training set, as shown in Table 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-The five incoming new cases   

Case 1 Normal Low Normal High Normal High result  
Diagnosis by 

the model  

P(Yes) 0.3 0.4 0.5 0.7 0.7 0.6 0.01176 
Healthy 

P(No) 0.4 0 0.4 0.8 1 0 0 

case 2 Low High Normal High High High result  Diagnosis 

P(Yes) 0.4 0.3 0.5 0.7 0.3 0.6 0.00504 
Healthy 

P(No) 0,4 0 0.4 0.8 0 0 0 

case 3 Low Normal Normal High Normal Normal result  Diagnosis 

P(Yes) 0.4 0.3 0.5 0.7 0.7 0.4 0.00784 
Infected 

P(No) 0.4 0.6 0.4 0.8 1 1 0.0256 

case 4 High High Normal Normal Normal Normal result  Diagnosis 

P(Yes) 0.3 0.3 0.5 0.3 0.7 0.4 0.00252 
Healthy 

P(No) 0.2 0.4 0.4 0.2 1 1 0.00213 

case 5  High Normal High Normal Normal Normal result  Diagnosis 

P(Yes) 0.3 0.3 0.3 0.3 0.7 0.4 0.00151 
Infected 

P(No) 0.2 0.4 0.4 0.2 1 1 0.00213 

 

Table 7. The five new incoming cases to predict the diagnosis 

Class Probability of the 
classes 

Healthy 20/13  

Infected 7 /20 

 

Table 8. The first update of 

probability of classes 

Table 9. The updated frequency distribution tables compiled from the dataset. 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

PC 

Low 5 3 8 5/13 3/7 

Normal 4 2 6 4/13 2/7 

High 4 2 6 4/13 2/7 

∑ 13 7 20  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

WBC 

Low 5 0 5 5/13 0/7 

Normal 3 5 8 3/13 5/7 

High 5 2 7 5/13 2/7 

∑ 13 7 20  

 

(a)Platelet Count (PC). (b)White Blood cell (WBC). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

MC 

Low 3 0 3 3/13 0/7 

Normal 8 3 11 8/13 3/7 

High 2 4 6 2/13 4/7 

∑ 13 7 20  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected Healthy infected 

AST 
High 9 5 14 9/13 5/7 

Normal 4 2 6 4/13 2/7 

∑ 13 7 20  

 

(c ) Monocytes Count (MC). 
(d) Aspartate aminotransferase (AST). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

LDH 
High 8 0 8 8/13 0/7 

Normal 5 7 12 5/13 7/7 

∑ 13 7 20  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

BC 
High 4 0 4 4/13 0/5 

Normal 9 7 16 9/13 7/7 

∑ 13 7 20  

 

(e)Basophils Count (BC). 
  (f)Lactate Dehydrogenase 
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Table 12 shows another five new incoming cases and their classification with the updated model. According to 

this, the probability of healthy and infected classes are updated to be 17/25 and 8/25, respectively, as shown in 

Table 13. Table 14 shows the changes made to the frequency distribution tables for the features according to the 

five additional incoming cases. The model classified 3 cases correctly, and 2 cases were classified incorrectly. 

The accuracy of the updated model according to these five cases as shown in Table 15 is 0.6. The accuracy 

doesn’t increase, so the five cases will not be added to the training set. The training set will remain as Table 11.  

 

Table 16 shows an additional five cases that needed to be classified by the model. There are 4 cases classified as 

infected and one case classified as healthy, so the probability of these two classes is updated as shown in Table 

17. Table 18(a→f) shows the third update of the frequency distribution tables compiled from the dataset. The 

accuracy of the updated model is measured by classifying the initial test cases to calculate the values of TP, TN, 

FP, and FN. As shown in Table 19, the model classified 2 cases correctly and 3 cases incorrectly so that the ac-

curacy of the model will be 0.4. The accuracy decreases so that, the five cases will not be added to the training 

set.  

 

2- The testing cases 

Case 1 Low Normal High High High Normal result  Diagnosis Actual diagnosis 

P(Yes) 0.384 0.23 0.15 0.692 0.307 0.384 0.000705 
Healthy × 

P(No) 0.428 0.71 0.57 0.714 0 1 0 

case 2 Normal Normal High High High Normal result  Diagnosis Actual diagnosis 

P(Yes) 0.31 0.23 0.15 0.692 0.307 0.384 0.000565 
Healthy × 

P(No) 0.29 0.71 0.57 0.714 0 1 0 

case 3 High Low Low Normal Normal High result  Diagnosis Actual diagnosis 

P(Yes) 0.31 0.38 0.23 0.307 0.692 0.615 0.002308 
Healthy 

√ 

P(No) 0.29 0 0 0.285 1 0 0 

case 4 Normal Normal Normal High Normal Normal result  Diagnosis Actual diagnosis 

P(Yes) 0.31 0.23 0.615 0.692 0.692 0.384 0.005219 
Infected 

√ 

P(No) 0.29 0.71 0.428 0.714 1 1 0.02183 

case 5  High High Normal Normal Normal Normal result  Diagnosis Actual diagnosis 

P(Yes) 0.31 0.38 0.615 0.307 0.692 0.384 0.00381 
Healthy  

√ 

P(No) 0.29 0.28 0.428 0.285 1 1 0.00342 

 

Table 10. The five test cases to predict the accuracy  

Patient   
# 

Features of dataset 
Diagnosis  

PC WBC MC AST BC LDH 

Training dataset after adding the five cases (20 Patients ) 

1 Low Low Low High Normal Normal Healthy 

2 Low Low Normal High Normal High Healthy 

3 Low High Normal High Normal Normal Infected 

4 Low High Normal High High Normal Healthy 

5 Low Normal High High Normal Normal Infected 

6 Low Normal Normal High Normal High Healthy 

7 Normal  Low Low High Normal Normal Healthy 

8 Normal High Normal High Normal Normal Infected 

9 Normal High Normal High High High Healthy 

10 Normal Normal High High Normal Normal Infected 

11 Normal Normal High High Normal High Healthy 

12 High Low Low Normal Normal Normal Healthy 

13 High Normal High Normal Normal Normal Infected 

14 High Normal High Normal High High Healthy 

15 High High Normal Normal Normal High Healthy 

16 Normal Low Normal High Normal High Healthy 

17 Low High Normal High High High Healthy 

18 Low Normal Normal High Normal Normal Infected 

19 High High Normal Normal Normal Normal Healthy 

20  High Normal High Normal Normal Normal Infected 

 

Table 11. The new training dataset after adding the new arrived cases 
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In summary, this updating strategy ensures that the model learns efficiently by incorporating only beneficial 

data, avoids unnecessary re-training, and maintains its ability to recall prior knowledge, all while minimizing 

computational resources. Figure 8 shows the advantages of ADDS. Figure 13 shows the flowchart of EINB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12. The five new incoming cases to predict the diagnosis 

 The another five cases    

Case 1 Normal Low Normal  High  High  Normal result  Diagnosis 

P(Yes) 0.31 0.38 0.615 0.692 0.31 0.385 0.003878 
Healthy 

P(No) 0.286 0.00 0.4286 0.714 0 1 0 

case 2 Low High High High High  Normal result  Diagnosis 

P(Yes) 0.38 0.38 0.15 0.692 0.308 0.385 0.001212 
Healthy 

P(No) 0.43 0.29 0.571 0.714 0 1 0 

case 3 High Low Low Normal Normal High result  Diagnosis 

P(Yes) 0.31 0.38 0.231 0.308 0.692 0.615 0.002327 
Healthy 

P(No) 0.29 0 0 0.286 1 0 0 

case 4 Normal  Normal High  High Normal Normal result  Diagnosis 

P(Yes) 0.31 0.23 0.154 0.692 0.6923 0.385 0.001309 
Infected 

P(No) 0.29 0.71 0.571 0.714 1 1 0.02915 

case 5  High  High  Normal Normal Normal Normal result  Diagnosis 

P(Yes) 0.31 0.385 0.615 0.308 0.692 0.385 0.00388 
Healthy 

P(No) 0.29 0.286 0.429 0.286 1 1 0.00350 

 

Class Probability of 
the class 

Healthy 25/17  

Infected 25/8  

 

Table 13.The second update of 

probability of classes 

Table 14: The updated frequency distribution tables compiled from the dataset. 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

PC 
Low 6 3 9 6/17 3/8 

Normal 5 3 8 5/17 3/8 

High 6 2 8 6/17 2/8 

∑ 17 8 25  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

WBC 

Low 7 0 7 7/17 0/8 

Normal 3 6 9 3/17 6/8 

High 7 2 9 7/17 2/8 

∑ 17 8 25  

 

(a)Platelet Count (PC). (b)White Blood cell (WBC). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

MC 

Low 4 0 4 4/17 0/8 

Normal 10 3 13 10/17 3/8 

High 3 5 8 3/17 5/8 

∑ 17 8 25  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected Healthy infected 

AST 
High 11 6 17 11/17 6/8 

Normal 6 2 8 6/17 2/8 

∑ 17 8 25  

 

(c) Monocytes Count (MC). (d) Aspartate aminotransferase (AST). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

LDH 
High 9 0 9 9/17 0/8 

Normal 8 8 16 8/17 8/8 

∑ 17 8 25  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

BC 
High 6 0 6 6/17 0/8 

Normal 11 8 19 11/17 8/8 

∑ 17 8 25  

 

(e) Basophils Count (BC). (f) Lactate Dehydrogenase (LDH). 

3-The testing cases  

Case 1 Low Normal High High High Normal result  Diagnosis 
Actual diagnosis 

P(Yes) 0.353 0.18 0.176 0.647 0.353 0.471 0.000803 
Healthy × 

P(No) 0.375 0.75 0.625 0.75 0 1 0 

case 2 Normal Normal High High High Normal result  Diagnosis 
Actual diagnosis 

P(Yes) 0.29 0.18 0.176 0.647 0.353 0.471 0.000669 
Healthy × 

P(No) 0.38 0.75 0.625 0.75 0 1 0 

case 3 High Low Low Normal Normal High result  Diagnosis Actual diagnosis 

P(Yes) 0.35 0.41 0.235 0.353 0.647 0.529 0.002811 
Healthy 

√ 

P(No) 0.25 0 0 0.25 1 0 0 

case 4 Normal Normal Normal High Normal Normal result  Diagnosis Actual diagnosis 

P(Yes) 0.29 0.18 0.588 0.647 0.647 0.471 0.004091 
Infected  

√ 

P(No) 0.38 0.75 0.375 0.75 1 1 0.02531 

case 5  High High Normal Normal Normal Normal result  Diagnosis Actual diagnosis 

P(Yes) 0.35 0.412 0.588 0.353 0.647 0.471 0.00625 
Healthy 

√ 

P(No) 0.25 0.25 0.375 0.25 1 1 0.00188 

 

Table 15. The diagnosis of the testing set after update the model. 
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 The another five cases    

Case 1 Normal Normal Normal  High  Normal Normal result  Diagnosis 

P(Yes) 0.31 0.23 0.615 0.692 0.69 0.385 0.005236 
Infected 

P(No) 0.286 0.71 0.4286 0.714 1 1 0.021866 

case 2 Low High High High High  Normal result  Diagnosis 

P(Yes) 0.38 0.38 0.15 0.692 0.308 0.385 0.001212 
Healthy 

P(No) 0.43 0.29 0.571 0.714 0 1 0 

case 3 High  Normal Normal Normal Normal Normal result  Diagnosis 

P(Yes) 0.31 0.23 0.615 0.308 0.692 0.385 0.002327 
Infected 

P(No) 0.29 0.714 0.429 0.286 1 1 0.008746 

case 4 Normal  Normal High  High Normal Normal result  Diagnosis 

P(Yes) 0.31 0.23 0.154 0.692 0.6923 0.385 0.001309 
Infected 

P(No) 0.29 0.71 0.571 0.714 1 1 0.02915 

case 5  High  High  Normal High Normal Normal result  Diagnosis 

P(Yes) 0.31 0.385 0.615 0.692 0.692 0.385 0.00873 
Infected 

P(No) 0.29 0.286 0.429 0.714 1 1 0.00875 

 

Table 16.The five new incoming cases to predict the diagnosis 

Class Probability of the class 

Healthy 14 25/  

Infected 11 /25 

 

Table17. The third update of        

probability of classes 

Table 18. The frequency distribution tables compiled from the dataset. 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

PC 
Low 6 3 9 6/14 3/11 

Normal 4 4 8 4/14 4/11 

High 4 4 8 4/14 4/11 

∑ 14 11 25  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

WBC 

Low 5 0 5 5/14 0/11 

Normal 3 8 11 3/14 8/11 

High 6 3 9 6/14 3/11 

∑ 14 11 25  

 

(a) Platelet Count (PC). (b) White Blood cell (WBC). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

MC 

Low 3 0 3 3/14 0/11 

Normal 8 6 14 8/14 6/11 

High 2 6 8 2/14 6/11 

∑ 13 12 25  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected Healthy infected 

AST 
High 10 8 18 10/14 8/11 

Normal 4 3 7 4/14 3/11 

∑ 14 11 25  

 

(c) Monocytes Count (MC). (d) Aspartate aminotransferase (AST). 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

LDH 
High 8 0 8 8/14 0/11 

Normal 6 11 17 6/14 11/11 

∑ 14 11 25  

 

Feature 
Diagnoses 

∑ 
Probability in Class 

Healthy Infected  Healthy Infected  

BC 
High 5 0 5 5/14 0/11 

Normal 9 11 20 9/14 11/11 

∑ 14 11 25  

 

(e) Basophils Count (BC). (f) Lactate Dehydrogenase 

4- The testing cases  

Case 1 Low Normal High High High Normal result Diagnosis Actual diagnosis 

P(Yes) 0.429 0.21 0.143 0.714 0.357 0.429 0.000803 Healthy × 

P(No) 0.273 0.73 0.545 0.727 0 1 0 

case 2 Normal Normal High High High Normal result Diagnosis Actual diagnosis 

P(Yes) 0.29 0.21 0.143 0.714 0.357 0.429 0.000535 Healthy × 

P(No) 0.36 0.73 0.545 0.727 0 1 0 

case 3 High Low Low Normal Normal High result Diagnosis Actual diagnosis 

P(Yes) 0.29 0.36 0.214 0.286 0.643 0.571 0.001285 Healthy √ 

P(No) 0.36 0 0 0.182 1 0 0 

case 4 Normal Normal Normal High Normal Normal result Diagnosis Actual diagnosis 

P(Yes) 0.29 0.21 0.571 0.714 0.643 0.429 0.003856 Infected √ 

P(No) 0.36 0.73 0.545 0.727 1 1 0.04616 

case 5 High High Normal Normal Normal Normal result Diagnosis Actual diagnosis 

P(Yes) 0.29 0.429 0.571 0.286 0.643 0.429 0.00308 Infected × 

P(No) 0.36 0.273 0.545 0.273 1 1 0.00649 

 

Table 19. The diagnosis of the test cases of the updated model 
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EINB has many advantages to address the challenges of IAI can be listed as follow; 

 Handling Catastrophic Forgetting: It preserves knowledge acquired during previous iterations, ensur-

ing that crucial information learned earlier is not discarded or lost. 

 Ensuring the New Data Quality: The procedure for augmenting the training set with new data depends 

on assessing the accuracy of the model after new data arrives, so ensuring the model does not integrate 

data that may decrease its performance or offer no further benefit. 

 Handling Concept Drift: The model's parameters are updated following each IUT value rather than 

being updated for every new data point. This enables the model to process more data simultaneously, 

facilitating a more precise representation of the latest data distribution. This is essential for efficiently 

adjusting the model to the new concept. It also helps the model mitigate the noise and fluctuations 

arising from only examining individual cases. 

 Less sensitivity to noise: Modifying the model incrementally based on individual points might result in 

erratic adjustments, mainly when outliers are present. Batch processing of data diminishes the influence 

of noise, as model updates rely on aggregated information, resulting in more stable and dependable 

model modifications. 

 Minimizing overfitting: By updating the model after the IUT value of new data, the risk of overfitting to 

limited or noisy input samples is mitigated, which is more probable in online learning or when pro-

cessing individual data points sequentially. 

 Better Resource Utilization: Rather than maintaining the entire dataset, it preserves and updates only 

the feature statistics and class counts upon the arrival of new data.  

 Recoverability: it may restore its performance following a decline, allowing it to revert to its prior op-

timal performance despite a reduction in accuracy during specific learning periods. 

 The model can generate precise predictions even in a lack of data. It can initially be trained on a limited 

dataset and then progressively enhance its predictions when new data points are incorporated, ren-

dering it beneficial for rare or emerging diseases such as MPXV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Train EINB classifier on a training dataset to establish baseline 

probabilities for classes and features. 

As new data arrives, follow these steps to update the model incre-

mentally. 

According to IUT value, update the prior probabilities for each 

class based on the new data. 

Update the conditional probabilities of features within each class 

based on the occurrences of that feature in the new data and the ex-

Evaluate the performance of the updated model on a testing dataset.  

Acc (i+1)>Acc(i)   

Yes  
No  

Add the new arrived cases to the 

training set and update the model. 

Don’t add the new arrived cases to the training set and 

ignore them and return to the previous model.  

 

Dataset  

Initial training set  Testing set  

Used to evaluate the accuracy of 

model by comparing the accuracy 

after each iterations to ensure it 

continues to generalize well to 

new data. 

Figure 13. Flow chart of the learning 

process of EINB 
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5. Experimental Results 

This section provides a detailed discussion of the experimental results, encompassing a description of the da-

taset and assessment measures employed in the proposed strategy. 

 

5.1. Dataset Description and Experimental Environment  

The dataset for this research study was obtained from a publicly accessible ML data repository and used in 

many researches [21], [26], [28], [31]. The dataset was artificially generated from a report published in the Brit-

ish Medical Journal (The BMJ) titled “Clinical Features and Novel Presentations of Human Monkeypox in a 

Central London Centre during the 2022 Outbreak: Descriptive Case Series”. The dataset comprised 25,000 par-

ticipants, encompassing 10 boolean and categorical features, along with 1 target variable. The 8 boolean fea-

tures comprise Rectal Pain, Penile edema, Sore Throat, Solitary Lesion, Oral Lesions, HIV Infection, Swollen 

Tonsils, and Sexually Transmitted Infections. The two categorical attributes were the patient ID and systemic 

illness, while the target variable, MonkeyPox, indicated the presence or absence of MPXV in the patient. To 

ensure that the execution environment of the comparison experiment is standardized, All simulation results in 

this paper are obtained by Python programming language under the environment of an Intel (R) Core (TM) 

i7-8550U CPU @ 1.80GHz - 2.00 GHz with 16 GB RAM running Windows 11.  

 

One of the powerful approaches for addressing the class imbalance in the datasets is Synthetic Minority 

Over-sampling Technique (SMOTE). It operates by creating synthetic samples of the minority class, as opposed 

to simply replicating existing ones as shown in Figure 14. This enhances the model's performance, particularly 

in classification tasks where imbalanced data can result in biases. In this paper, SMOTE is used to address the 

class imbalance in the MPXV dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Evaluation metrics 

Evaluation metrics are important for evaluating the effectiveness of machine ML algorithms. These quantita-

tive measurements, which include precision, recall, accuracy, and F1-score, are provided to researchers. They 

enable researchers to identify the most appropriate approach for their tasks by facilitating meaningful com-

parisons between various models. ADDS is assessed by employing a variety of conventional evaluation met-

rics, including precision, sensitivity, accuracy, and the F1-score. TP, TN, FP, and FN define these metrics. These 

metrics are based on the classification confusion matrix of binary decision-making [32]. 

The fundamental parameter of accuracy quantifies the overall correctness of an ML model. It determines the 

ratio of cases correctly predicted to the total dataset, as shown in (21).  

The proportion of true positive cases that the model correctly identifies is known as recall, which is also known 

as sensitivity or the true positive rate. Equation (22) illustrates its definition.  

Recall = TP / (TP + FN)    (22) 

 

Figure 14. The class balance using SMOTE 
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Precision is the proportion of accurate positive predictions to all positive predictions generated by the model, 

and it can be calculated using (23).  

Precision= TN / (TN + FP)    (23) 

The F1 score is a metric that incorporates precision and recall scores and can be calculated using (24).  

F1 Score= (2× (Precision×Recall)) / (Precision+Recall)    (24)  

 

5.3. Testing Adaptive Disease Diagnosis Strategy (ADDS)  

This section presents and analyzes the results of the proposed strategy's experiment. The proposed strategy 

will be evaluated comprehensively through the implementation of three scenarios. At the outset, we will eval-

uate the performance of conventional classifiers, including NB and K-Nearest Neighbors (KNN), on the dataset 

regarding critical metrics such as precision, recall, accuracy, and F1 score. In the second scenario, the results 

will be compared to state-of-the-art methods that utilize advanced models of ML or frameworks that reflect the 

most recent advancements in the field. The third scenario is using another MPXV dataset to test ADDS. 

 

The most significant features of MPXV are HIV infection, rectal pain, and sexually transmitted infection, which 

were identified by applying the BGME as a feature selection method. In the first scenario, the NB and KNN 

will be used as classifiers, and their results will be compared with EINB. Figure 14 illustrates the accuracy, 

precision, recall, and F1 score of applying the two classifiers to the dataset. 

 

5.3.1. Ablation study of ADDS  

This section will involve the removal of some components of the ADDS  to assess their impact on the overall 

performance strategy. Three rounds will be conducted; in the first, remove the proposed EINB and employ 

traditional NB and KNN to evaluate its impact on the overall performance while retaining the BGME as it is. In 

the second round, the feature selector (BGME) will be eliminated, permitting all features to participate in the 

classification process while retaining all components as is. The third round is to remove the feature selector 

and the EINB and use the classical NB only. 

 

As shown in Figure 15, the EINB model proves to be more effective than KNN and NB in all of the metrics that 

were assessed in the comparative analysis of model performance. EINB outperforms NB (67%) and KNN 

(64%), achieving the maximum accuracy at 99.48%. In terms of precision, EINB achieves a value of 99.74%, 

surpassing KNN at 69% and NB at 68%. In terms of recall, EINB surpasses NB's 92% and KNN's 80%, achiev-

ing 99.4% performance. EINB's dominance is further underscored by the F1-score, which achieves a value of 

99.57%, in contrast to 78% for NB and 74% for KNN. This score is a delicate equilibrium between precision and 

recall. Although the NB model exhibits marginally better performance than the KNN model in recall and 

F1-score, the EINB model consistently outperforms both by a substantial margin across all metrics, highlight-

ing its superior reliability and efficacy for the classification task. The BGME will be removed in the second 

round and remain the EINB as it is. As shown in Table 20, the value of accuracy, precision, recall, and f1-score 

are 96.49%, 94.7%,95.68%,and 95.4% respectively. In the third round both BGME and EINB are eliminated and 

the values of the evaluation metrics are 61%,45%,41.9%,43.3% for accuracy, precision,recall,and f1-score re-

spectively.  

 

The EINB exhibits exceptional performance in key metrics, including a precision of 99.74%, recall of 99.40%, 

and an F1-score of 99.57%. This reflects its exceptional capacity to classify positive cases while minimizing er-

rors accurately. The model's high precision suggests that it is highly conservative, effectively preventing false 

positives. Additionally, the strong recall guarantees that the majority of true positives are detected, thereby 

minimizing false negatives. The F1-score, which is the harmonic mean of precision and recall, emphasizes a 

balanced performance, rendering the model dependable for tasks that require consideration of both categories 

of errors. Furthermore, the model accurately classifies the majority of cases, with only 0.52% of cases misclassi-
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fied, with an accuracy of 99.48%. The model's minor preference for precision over recall indicates that it is de-

signed to prevent false positives, which is advantageous in situations where such errors have substantial im-

plications. In general, the findings suggest that the model is highly effective and robust, making it appropriate 

for applications that necessitate high reliability and minimal error rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2. Choosing the proper value of IUT 

IUT is a problem-specific parameter, meaning that its optimal value varies based on the dataset and the specif-

ic objectives of the analysis. Ideally, the value of IUT should be set high enough to prevent noise (outliers) from 

significantly affecting the prediction, while also ensuring smoother decision boundaries. A low IUT value 

could lead to unstable decision boundaries. Conversely, the IUT value should not be set too high, as this could 

cause one factor to dominate others, giving an unfair advantage to major classes over minor ones. In this sec-

tion, a sensitivity analysis will be conducted to tune the IUT, a key parameter in the proposed ADDS . The 

analysis involves testing various IUT values, calculating the classification error for each, and using 

cross-validation to identify the IUT value that minimizes the error. We claim that (IUT = 130) is the most suita-

ble value for our dataset we are using, as it is derived the minimum value of error in the simula-

tion experiments as shown in Figure 16. Consequently, it will be employed in the experiments that are includ-

ed in the subsequent subsections, where the performance of the proposed strategy will be assessed. 

 

 

 

 

 

 

 

 

 

Figure 15. The accuracy, precision, recall, f1-score by applying NB, 

KNN, and EINB on the dataset 

 

Scenario Accuracy Precision Recall F1-score 

BGME and traditional NB  67% 68% 92% 74% 

EINB without the BGME 96.49% 94.7% 95.68% 95.4% 

Without BGME and EINB 61% 45% 41.9% 43.3% 

With BGME and with EINB 99.48% 99.74% 92% 99.57% 

 

Table 20. Ablation study of ADDS 

 

 
Figure 16. Diagnosis error of ADDS against the different values of IUT. 
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5.3.3. Testing the ADDS against state- of- the art MPXV diagnostics methods. 

As shown in Figure 17, The ADDS technique is more robust and effective than other methods, as evidenced by 

its superior accuracy across all training set sizes. At a 70% training size, ADDS obtains an accuracy of 99.48%, 

which is significantly higher than EMLDL's 85.20%. Accuracy rates of 82.05%, 94.50%, 92.80%, 91.65%, and 

86.22% are achieved by other techniques, such as ILA, SEIRD, TL, FLA, and DLF, for the same conditions. 

ADDS maintains an accuracy of 97.50% when the training set size is reduced by 50%, while EMLDL experi-

ences a significant decrease to 69.70%. The accuracies of ILA, SEIRD, TL, FLA, and DLF also decreased, reach-

ing 77.20%, 96.30%, 91.10%, 92.75%, and 86.22%, respectively. Despite a further reduction to 30% of the train-

ing set, ADDS still obtains 96.00% accuracy, which is higher than EMLDL's 96.10%. However, it remains sig-

nificantly higher than ILA (60.87%), SEIRD (69%), TL (82.60%), FLA (90.6), and DLF (84.07%).ADDS consist-

ently outperforms all techniques, as evidenced by these results, which demonstrate its capacity to maintain 

high predictive accuracy across varied training set sizes. This emphasizes the adaptability and dependability of 

ADDS in managing a wide range of datasets. 

 

ADDS's performance is characterized by a remarkable level of precision, which is a critical metric for assessing 

the proportion of positively identified instances that are accurately identified. ADDS obtains an impressive 

precision of 99.47% with a 70% training size, significantly surpassing competitive models such as EMLDL 

(91.3%), ILA (88.1%), SEIRD (78.2%), TL (94.3%), FLA (93.3%), and DLF (89.2%) as shown in Figure 18. EM-

LDL's precision is reduced to 71.60%. In comparison, ADDS maintains a robust precision of 97%, even when 

the training size is reduced to 50%. The other models—ILA (83.16%), SEIRD (71.9%), TL (94.87%), FLA (93.3%), 

and DLF (85.6%)—are unable to keep up. At a training size of 30%, ADDS maintains its lead with 95%, while 

EMLDL is at 71.3%. The values of the remaining techniques are ILA (60.76%), SEIRD (70.8%), TL (79.5%), FLA 

(82.2%), and DLF (81%). These results illustrate ADDS's remarkable capacity to reduce false positives, render-

ing it an optimal selection for applications requiring elevated precision and accuracy. 

Figure 19 and Figure 20 show the efficacy of various techniques regarding recall and F-score over varying 

training set sizes, providing insights into their prediction capacities under different data constraints. Recall, or 

sensitivity, measures a model's capacity to detect all positive instances. In contrast, the F-score is the harmonic 

mean of precision and recall and offers a balanced evaluation of these metrics. At a training set size of 70%, 

ADDS attains near-optimal performance (Recall =99.4%, F-score = 99.75%), indicating remarkable prediction 

dependability. Likewise, FLA (Recall = 92.78%, F-score = 91.3%) and TL (Recall = 91.56%, F-score = 93.16%) ex-

hibit high performance, while DLF also demonstrates (Recall =87.65%, F-score =90.40%). EMLDL demonstrates 

moderate efficiency with a Recall of 84.30% and an F-score of 87.70%; ILA shows a Recall of 82.30% and an 

F-score of 85.10%; SEIRD exhibits a Recall of 84.70% and an F-score of 81.20%.At a training set size of 50%, 

ADDS has the highest reliability (Recall = 96.00%, F-score = 96.39% ), succeeded by FLA (Recall = %92.80, 

F-score = %90.80) and TL (Recall = 90.60%, F-score = 92.80%). DLF has robust performance (Recall = 87.42%, 

F-score = 85.90%), whereas EMLDL (Recall = 78.30%, F-score = 78.70%), ILA (Recall = 79.70%, F-score = 81.39%), 

and SEIRD (Recall = 85.60%,             F-score = 78.20%) demonstrate moderate efficacy. At a training set 

size of 30%, ADDS consistently surpasses its competitors (Recall =94%, F-score = 94.49%), while FLA (Recall = 

90.60%, F-score = 86.20%) and TL (Recall = 82.50%, F-score = 81%) exhibit comparable efficacy. DLF exhibits sta-

bility (Recall = 85.30%, F-score = 83.11%). Conversely, EMLDL has variable performance (Recall = 87%, F-score = 

78.40%), but ILA (Recall = 61.42%, F-score = 61.09%) and SEIRD (Recall = 86.80%, F-score = 780.2%) demonstrate 

considerable decreases, underscoring their diminished efficacy with fewer datasets.  

 

As shown in Figure 21, ADDS consistently demonstrates superior performance across all dataset sizes, attain-

ing near-optimal metrics even with diminished training data. This dependability renders it a good option for 

applications necessitating elevated sensitivity and equitable prediction accuracy. Techniques such as FLA and 

TL demonstrate efficacy, though with slight reductions under data limitations. The performance variability of 

EMLDL, ILA, and SEIRD highlights their reliance on extensive datasets for optimal operation, rendering them 
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less appropriate for contexts with restricted data availability. Table 21 summarizes the values of evaluation 

metrics for all techniques according to different sizes of training sets.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. The accuracy results for different techniques               

according to different training sets 

 

Figure 19. The recall results for different techniques according 

to different training sets 

 

Figure 20. The F-score results for different techniques according 

to different training sets 

 

Figure18. The precision results for different techniques       

according to different training sets 

 

Figure 21. The values of evaluation metrics of ADDS according 

to different training sets 

Technique 
Training set 

(%) 
Accuracy Precision Recall F score 

ADDS 
 

70 0.9948 0.9947 0.9940 0.9957 

50 0.9750 0.9700 0.9600 0.9639 

30 0.9600 0.9500 0.9400 0.9449 

EMLDL 

70 0.8520 0.9130 0.8430 0.8770 

50 0.6970 0.7160 0.7830 0.7870 

30 0.6910 0.7130 0.8700 0.7840 

ILA 

70 0.8205 0.8810 0.8230 0.8510 

50 0.7720 0.8316 0.7970 0.8139 

30 0.6087 0.6076 0.6142 0.6109 

SEIRD 

70 0.7590 0.7820 0.8470 0.8120 

50 0.6930 0.7190 0.8560 0.7820 

30 0.6900 0.7080 0.8680 0.7802 

TL 

70 0.9450 0.9483 0.9156 0.9316 

50 0.9110 0.9487 0.9060 0.9280 

30 0.8260 0.7950 0.8250 0.8100 

FLA 

70 0.9280 0.9330 0.9278 0.9130 

50 0.9275 0.9330 0.9280 0.9080 

30 0.9060 0.8220 0.9060 0.8620 

DLF 

70 0.9165 0.8920 0.8765 0.9040 

50 0.8622 0.8560 0.8742 0.8590 

30 0.8407 0.8100 0.8530 0.8311 

 

Table 21. The values of evaluation metrics for all techniques       

according to different size of training sets 
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5.3.4. Computational Cost of ADDS  

The computational cost of the ADDS is primarily determined by four factors: the number of search agents (N), 

the dimensionality of the problem (D), the number of iterations (p), and the number of hops (h) conducted 

within each iteration. The computational complexity can be expressed by (25); 

                           ( ∗  ∗   ∗ ℎ)         (25) 

 

It is crucial to achieve high accuracy in medical diagnosis, particularly in sensitive applications like MPXV. 

Although computational efficiency remains valuable, the primary concern is the accuracy and reliability of the 

results, rather than the execution time. Table 22 shows the values of hyperparameter used in ADDS.  

 

 

 

 

 

 

 

 

 

 

 

5.3.5. Testing the BGME against other feature selection methods. 

In this section, the BGME is compared with other feature selection techniques such as; Grey Wolf Optimiz-

er(GWO) [33], Particle Swarm Optimization(PSO)[34], Red Piranha Optimization(RPO)[35], Leopard Seal Op-

timization(LSO)[36].At training size of 70% of dataset ,the accuracy of KNN in (6) is used to evaluate the per-

formance. Table 23 shows the values of accuracy, recall, precision, f1-score for BGME and these algorithms.  

As shown in Table 23, the BGME is outperformed the GWO, PSO, RPO, and LSO in terms of accuracy, preci-

sion, recall, and F1-Score. It achieves 96.4% for accuracy, 94.76% for precision, 95.41% and 95.08% for recall and 

f1-score respectively. 

 

 

 

 

 

 

 

 

 

 

5.3.6. Testing the performance of ADDS in another dataset. 

The dataset used in [25],is used to evaluate the performance of ADDS and compare it with other MPXV diag-

nosis strategies. The blood test dataset was gathered from patients of varying ages and genders in various re-

gions of various countries, including the United Kingdom, Spain, and Nigeria. The MPXV dataset comprises 

500 cases that were categorized into two different categories: "Positive" and "Negative." Patients who have the 

virus are classified as positive cases, while those who do not have it are classified as negative cases.  

The following Table 24 illustrates the performance comparison of various techniques based on their accu-

racy, precision, recall, and F1-score.The efficacy levels of the techniques varied across various evaluation 

metrics. The ADDS method achieved the highest scores, demonstrating remarkable efficacy with an accu-

Technique Accuracy Precision Recall  F1- score 

BGME 96.4% 94.76% 95.41%  95.08% 

GWO 78% 81% 84%  76% 

PSO 71% 69% 67%  72% 

RPO 82% 83.33% 87%  81.64% 

LSO 86% 89% 91%  90% 

 

Table 23. The values of evaluation metrics for BGME and different optimization algorithms  

ADDS 

Parameter Description Implemented Value 

N Number of BGME’S agents 50 

P Total number of Iterations in BGME 100 

hop (h) Number of hops 2 

K Value defines the shape of  spiral Each agent has its value 

ξ Factor between zero and one [0,1] 

𝛼 Random value 0.4 

Θ Angle from 0 to 2π. 0 to 2π 

Φ Angle from 0 to π. 0 to π 

µ Shrinking ratio to reduce the radius (R) 0.3 

IUT Incremental Update Trigger 130 

 

Table 22. The hyperparameter values of ADDS  
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racy of 99.6%, precision of 99.4%, recall of 99.3%, and an F1-score of 99.35%. This indicates an excellent 

balance between precision and recall. In contrast, the SEIRD technique demonstrated the lowest accuracy 

(79.43%), precision (81.04%), recall (83.4%), and F1-score (82.22%), indicating that there is space for 

improvement in the accurate capture of relevant cases. Other methods, such as EMLDL and ILA, demon-

strated intermediate performance. EMLDL exhibited an accuracy (92.63%) but a lower recall (82.9%), while 

ILA maintained a higher recall (91.7%) but a lower accuracy (86.77%), underscoring its ability to identify 

pertinent instances. TL and FLA techniques consistently exhibited robust performance, with accuracy scores 

of approximately 96.7% and 94.85%, respectively, indicating a high level of overall reliability. The DLF 

method also demonstrated strong performance, obtaining an F1-score of 93% and an accuracy of 93.78%, 

despite being slightly behind TL and FLA.HMD provides 98.48%,91.1%,88.9%,and 90% for accuracy, 

precision, recall, and F1-score respectively and the values of these metrics for ADMS are 

99%,91.65%,91%,and 91.32% which indicates a good results of ADMS. In general, ADDS is the most ef-

fective and well-balanced technique that has been assessed. 
 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion and Future Work 

Classical ML models are trained on static, well-labeled data, but real-world environments are constantly 

changing. In healthcare, databases are updated daily, making it difficult to process all data at once. Even 

with traditional algorithms, managing continuously changing data is a challenge. Continual learning, 

which allows models to incrementally acquire information from non-stationary data streams, is crucial for               

handling large datasets, adapting over time, and reducing retraining costs.                                     

This paper presents ADDS, a strategy for early MPXV detection. ADDS uses the GME optimization algo-

rithm to select significant features, improving diagnostic efficiency. The EINB algorithm processes con-

tinuous data, learns incrementally, and adapts over time. The dynamic checkpoint value, ξ, determines 

the amount of new data integrated, updating the training set only if accuracy improves, and ensuring 

adaptive learning. ADDS achieves 99.46% accuracy in MPXV detection, offering an efficient solution for 

evolving medical datasets.Future work could explore integrating GME with other feature selection meth-

ods, validating the model with larger datasets, and investigating ensemble incremental learning classifiers 

to improve diagnostic accuracy. 
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