

Egyptian Journal of Animal Health

P-ISSN: 2735-4938 On Line-ISSN: 2735-4946 Journal homepage: https://ejah.journals.ekb.eg/

Throw light on the causes of appearance of parakeratosis in buffalo calves in Sharkia Governorate with trial of treatment

Ghada, M. El Khder¹*, Noha Abdelrahman²*, Sara A Abd El Wahab²* Mohamed E Darwish²*Nanies SE Salim* and Doaa IA Mostafa²**

(Biochemistry* Department- Animal Health Research Institute, Doki¹Agricultural research center (ARC)

(Biochemistry¹* and clinical pathology** Department- Animal Health Research Institute(Doki¹ and Zagazig²provisional lab-Agricultural research center (ARC)

Received in 28/1/2025 Received in revised from 18/2/2025 Accepted in 4/3/2025

.....

Keywords:

Calves Parakeratosis Hemato Biochemical mineral mixture Nigella sativa

ABSTRACT

The present study was designed to investigate the clinical impacts of parakeratosis on health status and hematobiochemical parameters among buffalo calves and evaluate the effect of ration fortification with either mineral mixture with or without addition Nigella sativa seed on clinical health condition.

About thirty five buffalo calves with age of two years and average B. wt (300-350 kg) were used in this study. Two skin scrapings from affected part and fecal samples were collected from parakeratotic calves for parasitological and mycological examination. Fecal samples were examined parasitologically. Post examination skin scrapings and fecal samples, 20 calves free from mites, fungus and parasite were used in this study (5 healthy –15 suffering from parakeratosis) were divided into four equal groups, Gp (1) apparently healthy calves (-ve control), Gp (2) calves suffering from parakeratosis supplemented with 2 kgm mineral mixture/ton ration for 2 month and Gp (4) calves suffering from parakeratosis supplemented with mineral mixture 2 kgm, mineral mixture/ton ration and 0.05% nigella sativa powder for 2 month. All calves were feed with 1kgm ration/50 kgm body weight and opened feeding hay.

Parakeratosis calves (Gp 2) showed alopecia; thickening, hardening, and skin cracking, body temperature exhibited a normal pattern while heart and respiratory rate increased. Three blood samples were collected from all calves at 1st and 10th day post treatment for hematobiochemical testes. Hematological testes implied that Parakeratotic calves in Gp 2 exhibited significant reduction in RBCs, Hb and PCV while WBCs, neutrophils, eosinophil, and monocyte showed non significant difference. Moreover, lymphocytes, basophil, phagocytic index, phagocytic % and killing percentage were recorded a non significant decrease. G3 & G4 showed improvement in RBCs

Corresponding author: Ghada, M. El Khder, Biochemistry Department, Animal Health Research Institute, Doki¹ Agricultural Research Center (ARC) Email address:

DOI: 10.21608/ejah.2025.416825

count in a non-significant and significant manner respectively with non significant changes in both leukogram and phagocytic index.

Regarding biochemical tests; G2 showed a significant increase in serum total lipids, triglycerides and Malondialdehyde levels. On the other hand, there was a reduction in serum selenium, zinc, copper, iron, total proteins, albumin, globulins, cholesterol, superoxide dismutase, catalase and thyroid hormones (T_3 and T_4) levels. aspartate aminotransferase, alanine aminotransferase and A/G ratio exhibited a non significant increase, while alkaline phosphatase displayed non significant decrease in comparison with (G1).

Supplementation of parakeratic calves with mineral mixture only (G3) or with addition of Nigella sativa (G4) for 2 months showed improvement in skin conditions with complete disappearance of skin lesions, restored skin elasticity, hair growth. Furthermore, the hematobiochemical parameters showed improvement pattern in G & G4. Mineral mixture as well as Nigella sativa enhanced and brought hematobiochemical and oxidative stress biomarkers levels closer to normal.

It could be concluded that trace elements specially zinc deficiency is the main cause of parakeratosis in calves. Most of clinical signs and hematobiochemical alterations had been modulated and improved post supplementation with mineral mixture alone or with 0.05% of Nigella sativa seeds powder.

INTRODUCTION

Buffaloes are originally from Asia and they are distributed in tropical and subtropical country (Shalash 1984). Animal health requires good nutritional status and nutrition composition (protein, carbohydrates and macro and micro elements) (Mohameden, et al. 2023). Nutritional deficiency diseases were developed when inadequate amounts of essential nutrients provided to animals (Radostitis, et al. 1995).

Parakeratosis is a metabolic disorder characterized by deficiency of both macro and micro elements (Ebrahim 2015). Trace minerals are playing a role in vital processes in body and growth of animals (Rucker, et al. 2008). Deficiency of vitamines, macro and trace elements induce many metabolic diseases beside induce adverse effect on skin and hair (Radostits, et al. 2000). Parakeratosis and hyperkeratosis with nuclei present in keratinized skin (Kaneko, 1989). Trace elements are required by animal body for maintaining its normal vital metabolic processes because its act as cofactors as activators of enzymes (Underwood, 1982). Zinc deficiency induces parakeratosis, dermatophilosis and dermatophytosis (Smith, 2002). Parakeratosis is characterized by in appetance, emaciation, focal and diffuse thickening & skin scales, alopecia

and fissures (Boland, 2003).

Plant products are known to be rich in flavonoids, phenolic compounds, coumarins and terpenoids and other antioxidant constituents which improve body performance (Aggarwal et al. 2008). Nigella sativa is a very important herb which used in folkloric medicine belongs to botanical family of Ranunculaceae (El-Kholy, et al. 2007). Nigella Sativa contains many trace elements such as iron, zinc, calcium and copper (Gilani et al. 2004). Nigella sativa are used as a feed additive (Salem, 2005). Two thousand years ago; Nigella sativa has been traditionally used by human to treat many diseases (Khare, 2004).

The present study was carried out to evaluate some adverse effects of parakeratosis on haemato-biochemical, oxidative stress parameters and study the impact of mineral mixture alone or with Nigella sativa seeds on improvement of parakeratosis in buffalo calves

MATERIALS AND METHODS

Animals and Experimental design

About thirty five buffalo calves aged two years, average B. wt (300-350 kg) were used in this study. Two skin scrapings and faecal samples were collected from each calves for parasitological and mycological examination 1st skin sample mixed with 10% potassium hydroxide for detection of mites (Kelly, 1984),

the second skin sample was cultured on sabauruds agar containing 100 ug/ ml of gentamycin sulfate and incubated at 37°C to isolate ringworm fungus (Al-Doory, 1980) and fecal samples were examined detection internal parasite (Soulsby, 1986). Post parasitological and mycological examination, twenty calves out thirty five free from mites, internal parasite and fungus infection, subsequentally the free calves were subjected for this study and divided for four groups Gp (1) healthy calves (-ve control), Gp (2) calves suffering from parakeratotosis (+ve control), Gp (3) calves suffering from parakeratotosis treated by 2 kgm mineral mixture/ton ration for 2 month and Gp (4) calves suffering from parakeratotosis treated by 2 kgm mineral mixture/ton ration and 0.05 % cursed nigella sativa for 2 month. All calves were received 1kgm ration/50 kgm body weight and opened feeding hay.

Three blood samples were taken from each calve at 1^{st} and 10^{th} day post treatment

1st sample was taken on tube contain EDTA, for estimation blood picture (Jain 2000), 2ndsample was taken in heparinzed tube for estimation phagocytic% and killing % (Rouse, et al. 1980), Woldehiwet and Rowan (1990).

3rdsample was taken for obtain serum for mea-suring selenium (Fernadez and

Kahr1971), cupper (Zak 1958) iron (Drsuxc 1977), zinc (Versieck et al. 1974), aspartate aminotransferase (AST), alanine aminotransferase (ALT) (Reitman and Frankel 1957) alkaline phosphatase (ALP) (Kind and King 1954), T. protein (Doumas et al. 1981), albumin (Bauer 1982), Globulin was determined by substraction of obtained serum albumin from total protein (Doumas & Biggs 1972), T. lipids (Knight et al. 1972) cholesterol (White et al. 1970) triglyceride (Wahlefeld and bergmever **1974**), Malanodialdhyde (MDA) (Nielsen et al. 1997), catalase (CAT) (Sinha 1972), Superoxide dismutase (SOD) (Nishikimi et al. 1972), triiodothyronine (T3), thyroxine (T4) (Abraham 1981) by RIA Kits

Additives

A) Kemeta mineral mixture: It is a trade name of mineral mixture produced by Kemeta Comp for Veterinary Pharmaceutical preparation, Egypt. Each 1 kgm contains, Zinc 50000 mg, Maganese 60000 mg, iron 30000 mg, Copper 4000 mg, Iodine 300 mg, Cobalt 100 mg, Selenium100 mg, Calcium carbonate up to 1 kgm.

B) Nigella sativa is an annual flowering plant in the family Ranunculaceae .Nigella sativa grows to 20-30 cm tall, with finely divided, linear (but not thread like) leaves. Thymoquinone is found in herbs and spices. Thymoquinone is a major constituent of seed

Statisticalanalysis was performed by analysis of variance (ANOVA). Duncan's Multiple Range (Tambane and Dunlop, 2000)

mea-suring selenium (Fernadez and

Ingredients	%	Chemical analysis of ration	
Yellow corn Wheat bran	41.5 17	Crude protein % Crud fiber %	14.8 8.3
Barley	12	Crude fat %	4.86
Soybean meal	10	Ash %	9
Cotton seed meal	13	NFE %	51.04
Vitamin & minerals premix	2	Moisture %	12
Lime stone	2		
Bone meal	2		
Salt	0.5		

Table 1. Ingredient composition of experimental concentrate mixture (kg)

RESULTS Table 2. Clinical signs of diseased buffalo calves affected with parakeratosis

Appetite	Partial loss of appetite
Mucous membranes of eye	Pale
Depigmentation of hair	present
Parakeratosis of skin	present
Alopecia	Partial alopecia
weakness	Partial weakness
Body temperature C°	increase (control 38.7±0.42-diseased 39.02±0.21)
Respiratory rate/mint Heart rate/mint	increase (control20.26±2.12–diseased 29.13±0.16) increase (control 71.06±1.03–diseased 82.21±0.43)

		Period& groups		1 st da	ay		10 th day			
Parameters		Gp (1)	Gp (2)	Gp(3)	Gp (4)	Gp (1)	Gp (2)	Gp 3)	Gp (4)	
Erythro gram	rthro RBCs m (106/mm3)		7.68± 0.84a	5.72± 0.82b	6.89± 0.68b	7.59± 0.82a	7.64± 0.70a	5.80± 0.61b	7.03± 0.69b	7.65± 0.91a
	Hb (gm/d	1)	11.98± 0.21a	$\begin{array}{c} 9.34 \pm \\ 0.89 b \end{array}$	11.42± 0.55a	11.88± 0.77a	11.78± 0.54a	9.21± 0.44b	11.54± 0.61a	11.93± 0.69a
	PCV %		31.46± 1.24a	$\begin{array}{c} 26.08 \pm \\ 1.05 b \end{array}$	31.05± 1.12a	31.23± 1.30a	31.71± 1.09a	26.21± 1.13b	31.15± 1.04a	31.69± 1.61a
Leu- kogram	W.B.C	Cs	11.86± 0.91a	12.21± 0.83a	11.92± 0.83	11.83± 0.95a	11.94± 0.79a	12.33± 0.83a	11.97± 0.83a	11.99± 0.83a
$(10^{3}/)$ mm ³)	dif- fere	Neutrophils	3.87± 0.55a	4.06± 0.78a	3.85± 0.51a	3.85± 0.47a	3.80± 0.84a	4.15± 0.89a	3.98± 0.37a	3.82± 0.44a
	nial	Lymphocytes	4.23± 0.55a	4.04± 0.93a	4.19± 0.58a	4.24± 0.37a	4.31± 0.60a	4.15± 0.87a	4.28± 0.62a	4.31± 0.59a
		Eosinophils	1.29± 0.21a	1.32± 0.15a	1.27± 0.19a	1.28± 0.21a	1.34± 0.48a	1.41± 0.19a	1.39± 0.22a	1.35± 0.18a
Basophils Monocytes		Basophils	1.21± 0.12	1.09± 0.23	1.19± 0.18	1.22± 0.16	1.25± 0.14	1.09± 0.15	1.23± 0.19	1.26± 0.12
		Monocytes	1.26± 0. 29a	1.50± 0.17a	1.42± 0. 21a	1.25± 0. 19a	1.24± 0. 16a	1.53± 0. 21a	1.29± 0. 24a	1.25± 0. 21a
% Phagocytic		%	67.32± 1.34a	66.93± 1.87a	67.05± 1.13a	67.21± 1.59a	67.71± 1.09a	67.32± 1.66a	67.69± 1.66a	67.72± 1.62a
		index	4.26± 0.98a	3.95± 0.63a	4.15± 0.74a	4.22± 0.48a	4.32± 0.44a	3.98± 0.38a	4.28± 0.63a	4.30± 0.77a
Killing %			46.21± 0.78	45.97± 0.33a	46.14± 0.94a	46.18± 0.53a	46.51± 0.39a	46.43± 0.64a	46.47± 0.38a	46.50± 0.39a

Table 3. Effect of parakeratosis on blood picture, phagocytic activity and killing percentage in calves 1^{st} and 10^{th} day post treatment (n= 5).

Different superscripts (a, b and c) within the same row indicate significant differences at p < 0.05

Table 4. Effect of parakeratosis on Serum trace elements in buffaloe calves 1^{st} and 10^{th} day post treatment (n=5).

Period		1 st da	у		$10^{ m th} { m day}$			
Groups	Gp (1)	Gp (2)	Gp 3)	Gp (4)	Gp (1)	Gp (2)	Gp (3)	Gp (4)
Copper	32.58±	27.12±	32.43±	33.02±	32.21±	27.83±	31.55±	32.15±
(µg/dl)	1.72a	1.81b	1.96a	1.62a	1.48a	1.44b	1.83a	1.91a
Selenium	49.21±	42.71±	48.65±	48.98±	48.52±	41.67±	48.98±	48.99±
(µg/dl)	1.44a	1.82b	1.38a	1.58a	1.56a	1.37b	1.82a	1.44a
Zinc	42.22±	33.22±	42.83±	43.18±	41.85±	33.86±	42.90±	43.05±
(µg/dl)	1.95a	1.61b	1.22a	1.66a	1.55a	1.28b	1.41a	1.83a
Iron	120.6±	115.1±	120.3±	121.08±	120.18±	114.99±	121.08±	120.32±
(μg/dl)	1.44a	1.33b	1.17a	1.87a	1.82a	1.22b	1.49a	1.57a

Different superscripts (a, b and c) within the same row indicate significant differences at p < 0.05

Period &	groups		1 st d	ay			$10^{\rm th}$ day				
Parameters		Gp (1)	Gp (2)	Gp 3)	Gp (4)	Gp (1)	Gp (2)	Gp 3)	Gp (4)		
Liver Ezymes	AST	67.55± 1.49a	69.07± 1.26a	68.08± 1.33a	67.69± 1.59a	67.43± 1.73a	68.08± 1.69a	67.75± 1.58a	67.98± 1.48a		
(10/L)	ALT	37.88± 1.50a	39.09± 1.49a	38.47± 1.59a	37.50± 1.09a	37.95± 1.39a	39.58± 1.33a	38.36± 1.69a	37.89± 1.43a		
	ALP	69.89± 1.49a	69.12± 1.37a	69.65± 1.27a	69.83± 1.08a	69.80± 1.81a	69.02± 1.51a	69.86± 1.66a	69.87± 1.15a		
Protein profile (g/L)	T. protein Albumin	7.99± 0.65a 4.14±	5.74± 0.33b 3.08±	7.69± 0.53a 3.90±	7.80± 0.53a 3.97±	7.89± 0.38a 4.14±	$5.60 \pm 0.25 b \ 3.06 \pm$	7.73± 0.66a 3.89±	7.88± 0.52a 3.99±		
	Globulin	0.63a 3.85± 0.27a	0.52b 2.66± 0.17b	0.71a 3.79± 0.55a	0.59a 3.83± 0.63a	0.71a 3.85± 0.49a	0.44b $2.54\pm$ 0.32b	0.60a 3.86± 0.63a	0.72a 3.89± 0.55a		
	A/G ratio	1.08± 0.12a	1.16± 0.23a	1.03± 0.19a	1.04± 0.18a	1.08± 0.22a	1.20± 0.24a	1.01± 0.15a	1.03± 0.21a		

Table 5. Effect of parakeratosis on liver function in calves at 1^{st} and 10^{th} day post treatment (n= 5).

Different superscripts (a, b and c) within the same row indicate significant differences at p < 0.05

Table 6. Effect of parakeratosis on Serum some biochemical parameters in calves at 1^{st} and 10^{th} day post treatment (n=5).

	Period & groups	1 st day				10 th day			
Parameters	Teniou & groups	Gp (1)	Gp (2)	Gp 3)	Gp (4)	Gp (1)	Gp (2)	Ġp (3)	Gp (4)
Lipid pro-	T lipids (mg/dl)	378.17± 1.32b	385.21 ±1.63a	379.10 ±1.32b	378.07± 1.35b	378.26± 1.47b	384.67± 1.98a	379.90± 1.89b	378.74± 1.75b
(mg/dl)	Triglycerides (mg/dl)	32.56± 1.51a	38.07± 1.21b	33.68± 1.17a	32.84± 1.44a	32.38± 1.19a	37.94± 1.32b	32.69± 1.31a	32.56± 1.38a
	Cholesterol (mg/dl)	92.17± 1.28a	$\substack{88.23\pm\\1.16b}$	91.88± 1.06a	92.09± 1.62a	92.53± 1.19a	88.05± 1.32b	92.14± 1.18a	92.23± 1.33a
Oxida- tive	CAT (U/L)	14.34± 1.89aa	11.21± 1.81b	14.25± 1.73a	14.27± 1.75a	14.61± 1.76a	11.52± 1.59b	14.59± 1.96a	14.68± 1.49a
stress bi- omarkers	SOD (U/L)	83.33± 1.89a	79.59± 1.93b	83.21± 1.97a	83.40± 1.52a	83.28± 1.97a	80.05± 1.85b	83.30± 1.55a	83.32± 1.44a
MDA (nml/ml)		14.43± 0.89b	19.28± 0.87a	14.98± 0.67b	14.73± 0.82b	14.58± 0.57b	19.08± 0.49a	$\begin{array}{c} 14.70 \pm \\ 0.33 b \end{array}$	14.69± 0.56b
T3 (ng/dl)		130.20± 2.68a	124.17 ±1.33b	129.08 ±1.05a	129.89± 1.99a	130.13± 1.98a	124.81± 1.71b	130.02± 174a	131.08± 1.17a
T4 (ng/dl)		3.93± 0.65a	3.29± 0.26a	3.58± 0.46a	3.75± 0.71a	$\begin{array}{c} 3.80. \pm \\ 0.63a \end{array}$	2.73± 0.51a	3.79± 0.82a	3.79± 0.89a

Different superscripts (a, b and c) within the same row indicate significant differences at p < 0.05

DISCUSSION

The impact of parakeratosis and ration fortification with either minerals mixture alone or with addition of Nigella sativa on body condition and clinical signs in buffalo calves are presented in table (2). Parakeratotic calves (G2) showed alopecia, thickening, hardening and skin cracks (table 2). Feeding of parakeratic buffalo calves on a ration fortified with either 2 kg mineral mixture/ton alone (G3) or plus 0.05% nigella sativa powder (G4) showed improvement in skin conditions appeared in skin lesions healing, skin elasticity restore and hair growth at the end of the trial.

More or less similar observations were reported previously.Calves suffering from trace elements deficiency showed different skin lesion as hair loss, scales, deep fissures around the hooves, hard dehydrated skin, dermatitis, alopecia, and low weight gain (Sadiek, et al.1994, Miller and Miller 2000). Zinc deficiency induce parackeratosis, thickening, hardening and cracking of skin of all animal species (Berger 2002).Copper and zinc deficiency induced alopecia, fissure and parakeratosis (Hosned, et al. 2007; Mamdouh and Ahmed (2021). Hypozincemia caused thickening and hardening (Al-Saad, et al. 2010) decreased feed intake (Saurabh and Promila, 2018) anorexia, dermatitis. Parakeratotic buffalo calves received mineral mixture containing adequate amounts of zinc and copper for 30 days revealed improvement of healthy status (Sadiek, et al. 1994) and serum biochemical parameters (Pankaj, et al. 2014) and stunted growth (Yanuartono, et al. 2024). Trace elements improved skin status in farm animals (Radostites, et al. 2000)

Data concerning the hematological parameters are illustrated in table (3). It was clear that parakeratotic calves (G2) exhibited significant reduction in RBCs, Hb, and PCV% and non significant decrease in lymphocytes, basophils, phagocytic index and killing percentage. Meanwhile, WBCs, neutrophils, eosinophil and monocytes demonstrated non significant increasein comparison with control calves (G1). Minerals mixture supplementation alone (G3) or with addition of Nigella sativa powder (G4) improved RBCs count in a non-significant and significant manner respectively. G3 and G4 showed non significant changes in both leukogram and phagocytic index.

The hematological changes observed in G2 might be attributed to one or more of the following possibilities; firstly, trace elements deficiency causes reduction in haematopioesis (Mullally, et al. 2004) as zinc deficiency induces protein synthesis reduction and decline blood in cells generation consuently (Payne,1989). Secondly, Copper deficiency leads to reduction of iron absorption and reduction in Hb formation accordingly (Abdou 2005). Accordingly; post feeding of parakeratotic buffalo calves on a ration fortified mineral mixture alone (G3) or plus 0.05% nigella sativa powder (G4) improved hematological parameters

These observations corroborate the findings of others. Parakeratotic calves showed significant reduction in RBCs, Hb, PCV% and non significant increase in WBCs, neutrophils, eosionphils and monocytes (Alam, et al. 2010). Zinc deficiency in calves showed the same records (Tamadhir (2015), Hegab and Mohamaden (2023). Calves suffering from alopecia and skin lesions showed reduction in RBCs, Hb, PCV% and phagocytic % (Mamdouh and Ahmed 2021).

Parakeratotic buffalo calves received mineral mixture containing adequate amounts of zinc and copper for 30 day revealed improvement health status (Sadiek, et al. (1994).

Nigella sativa improved RBCs (Al-Jishi 2000) and its oil improved counts of leukocytes, haemoglobin and PCV levels. These improvement in both clinical signs and hematological parameters in parakeratotic calves received nigella sativa may be due to presence large amount of trace element (iron, zinc, manganese and copper) in nigella sativa (Gilani et al. 2004).

Results showing the impact of parakeratosis on trace elements serum levels are presented in table (4). Calves in G2 showed significant reduction in serum levels of selenium, zinc, copper and iron. Meanwhile, G3 and G4 exhibited non significant changes among trace elements serum concentrations compared with healthy calves (G1). They enhanced and brought serum levels closer to normal. The reduced trace elements serum levels might be due to insufficient dietary intake. The declined trace elements levels come in accordance with findings of other authors (Sadiek, et al. (1994; Abdeen and Mona 2007; Al-Saad, et al. 2010; Alam, et al. 2010). Nigella sativa contains large amount of trace elements (iron, zinc, manganese and copper) (Gilani et al. 2004), thus supplementation on a ration fortified with it improved trace elements serum levels.

Hepatic function indicators either liver enzymes or serum proteins levels in buffalo calves are presented in table (5). AST, ALT & ALP exhibited non significant increase in all experimental groups. G2 showed a little pit increase but still non significant of both AST & ALT. G3 and G4 showed non significant changes in hepatic enzymes compared with healthy calves (G1). They enhanced and brought serum levels closer to normal.

The little pit increase in (AST) and (ALT) levels in G2 could be attributed to zinc deficiency. Zinc is essential for protein metabolism and enzyme function, thus hepatic protein and hepatic enzymes synthesis might be impaired leading to an increase in AST and ALT production as a consequence of zinc deficiency (Kaneko, 1989).

Regarding serum proteins; parakeratotic calves (G2) demonstrated a decline in total proteins, albumin and globulins concentrations compared to all groups. While there was no significant difference in calves fed on a ration fortified with either mineral mixture alone (G3) or plus nigella sativa powder (G4) (table 5). Zinc plays a crucial role in protein synthesis directly or indirectly. Zinc help in albumin production from the liver, thus low serum albumin might be due to zinc deficiency via impaired liver function and overall protein metabolism (**Radostitis, et al. 1995).** Zinc deficiency may impair amino acid utilization and protein turnover. Zinc is essential for immune function, and its deficiency can lead to hypo-gammaglobulinemia (low globulin levels), thus parakeratotic calves often have reduced globulin levels, leading to weakened immune responses and higher susceptibility to infections (Kincaid et al. 1986). Due to decreased albumin and globulin levels; total proteins concentrations tend to decline accordingly in parakeratotic calves (Underwood & Suttle, 2001).

The above mentioned findings were supported by previous studies. Calves received mineral mixture in ration improved liver function as they reduced enzymes activities and elevated protein profile due to trace element protected hepatocytes and prevented damage and improved albumin synthesis (Humer, et al. 2019). Crossbred improved liver function represented by elevation in protein profile and reduction in liver enzymes (Anil et al. 2020). Selenium induced increase in absorption of globulin leading to increase globulin and total protein (Abbas 2002). Kamalakar, et al. (2015); Amaravathi et al. (2016); Mamdouh and Ahmed (2021) found that parakeratic buffaloes showed reduction in total proteins, albumin, globulin with elevation in AST and ALT.

Results showing the lipid profile changes are illustrated in table (6).G2 exhibited a significant increase in total lipids & triglycerides, while cholesterol levels reduced significantly compared with G1, G3 and G4.

Decrease in cholesterol levels may be due to copper deficiency or liver insufficiency and hepatic fat metabolism disturbance consequently (**King and Cousins 2006**). Increase in total lipids and triglycerides in calves suffering from parakeratosis may be due to adecrease in food intake stimulating lipolysis leading to release long chain fatty acids as fuel source compensation (**Alam, et al. 2010**). Nigella sativa induced marked improvement in lipid profiles (**Salem 2005**).Nigella sativa induced improvement in cholesterol level due to depletion of cholesterol in steroid-genesis in goats (**Habeeb and El Tarabany, 2012**).

Regarding oxidative stress biomarkers;

parakeratotic calves (G2) showed significant decrease in CAT & SOD, while MDA increased significantly. On the other hand, G3 & G4 exhibited no changes compared with control group. The changes in G2 might be mediated through zinc deficiency. Zinc acts as a cofactor for SOD and CAT synthesis and activity, thus its deficiency causes decrease levels of SOD & CAT. Reducing such antioxidant enzymes impairs the cell's antioxidant defense system, causing an accumulation of ROS result in lipid and the production of MDA as a marker of oxidative stress (**Prasad, 2009**).

Mineral play a role in scavenging free radicals and reduced MDA and improved antioxidant enzymes (CAT and SOD) (Pathak et al. 2004). Our results are comes in agreement with Manimaran et al. (2022) who reported that zinc has powerful antioxidant actions leading to reduction in MDA with increase in CAT and SOD in parakeratotic calves. Zinc improved antioxidant enzymes and reduced MDA (Suzuki et al. 2011); Al-Ghamdi (2003) reported that black seed was improved blood picture and antioxidant enzymes.

Data concerning the influence of parakeratosis on thyroid hormones is shown in table (6). Calves of G2 exhibited significant decrease in T3 and non significant decrease of T4. On the other hand, there was no change among G & G4.

Parakeratosis can impact thyroid hormone levels through several mechanisms, primarily due to inflammation and altered lipid metabolism. Inflammation associated with parakeratosis may increase cytokines like IL-6, which can disrupt thyroid function by affecting the conversion of T4 (thyroxine) to inactive reverse T3 (rT3), lowering active T3 levels. Additionally, changes in lipid metabolism and skin cell turnover can interfere with thyroid hormone transport, potentially altering thyroid hormone binding proteins like thyroxinebinding globulin (TBG). This combination of factors can lead to fluctuations in thyroid hormone levels and function (Wajner et al. 2013; Chatterjee and Das 2016; Bourguignon 2017). Christy and Stella (2007) recorded that zinc improved thyroid gland function and

increase both T3 and T4.

CONCLUSION

t could be concluded that trace elements deficiency is the main causes of parakeratosis in calves. Parakeratosis induces skin lesion and alopecia as well as alterations in hemato-biochemical parameters. Feeding of parakeratic buffalo calves on a ration fortified with either mineral mixture alone or plus 0.05% Nigella sativa seeds powder showed improvement in skin conditions appeared in skin lesions healing, skin elasticity restore and hair growth. Moreover, they improved hemato -biochemical parameters, enhanced and brought them closer to normal.

REFERENCES

- Abbas S. 2002. Effect of vitamin E and selenium injection on lamb viability, growth performance and serum constituents in Saidi lambs. Assiut Vet. Med. J. 47 (94):129-138.
- Abdeen Sh, Mona M. 2007. Studies on parakeratosis in egyptian goats. 5th Int.Sci.Conf, Mansoura 365-276
- Abdou T. 2005. Parakeratosis in Egyptian buffaloes. 4thIntfSci.Conf, Masoura 55-64
- Abraham G. 1981. Radio assay system in clinical endocrinology. Marcel. Dekker, Inc. New York
- Aggarwal B, Kannamakarra A, Sung B, Anand P. 2008. Potential of spice-Derived Phytoche-micals for cancer prevention. Planta Med. 74(13)1560-1569
- Alam T, Nasr S, Hussen E. 2010. Hematobiochemical and Parasitological Studies on Buffaloes Parakeratosisin Sharkia Governorate. 10th Sci Vet Med Zag Conf 94-109
- Al-Doory G. 1980. The Saprobes in laboratory Medical Mycology Copyright by Lea and Febiger, Philadelphia, USA.
- Al-Ghamdi M. 2003. Protective Effect of Nigella sativa Seeds Against Carbon Tetrachloride- induced Liver Damage. Ameri J of Chinese Med.; 31(5): 721–728
- Al-Jishi S. 2000. A study of Nigella sativa on

blood hemostatic function. M.Sc. Thesis, King Faisal University, Dammam, Saudi Arabia

- Al-Saad K, Al-Sadi H, Abdul-Majeed M. 2010. Clinical, hematobiochemical and pathological studies on zinc deficiency (hypozincemia) in calves. Vet. Res 3(2):14 -20
- Amaravathi M, Bharath K, Jyosthna D. 2016. clinical, haematobiochemical and managem-ental studies of zinc deficiency in calve. Int J Adv. Res. Biol. Sci. 3(3): 227-229
- Anil S, Venkata C, Sudhakar K. 2020. effect of dietary nanozinc oxide supple-mentation on haematologicalparameters, serum biochemical parameters and hepatorenal Bio-Markers in Crossbred Calves. Int. J. Curr. Microbiol. Appl. Sci., 9(4): 2034-2044.
- Bauer J. 1982. Determination serum albumin Clinical Labor. Methods 4th Ed 95-96
- Berger L. 2002. Zinc: nutritional and pharmacological roles. Salt Trace Min 34(3): 1-3
- Boland M. 2003. Trace minerals in production and reproduction in dairy cattle. Adv Dairy Technol.(15):319-330.
- Bourguignon M. 2017. Thyroid function and skin. Endocrine Reviews, 38(4):465-495
- Chatterjee M, Das SK. 2016. Inflammation and thyroid function. Thyroid Research, 9 (1): 29-36.
- Christy M, Stella L. 2007. Effect of zinc supplementation on thyroid hormone function, Ann. Nutr. Metab. J., 51(2):188-194.
- Doumas B, Baysa D, Peler T, Schaffer R. 1981. Candidate reference for determination of total proteins in serum. I development and validation. ClinChem (27):42
- Doumas B, Biggs H. 1972. Determination of serum globulin. In: Standard Methods of Clinical Chemistry. 7th Ed., New York, Academic Press
- Drsuxc C. 1977. Determination of serum iron. Ann. Biol. Clinec. (35):1275
- Ebrahim Z. 2015. Clinical, Hematological and Biochemical Studies on Wool Eating Syn-

drome in Sheep. Alexandria J of Vet Sci 2015, (46): 95-99

- El-Kholy Wafaa M, Hassan Hanaa A, Nour Samar E. 2007. role of black seed and/or bees honey in modulating the heart disorder induced by food additives in male rats. The Egy J of Hosp Med., (28): 327 – 341
- Fernadez F, Kahr H. 1971. Clinical methods for atomic absorption spectroscopy. Clin. Chem. News. (3):124.
- Gilani A, Jabeen Q, Khan M. 2004. A review of medicinal use and pharmacological activity of Nigella sativa. Pak J. Bio Sci.(7): 41-45
- Habeeb A, El Tarabany A. 2012. effect of nigella sativa or curcumin on daily body weight gain, feed intake and some physiological functions in growing zaraibi goats during hot summer season. J. Rad. Res. Appl. Sci., 5 (2): 60-78
- Hegab I, Mohamaden W. 2023. Behavioral changes related to zinc deficiency in buffalo calves (Bubalusbubalis). International J. of Vet. Sci. 12(5): 659-665.
- Hosned T, Rávníček J, Šoch M. 2007. Current view of the significance of zinc for ruminants: A review. AgriculturaTropica et Subtropica, (40): 57-64.
- Humer E, Kröger I, Zebeli Q. 2019. Supplementation of a clay mineral based product modulates plasma metabolic profile and liver enzymes in cattle fed grain-rich diets. Anim., 13 (6): 1214–1223.
- Jain N. 2000. Schalm's vet Hematology 4thEd p 55-96 Lee and Philadelphia
- Khare C. 2004. Encyclopedia of Indian Medicinal Plants: Rational Western Therapy, Ayurvedic and Other Traditional Usage, Botany. Springer:
- Kamalakar G, Kumar C, Jagadeesh B. 2015. management of zinc responsive dermatitis in buffaloes: A Report of 10 Cases. J. of Vet Sci. and Technology 4(2): 2319-3341
- Kaneko J. 1989. Clinical biochemistry of domestic animals. 4th Ed. Academic press, inc. Harcourt Braco. Jovanovich, Publishers San Diego. New York.

- Kelly W. 1984. Veterinary Clinical Diagnosis 3rd Ed. William Clows Ltd London
- Kincaid RL. 1986. "Zinc metabolism and immune response in calves." Journal of Dairy Science, 69(5):1017-1023.
- Kind P, King E. 1954. determination of alkaline phosphatase J Clin Path (7): 32
- King J, Cousins R. 2006. Zinc. In: Shils M, Shike M, Ross A, Caballero B, Cousins J, edit. Modern Nutrition in Health and Disease. Philadelphia Williams and Wilkins; p7-85
- Knight J, Anderson S, James M. 1972. Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids" J. Clin. Chem., (18): 199-210.
- Mamdouh M, Ahmed E. 2021. Clinical, hematobiochemical studies on hypozincemia in calves in Egypt. Vet World 14(2)14– 18Doi:10.14202/vetworld.2021.314-318
- Manimaran S, Kekan P, Daware S, Khose K, Bhagade P. 2022. effect of copper and zinc supplementation on antioxidants and biochemical status of osmanabadi goats. Indian J. Anim, Res., Miller, J. and Miller, W. (2000) Experimental zinc deficiency and recovery of calves. The J of Nutrition, 76 (4):467-474
- Mohameden W, Abdel-Rahman H, Hegab I. 2023. Mineral supplementation in diseased buffalo calves and impact on health, clinical blood profiles. Adv. Anim Vet Sci 11(8): 88-96.
- Mullally A, Vogelsang G, Moliterno A. 2004. Wasted sheep and premature infants: the role of trace metals in hematopoiesis. Blood Reviews (18): 227-234.
- Nielsen F, Mikkelsen B, Grandjean P. 1997. Plasma malondialdehyde as biomark-er for oxidative stress. Reference interval and effects of life factors. ClinChem 43(7): 29-30
- Nishikimi M, Appaji A, Yagi K. 1972. Occurrence of superoxide anion in reaction of reduced phenazinemethosulfate and molecular oxygen Bio Chem Bio Res Com, 46 (2): 9-14

- Pankaj K, Amitava DS, Kum S, Shanker D. 2014. Generalized alopecia in a Murrah buffalo (Bubalusbubalis) calf. Philippine, J. of Vet. Med. 51(2):137-141
- Prasad AS. 2009. Zinc deficiency and human health: Effect of zinc on immune cells. Molecular Medicine, 15(9-10): 319–328.
- Pathak A, Pathak R, Dhawan D. 2004. Role of zinc on lipid peroxidation and antioxidative enzymes in intestines of ethanolfed rats. Biol. Trace Elem. Res. 100 (3): 247-257
- Payne J. 1989. Metabolic and nutritional diseases of cattle. Oxford: Blackwell Scientific Publications. 104-106.
- Radostits O, Gay C, Blood D, Hinchcliff K.
 2000. Veterinary Med. AText Book of the disease of cattle, sheep, pig, and horses.
 9thEd, W.B. Saunders, Philadelphia, P71–73
- Radostitis O, Blood K, Day C. 1995. Vet Med. 9th Ed. Bailliere and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food. Chem. Toci. Feb. Mar. 38(2-3):153-61
- Reitman S, Frankel S. 1957. determination of serum glutamic oxaloacetic and glutamic pyruvic. J. Clin. Path. (28): 56.
- Rouse B, Babiuk L, Henson P. 1980. Neutrophils in antiviral inhibition of virus replication of mediator produced by bovine neutrophils. J Inf Dis, 141 (2):23–32
- Rucker A, Fascetti R, Keen C. 2008. Trace Minerals, in J. Kaneko, J. Harvey, and M.L. Bruss, (Ed), Clinical biochemistry of domestic animals, 6 (Academic press).
- Sadiek A, Radwan M, Sayed A. 1994. Field Investigations of blood trace elements in buffalo calves suffering from loss of hair and skin lesions.Assiut Vet Med. J. 32 (1):64-74.
- Salem M. 2005. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Intern. Immunopharmacol. (5): 1744 – 770.
- Saurabh B, Promila A. 2018. A Review: Status of macro and micro minerals in feed, fod-

der, blood, and hair of buffaloes. The Pharma Innovation J. 7(4): 984-987

- Shalash M. 1984. Biological and economic status of Egyptian buffaloes. Egy.Vet. Sc. 21 (2): 1–37.
- Sinha K. 1972. Colorimetric assay of catalase. Anal Biochem; (47): 89-94
- Smith B. 2002. Large Animal Internal Medicine, 3rd Ed The C.V.Mosby Company. St. Louis, Baltimore Philadelphia- Toronto.
- Soulsby E. 1986. Parasitology of Domesticated Animals.7thEd. Bailliere, London
- Suzuki H, Asakawa A, Komai M, Inui A. 2011. Zinc as an appetite stimulator the possible role of zinc in progression of diseases such as cachexia and sarcopenia. Recent patents on food, nutrition & agriculture 3, no. 3 (2011): 226-231.
- Tamadhir A. 2015. Clinical, hematological and biochemical studies of some mineral's deficiency in buffaloes in Basrh. Bas. J.Vet.Res.14 (2): 223-230
- Tambane and Dunlop. 2000. Statistics and Data Analysis from Elementary to Intermediate. Prentic Hall Ajitc. Tampbne Dorothy Dunlop, 2000.
- Underwood E. 1982. Trace elements in human and animal nutrition.5thEd. New York, London Academic Press.
- Underwood EJ, Suttle NF. 2001. The Mineral Nutrition of Livestock (3rd ed.). CABI Publishing
- Versieck J, Peecke A, Hostest J. 1974. Magnesium copper and zinc concentr-ation in serum during acute hepatitis and cirrhosis. Clinic chem (20): 41–45
- Wahlefeld A, Bergmeyer H. 1974. Methods of Enzymatic Analysis 2nd English Ed New York Ay- academic press IC 1831
- Wajner SM. 2013. The influence of thyroid hormone on lipid metabolism in humans. Journal of Clinical Lipidology, 7(4):383-391.
- White B, Erickson M, Stevens S. 1970. determination of cholesterol. Chemistry for Medical Technologists 3rded.C.V. Osby Co., Saint Louis, USA p. 44.

- Woldehiwet Z, Rowan T. 1990. Effects of age of calves on phagocytosis and killing of Staph aureus by polymorphonuclear leucocytes. Br Vet J., (146): 65–70.
- Yanuartono A, Soedarmanto I, Alsi D. 2024. Zinc deficiency in ruminants and its management: A brief review. J. of Tropical Animal and Vet. Sci. 14(3): 132-139.
- Zak B. 1958. Determination of serum cupper. Clin. Chem.Acta (3)328.