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ABSTRACT. When diagnosing a disease, the most difficulty thing doctors face is making an accurate decision 

to correctly determine the disease due to the similarity of the symptoms of different diseases. Therefore, in this 

research, using Pawlak's rough set model, upper approximation, lower approximation and by using nano-

topology the factors affecting decision-making when afflicted with any disease were identified. Using the 

nano topology, we reduced the attributes in two real life situations by applying the knowledge as an 

information system. Here, we have demonstrated by topological reduction of the decision criteria of a recent 

outbreak of "Hepatitis C" that fever and yellow skin and eyes are the most important indicators of the disease. 

It became clear from this, that the point of view of mathematical methods is completely consistent with the 

medical expert's point of view. The effectiveness of rough set theory as a novel mathematical technique for 

extrapolating inferences from data has been demonstrated. It appears that the rough set concept will soon find 

very intriguing new applications. These consist of rough control, rough data bases, rough information 

retrieval, rough neural network and others. 

KEYWORDS: Rough set, lower approximation, upper approximation, nano topology, Hepatitis C. 
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1. INTRODUCTION 

 The concept of Rough set was presented by Z. 
Pawlak [29] in his important paper in 1982 (Pawlak 
1982). It is a formal theory based on basic studies of 
information systems' logical characteristics. Rough set 
model (RSM) has been methodology of database 
mining or knowledge discovery in rational databases. 
In Zadeh, 1965[14], abstract form, it is a new area 
uncertainty mathematics closely related to fuzzy 
model. Rough sets can be used to find structural 
relationships in noisy and imprecise data. 
Complementary generalizations of classical sets 
include fuzzy sets and rough sets. Whereas fuzzy sets 
deal with partial memberships, rough set theory's 
approximation spaces are sets with multiple 
memberships. The quick progress of these two 
methods provides a basis for "soft computing" 
introduced by Lotfi A. Zadeh [14]. In addition to 
rough sets, fuzzy logic, neural networks, probabilistic 
reasoning, belief networks, machine learning, 
evolutionary computing, and chaos theory are all 
included in soft computing. 

 Rough set models are essentially two subsets of a 
crisp partition established on the universal set 
involved that approximate a given crisp set. These 
subsets are referred to as inner and outer 
approximations, or lower and upper approximations, 
respectively. We can say that all of the partition's 
blocks that are part of the represented set make up the 
lower approximation, and all of the blocks whose 
intersection with the set is not empty make up the 
upper approximation. Rough set models are 
essentially two subsets of a crisp partition established 
on the universal set in question that approximate a 
given crisp set. These subsets are referred to as inner 
and outer approximations, or lower and upper 
approximations, respectively. We can say that all of 
the partition's blocks that are part of the represented 
set make up the lower approximation, and all of the 
blocks whose intersection with the set is not empty 
make up the upper approximation.   Applications for 
RSM are numerous and include data mining, pattern 
recognition, artificial intelligence, knowledge 
discovery, machine learning, and decision analysis, 
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among other areas. 

 From practical point of view rough set theory 
seems to be of fundamental significance to AI and 
cognitive sciences, especially to machine learning, 
knowledge discovery, decision analysis, inductive 
reasoning and pattern recognition. It seems also 
important to decision support systems and data 
mining. In fact it is a new mathematical approach to 
data analysis.  

 Rudiments of the theory can easily to be 
understood and applied. Several software systems 
based on rough set theory have been implemented 
and many real life, nontrivial applications of tis 
methodology have been reported, e.g., in medicine, 
pharmacology, engineering, banking, market 
analysis, conflict analysis, pattern recognition, 
environment, linguistics, gene expression and many 
more. 

 Rough set theory is based on sound 
mathematical foundation. The theory is not 
competitive but complementary to other methods and 
can also be often used jointly with other approaches 
(e.g., statistical methods, neural networks, genetic 
algorithms, fuzzy sets, etc.). 

 Rudiments of rough set theory can be found in [ 
28, 30]. For recent development see [4,5 13,21]. 
Various extension of the theory can be found in [4,26]. 
Some applications of rough set theory are discussed 
in [13,21,26]. For more information the reader is 
advised to consult the internet.           

 The arrangement of the rest of this work is as 
follows: Section 2 reviews the literature needed to 
understand the article's concepts, and results. In 
Section 3, we first define information systems, 
Indiscernibility relation, Knowledge system and set of 
approximations. In Section4, we design the dynamic 
update reduction of attributes with some 
applications. Also, we propose an algorithm. Finally, 
we draw summary and concluding remarks in 
Section 5. 

2. TERMINOLOGY CONCEPTS 
 This section presents a review of some 

fundamental notations and basic definitions of 

Pawlak rough set model. 

   RSM include the following notations: 

𝑈: denotes the universe of objects (states, patients, 

digits, cars, …, etc.), which can not be empty,   

𝑅 ⊆ 𝑈 × 𝑈: denotes the indiscernibility relation or 

equivalence relation defined by an attribute set (i.e. 

𝑅 = 𝐼(𝐴)  for some attribute set 𝐴), 

𝑷 = (𝑼, 𝑹): denotes an approximation space or 

Pawlak approximation space, 

[𝒙]𝑹: denotes the equivalence class of an element 𝑥of 

𝑈under the indiscernibility relation 𝑅, where [𝒙]𝑹 =

{𝒚 ∈ 𝑼: 𝒙𝑹𝒚}, 

 𝑼/𝑹 = {𝒀𝟏, 𝒀𝟐, . . . , 𝒀𝒎}on 𝑈denotes the partition or 

the knowledge base (𝑼, 𝑹)of 𝒀𝟏, 𝒀𝟐, . . . , 𝒀𝒎are called 

the equivalence classes generated by 𝑹or 

elementary sets in 𝑼/𝑹, 

𝑨 : denotes a set consisting of attributes, 

(𝑼, 𝑨) : is termed an information system (see, e.g. 

[28]). Any information system can be characterized 

by a data table with rows and columns labeled by 

objects and attributes, respectively.        

 For example, in Fig(1), the set of objects 𝑼is 

divided into equivalence classes. The positive 

region of a set 𝑿are all classes in the lower 

approximation of 𝑿and the 𝑷𝒐𝒔𝑹(𝑿)are represented 

by the latter 𝑷. Also, the classes in negative region 

𝑵𝒆𝒈𝑹(𝑿) are denoted with the letter 𝑵and all other 

classes belong to the boundary region of the upper 

approximation. 

 
Fig. 1. Example of a positive and negative regions  

3. LITERATURE REVIEW 

3.1. INFORMATION SYSTEMS  
 Data model information is kept in tables in 

Rough Set. Every raw (tuples) denotes a fact or an 

object. A data table is named an information system 

in Pawlak model terminology [12, 28]. Thus, the 

information table expresses input data, collected 

from any domain of  
Table 1. An Information Table 

𝑼 Set of Attributes (A) 

Cases Temp. Headache Nausa Cough 

C1 high yes no yes 

C2 very high yes yes no 

C3 high no no no 

C4 high yes yes yes 

C5 normal yes no no 

C6 normal no yes yes 

 Note: For Table 1, rows are named examples 

(objects, entities). Information system denote as a 

pair (𝑈, 𝐴), where 𝑈is a non-empty finite set of 

objects and 𝐴 is a non-empty finite set of attributes. 

An information table sometimes termed as decision 

table (see Table 2) if it contains decision attribute/ 

attributes. Decision system in pairs of (𝑈, 𝐴𝑈{𝑑}), 
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where 𝑑is decision attribute (instead of one we can 

consider more decision attributes). 

 Table 2, can be shown in relation to function 

of nominal values of considered attributes, as in 

Table 3. 

3.2. INDISCERNIBILITY RELATION 
 An indiscernibility relation is a relationship 

between two or more objects in which all values are 

the same with respect to a subset of the attributes 

under consideration. Numerous items with similar 

characteristics may be found in tables. One way to 

reduce the size of a table is to save a single 

representative item for each group of objects that 

share the same characteristics. These items are 

referred to as tuples or indiscernible objects. Any P 

subset of A has a corresponding equivalence 

relation, represented by IND(P): 

𝐼𝑁𝐷(𝑃) = {(𝑥, 𝑦) ∈ 𝑈2|∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)}. 

3.3. KNOWLEDGE SYSTEM 
 A knowledge expression system can be stated 

as a four –tuple in rough set theory as 𝑇 =

(𝑈, 𝑅, 𝑉, 𝐹), where  

𝑈: is a non-empty finite set (i.e., the universe) with n 

objects {𝒖𝟏, 𝒖𝟐, . . . , 𝒖𝒏}, also known as the domain of 

discourse,  

𝑅: is a non-empty finite set of characteristics, 

𝑉 = ∪
𝑟∈𝑅

𝑉𝑟  is the set of attribute values, the attribute 

value range for the 𝑟 ∈ 𝑅is denoted by 𝑉𝑟 , 

𝐹: 𝑈 × 𝑅 → 𝑉 is an information function, which 

corresponds to the attribute value of object 𝑥(i.e. 

∀𝑥 ∈ 𝑈, 𝑟 ∈ 𝑅, there is 𝐹(𝑥, 𝑟) ∈ 𝑉𝑟) . 

The decision table is the information knowledge 

expression system.  

 The attribute set is 𝑅 = 𝐶 ∪ 𝐷, where 𝐶is the 

condition attribute set and 𝐷is the decision attribute 

set (𝐷 ≠ 𝜑).  

 Consequently, the information system is 

composed of all conditional and decision attributes. 

3.4. SET OF APPROXIMATIONS 
 For a crisp set, its formal approximation 

defined by its two approximations are namely 

Upper approximation and Lower approximation 

[5,6, 11, 28]. 

 The set of objects which possibly belong to 

the target set 𝑋is the Upper approximation, 

mathematically take the form: 
𝑅∗[𝑋] =∪ {𝑌 ∈ 𝑈/𝑅: 𝑌 ∩ 𝑋 ≠ 𝜑} = {𝑥 ∈ 𝑈: [𝑥] ∩ 𝑋 ≠

𝜑}. 

 Lower approximation is the set of objects that 

positively belong to the target set 𝑋, and written as 

follows:    

𝑅∗[𝑋] =∪ {𝑌 ∈ 𝑈/𝑅: 𝑌 ⊆ 𝑋} = {𝑥 ∈ 𝑈: [𝑥] ⊂ 𝑋}, 

where, [𝑥]is the equivalence class of an element 𝑥. 

 The boundary region of the target set 𝑋take 

the mathematical form: 

𝐵𝑁𝑅(𝑋) = 𝑅∗(𝑋) − 𝑅∗(𝑋). 

 A set is said to be rough if its boundary 

region is non-empty as shown in Fig. 2, otherwise 

the set is crisp. 

Table 2. Decision Table 

𝑼 Set of Conditional Attributes (A) Decision Attribute  (d) 

Cases Temp. Headache Nausa Cough Flu 

C1 high yes no yes yes 

C2 very high yes yes no no 

C3 high no no no No 

C4 high yes yes yes yes 

C5 normal yes no no no 

C6 normal no yes yes yes 

 
Table 3. Nominal Values 

 Attributes Nominal Values 

 

Conditional Attributes 

Temperature Very high, high, normal 

Headache Yes, No 

Nausa Yes, No 

Cough Yes, No 

Decision Attributes Flu Yes, No 
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Fig. 2. Example of a rough set 

PROPOSITION 3.1 [2,3,4,27]   

We have the following properties of the Pawlak 's 

rough sets, in the following let −𝑋be the 

complement of 𝑋in 𝑈,  

(1L) 𝑅∗(𝑈) = 𝑈   (Co-normality) 

(1H) 𝑅∗(𝑈) = 𝑈   Co-normality) 

(2L) 𝑅∗(𝜃) = 𝜑   (Normality) 

(2H) 𝑅∗(𝜃) = 𝜑   (Normality) 

(3L) 𝑅∗(𝑋) ⊆ 𝑋     (Contraction) 

(3H) 𝑋 ⊆ 𝑅∗(𝑋)          (Extraction) 

(4L) 𝑅∗(𝑋 ∩ 𝑌) = 𝑅∗(𝑋) ∩ 𝑅∗(𝑌)    (Multiplication) 

(4H) 𝑅∗(𝑋 ∪ 𝑌) = 𝑅∗(𝑋) ∪ 𝑅∗(𝑌)   (Addition) 

(5L) 𝑅∗(𝑅∗(𝑋)) = 𝑅∗(𝑋)     (Idempotency) 

(5H) 𝑅∗(𝑅∗(𝑋)) = 𝑅∗(𝑋)   (Idempotency) 

(6L) 𝑋 ⊆ 𝑌 ⇒ 𝑅∗(𝑋) ⊆ 𝑅∗(𝑌)  (Monotone) 

(6H) 𝑋 ⊆ 𝑌 ⇒ 𝑅∗(𝑋) ⊆ 𝑅∗(𝑌)  (Monotone) 

(7L) 𝑅∗(−𝑅∗(𝑋)) = −𝑅∗(𝑋)        (Lower 

complement relation) 

(7H) 𝑅∗(−𝑅∗(𝑋)) = −𝑅∗(𝑋)    (Upper 

complement relation) 

(8LH) 𝑅∗(−𝑋) = −𝑅∗(𝑋)    (Duality) 

(9LH) 𝑅∗(−𝑋) = −𝑅∗(𝑋)    (Duality) 

(10L) ∀𝐾 ∈ 𝑈/𝑅, 𝑅∗(𝐾) = 𝐾    (Granularity) 

(10H) ∀𝐾 ∈ 𝑈/𝑅, 𝑅∗(𝐾) = 𝐾   (Granularity) 

 From papers [1,11,23,24, 30], the above 

properties contain all essential properties of lower 

and upper approximations, since all the other 

properties of Pawlak 's lower and upper 

approximations can be inferred from the above 

properties.     

DEFINITION 3.1[15-19]:  

Let 𝑈be the universe, 𝑅be an equivalence relation on 

𝑈and 𝜏𝑅(𝑋) = {𝑈, 𝜑, 𝑅∗(𝑋), 𝑅
∗(𝑋), 𝐵𝑁𝑅(𝑋)}, where 

𝑋 ⊆ 𝑈. Then by Proposition 3.1, the class 𝜏𝑅(𝑋) 

satisfies the following axioms:  

(i) 𝑈and𝜑 ∈ 𝜏𝑅(𝑋), 

(ii) The union of the elements of any 

subcollection of 𝜏𝑅(𝑋) is in 𝜏𝑅(𝑋), 

(iii) The intersection of the elements of any 

finite subcollection of  𝜏𝑅(𝑋)is in 𝜏𝑅(𝑋). 

That is, 𝜏𝑅(𝑋)is a topology on 𝑈named the nano 

topology on 𝑈with respect to 𝑋and the pair 

(𝑈, 𝜏𝑅(𝑋)) is named a nano topological space. The 

elements of 𝜏𝑅(𝑋)are called nano open sets in 𝑈and 

the complement of nano open set is called a nano 

closed set. Elements of [𝜏𝑅(𝑋)]
𝑐being called dual 

nano topology of 𝜏𝑅(𝑋). 

REMARK 3.1:  

If 𝜏𝑅(𝑋)is a nano topology on 𝑈with respect to 𝑋, 

then Thivagar and Richared [13] observed that the 

family 𝛽 = {𝑈, 𝑅∗(𝑋), 𝐵𝑁𝑅(𝑋)}is the basis for 𝜏𝑅(𝑋). 

REMARK 3.2:  

Let (𝑈, 𝜏𝑅(𝑋))be a nano topological space with 

respect to 𝑋where 𝑋 ⊆ 𝑈and 𝑅be an equivalence 

relation on 𝑈. Then 𝑈/𝑅 denotes the family of 

equivalence classes of 𝑈by 𝑅. 

DEFINITION 3.2 [1,7,16]: 

If (𝑈, 𝜏𝑅(𝑋))is a nano topological space with respect 

to 𝑋where 𝑋 ⊆ 𝑈and if 𝐴 ⊆ 𝑈, then: 

(i) The nano interior of the set 𝐴is defined as 

the union of all nano open subsets 

contained in 𝐴and denoted by 𝑛 𝐼𝑛𝑡( 𝐴). 

That is 𝑛 𝐼𝑛𝑡( 𝐴)is the largest nano open 

subset of 𝐴. 

(ii) The nano closure of the set 𝐴is defined as 

the intersection of all nano closed sets 

containing 𝐴and is denoted by 𝑛 𝐶𝑙( 𝐴). That 

is, 𝑛 𝐶𝑙( 𝐴)is the smallest nano closed set 

containing 𝐴. 

4. REDUCTION OF ATTRIBUTES  
 The challenge of whether some condition 

features may be removed without affecting the 

system's fundamental characteristics—that is, 

whether there is any unnecessary data—occurs 

when researching information systems. Rough set 

models can be used to reduce the number of 

attributes. This procedure is referred as attribute 

reduction or in context of machine learning as 
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feature selection [7,10,20,25]. 

 Getting the minimum possible subset of 

attributes that preserves the information of interest 

is the main idea of reducts. The procedure assumed 

is shown as in Fig.3. 

 
Fig. 3. Attribute Reduction Framework 

 

 This idea can be more exactly states as: Suppose 

𝐶, 𝐷 ⊆ 𝐴be subsets of conditions and decision 

attributes. We can say that 𝑇 ⊆ 𝐶is a 𝐷- reduct 

(reduct with respect to 𝐷) of 𝐶, if 𝑇is a minimal 

subset of 𝐶such that: 
     𝛾(𝐶, 𝐷) = 𝛾(𝑇, 𝐷)  

 The CORE is the intersection of all the reducts. 

This represents that the attributes are existing in all 

the reducts. Thus, the notion of the CORE is the 

most important set of attributes in the decision 

system and forms a basis of classification or decision 

power of attributes.        

Example 4.1 In the following information table, we 

have a record of an exam in three different 

languages, German (G), English (E) and French (F), 

respectively, for five students in some school.  
Table 4. Information system    

Students 
𝑼 

Condition attributes Decision 

attributes 

(result)  

G E F 

𝑺𝒕𝟏 false  true false fail 

𝑺𝒕𝟐 true false true fail 

𝑺𝒕𝟑 true true true pass 

𝑺𝒕𝟒 false true false pass 

𝑺𝒕𝟓 true false false fail 

From the above table we have, 

𝑈 = {𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3, 𝑆𝑡4, 𝑆𝑡5}and the knowledge base is 
𝑈/𝑅 = {{𝑆𝑡1, 𝑆𝑡4}, {𝑆𝑡2}, {𝑆𝑡3}, {𝑆𝑡5}}. 

Case 1: Let 𝑋 = {𝑆𝑡3, 𝑆𝑡4} be the set of students pass 

in the exam, then we can get that 

𝑅∗(𝑋) = {𝑆𝑡3}, 𝑅
∗(𝑋) = {𝑆𝑡1, 𝑆𝑡3, 𝑆𝑡4} and 𝐵𝑛𝑑𝑅( 𝑋) =

{𝑆𝑡1, 𝑆𝑡4}. 

Hence, 𝛽(𝜏𝑅(𝑋)) = {𝑈, {𝑆𝑡3}, {𝑆𝑡1, 𝑆𝑡4}}. 

Step 1: If the attribute German (G) is removed from 

the set of conditions attributes ( C)   

, then the knowledge base is: 

𝑈/𝑅 − 𝐺 = {{𝑆𝑡1, 𝑆𝑡4}, {𝑆𝑡2}, {𝑆𝑡3}, {𝑆𝑡5}}. 

Hence,𝑅∗(𝑋) = {𝑆𝑡3}, 𝑅
∗(𝑋) = {𝑆𝑡1, 𝑆𝑡3, 𝑆𝑡4}.  

So,  𝛽(𝜏𝑅−𝐺(𝑋)) = {𝑈, {𝑆𝑡3}, {𝑆𝑡1, 𝑆𝑡4}} = 𝛽(𝜏𝑅(𝑋)). 

Thus 𝐺 ∉ 𝐶𝑂𝑅𝐸(𝐶). 

Step 2: If we eliminate the attribute English (E) from 

the set of conditions attributes ( C)   

, then the knowledge base is: 

𝑈/𝑅 − 𝐸 = {{𝑆𝑡1, 𝑆𝑡4}, {𝑆𝑡2, 𝑆𝑡3}, {𝑆𝑡5}}.  

Consequently, 𝑅∗(𝑋) = 𝜑, 

 𝑅∗(𝑋) = {𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3, 𝑆𝑡4} = 𝐵𝑛𝑑𝑅( 𝑋). 

Hence, 𝛽(𝜏𝑅−𝐸(𝑋)) = {𝑈, 𝜑, {𝑆𝑡1, 𝑆𝑡2, 𝑆𝑡3, 𝑆𝑡4}} ≠

𝛽(𝜏𝑅(𝑋)). 

Subsequently, 𝐸 ∈ 𝐶𝑂𝑅𝐸(𝐶). 

Step 3: If we remove the attribute French (F) from 

the set of conditions attributes ( C)   

, then the knowledge base is: 

𝑈/𝑅 − 𝐹 = {{𝑆𝑡1, 𝑆𝑡4}, {𝑆𝑡2, 𝑆𝑡5}, {𝑆𝑡3}} and we can 

get that 𝑅∗(𝑋) = {𝑆𝑡3}, 𝑅∗(𝑋) = {𝑆𝑡1, 𝑆𝑡3, 𝑆𝑡4}and 

𝐵𝑛𝑑𝑅( 𝑋) = {𝑆𝑡1, 𝑆𝑡4} . hence,  

𝛽(𝜏𝑅−𝐹(𝑋)) = {𝑈, {𝑆𝑡3}, {𝑆𝑡1, 𝑆𝑡4}} = 𝛽(𝜏𝑅(𝑋)).  

Thus, 𝐹 ∉ 𝐶𝑂𝑅𝐸(𝐶). 

Observation: From the above, we accomplish that 

English is the main attribute essential to decide 

whether the student has pass the exam or not.  

Example 4.2: Consider Table 5. Which contains 

information about patients having Hepatitis C. The 

objects (the patients) are represented in rows and 

the columns of the table represent the attributes of 

Hepatitis C, where 𝐴 = {𝑌, 𝐷, 𝐽, 𝐹}and described as 

follows:  

𝑌stands for yellow skin and eyes, 

𝐷stands for dark urine, 

𝐽stands for joint and abdominal pains and 

𝐹stands for fever.  
Table 5. Infection information about some patients 

Patients 
𝑼 

 

  Set of 

attributes (𝑨)  

Decision 

 ( C )  

Y D J F 

𝑷𝒂𝟏 1 1 1 + Yes 

𝑷𝒂𝟐 1 0 0 + No 

𝑷𝒂𝟑 1 0 0 + Yes 

𝑷𝒂𝟒 0 0 0 ++ No 

𝑷𝒂𝟓 0 1 1 + No 

𝑷𝒂𝟔 1 1 0 ++ Yes 

𝑷𝒂𝟕 1 1 0 - No 

𝑷𝒂𝟖 1 1 0 ++ Yes 

where the symbol "1" means the patient has the 

symptom, "0" otherwise. Also, the symbol "+" means 

the patient has high fever, "++" means the patient 

has very high fever and the symbol "-" means the 

patient has no fever. 

Set  
𝑼 = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟒, 𝑷𝒂𝟓, 𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖} 
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represents the set of eight patients. 

Case 1: Let 𝑿 = {𝑷𝒂𝟏, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟖} be the set of 

patients having Hepatitis C. The family of all 

knowledge base from Table 4 is given by: 
𝑼/𝑹(𝑨) =

{{𝑷𝒂𝟏}, {𝑷𝒂𝟒}, {𝑷𝒂𝟓}, {𝑷𝒂𝟕}, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟔, 𝑷𝒂𝟖}} ,  

where R represents equivalence relation on the 

universe U with respect to the condition attributes 

A. 

The medical lower and upper approximations of the 

set patients having Hepatitis C with respect to R is 

given by: 

𝑹∗(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟔, 𝑷𝒂𝟖},  
𝑹∗(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟖}  

and 𝑩𝑵𝑹(𝑿) = {𝑷𝒂𝟐, 𝑷𝒂𝟑}.  

Therefore, the base of nano topology is given by 

𝜷(𝝉𝑹(𝑿)) = {𝑼, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟏, 𝑷𝒂𝟔, 𝑷𝒂𝟖}} .  

Hence,  
𝝉𝑹(𝑿) = {𝑼,𝝋, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟏, 𝑷𝒂𝟔, 𝑷𝒂𝟖}, 

{𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟖}}. 

Step 1: If we remove the attribute "Y" from the set of 

condition attributes, then the family of knowledge 

base associated to the resulting set of attributes is 

given by: 
𝑼/𝑹 − 𝒀 =

{{𝑷𝒂𝟒}, {𝑷𝒂𝟕}, {𝑷𝒂𝟏, 𝑷𝒂𝟓}, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟔, 𝑷𝒂𝟖}}. 

Consequently, the corresponding lower and upper 

approximations are given by: 

  𝑹∗(𝑿) = {𝑷𝒂𝟔, 𝑷𝒂𝟖},  
𝑹∗(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟓, 𝑷𝒂𝟔, 𝑷𝒂𝟖}  

and 𝑩𝑵𝑹(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟓}.  

Therefore, the base of nano topology is given by 

𝜷(𝝉𝑹−𝒀(𝑿)) = {𝑼, {𝑷𝒂𝟔, 𝑷𝒂𝟖}, {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟓}}. 

Hence,  
𝝉𝑹−𝒀(𝑿) = {𝑼,𝝋, {𝑷𝒂𝟔, 𝑷𝒂𝟖}, {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟓}, 

{𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟓, 𝑷𝒂𝟔, 𝑷𝒂𝟖}} ≠ 𝝉𝑹(𝑿). 

 Consequently, yellow skin and eyes is a factor 

from the core of Hepatitis C. 

Step 2: If we remove the attribute "D" from the set of 

condition attributes, then the elementary set is given 

by: 
 𝑼/𝑹 − 𝑫 =

{{𝑷𝒂𝟏}, {𝑷𝒂𝟒}, {𝑷𝒂𝟓}, {𝑷𝒂𝟕}, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟔, 𝑷𝒂𝟖}}. 

Which is the same knowledge base 𝑈/𝑅(𝐴) and 

hence 𝝉𝑹−𝑫(𝑿) = 𝝉𝑹(𝑿). 

So, Dark urine does not a factor from the core of 

Hepatitis C. 

 Step 3: When the attribute "J" is removed from 

Table 5, then  
       𝑼/𝑹 − 𝑱 =

{{𝑷𝒂𝟏}, {𝑷𝒂𝟒}, {𝑷𝒂𝟓}, {𝑷𝒂𝟕}, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟔, 𝑷𝒂𝟖}}. 

Which is the same knowledge base 𝑈/𝑅(𝐴) and 

hence each of the basis and topologies are coincides. 

Hence "Joint and abdominal pains" does not a factor 

from the core of Hepatitis C. 

Step 4: When attribute "F" is omitted from Table 5. 

Then one deduce that: 
       𝑼/𝑹 − 𝑭 =

{{𝑷𝒂𝟏}, {𝑷𝒂𝟒}, {𝑷𝒂𝟓}, {𝑷𝒂𝟐, 𝑷𝒂𝟑}, {𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖}}. 

and the related approximations are: 

  𝑹∗(𝑿) = {{𝑷𝟏}}, 
 𝑹∗(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖}  

and 𝑩𝑵𝑹(𝑿) = {𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖}.  

Therefore, 

𝜷(𝝉𝑹−𝑭(𝑿)) = {𝑼, {𝑷𝒂𝟏}, {𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖}}. 

Also the corresponding nona topology is given by:   
𝝉𝑹−𝑭(𝑿) = {𝑼,𝝋, {𝑷𝒂𝟏}, {𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖}, 

{𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟕, 𝑷𝒂𝟖}} ≠ 𝝉𝑹(𝑿). 

Consequently, Fever is a factor from the core of 

Hepatitis C. 

Step 5: If 𝑴 = {𝒀, 𝑭}which is a subset of the set of 

attributes, then the corresponding knowledge base 

with respect to M (i.e. when attributes D, J are 

omitted) is given by: 
       𝑼/𝑹(𝑴) =

{{𝑷𝒂𝟒}, {𝑷𝒂𝟓}, {𝑷𝒂𝟕}, {𝑷𝒂𝟔, 𝑷𝒂𝟖}, {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑}}. 

Then: 

  𝑹∗(𝑿) = {𝑷𝒂𝟔, 𝑷𝒂𝟖},  
𝑹∗(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟖}  

and 𝑩𝑵𝑹(𝑿) = {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑}.  

Therefore, the base for the nano topology 

corresponding to M is given by: 

 𝜷(𝝉𝑹(𝑴)(𝑿)) = {𝑼, {𝑷𝒂𝟔, 𝑷𝒂𝟖}, {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑}}.  

So, the associated nano topology is  
  𝝉𝑹(𝑴)(𝑿) = {𝑼,𝝋, {𝑷𝒂𝟔, 𝑷𝒂𝟖}, {𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑}, 

{𝑷𝒂𝟏, 𝑷𝒂𝟐, 𝑷𝒂𝟑, 𝑷𝒂𝟔, 𝑷𝒂𝟖}} ≠ 𝝉𝑹(𝑿). 

From the above steps we conclude that, CORE 

(Hepatitis C)={ Yellow skin and eyes, Fever}. 

Case 2: Similarly, if X is taken as the set of patients 

not having "Hepatitis C", then by the same above 

technique, we conclude that CORE (Hepatitis C) = 

{Y,F}. So, Yellow skin and eyes and fever are the key 

attributes that has close connection to the disease of 

Hepatitis C.        

Finally, we propose the following algorithm (Table 

6) to describe how to use the nano topology in 

decision making for any information systems, 

through the Pawlak approximations. 
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Table 6. Algorithm 1: Algorithm on nano topology 

Step no. A decision making via nano topology 

Step 1: Input the information about patients suffering from Hepatitis C using the finite 

set U and a finite set A of attributes.  

Step 2: Compute the lower and upper approximation and boundary region for decision 

set 𝑿 ⊆ 𝑼according to Definition 3.1. 

Step 3: Generate the nano topology 𝝉𝑹(𝑿)on U. 

Step 4: Remove the attribute 𝒆𝒊from the condition attributes (C) and find the lower, 

upper approximations and boundary region of target set X on 𝑪 − 𝒆𝒊for each 𝒊 ∈

𝑵.   

Step 5: Generate the associated nano topology  𝝉𝑹−{𝒆𝒊}(𝑿)on U. 

Step 6: Repeat steps 4 and 5 for all attributes in C. 

Step 7: Those attributes in C for which 𝝉𝑹−{𝒆𝒊}(𝑿) ≠ 𝝉𝑹(𝑿)forms the CORE ( Hepatitis C). 

 

 

 

5. SUMMARY AND 

CONCLUDING REMARK  

 As a novel mathematical tool for deriving 
conclusions from data, rough set theory has shown to 
be beneficial. The rough set concept appears to have 
very intriguing new applications coming soon. They 
consist of rough neural networks, rough data bases, 
rough information retrieval, rough control, and more.    

 Furthermore, other researchers have examined 
the algebraic and logical underpinnings of rough sets, 
providing a more comprehensive comprehension of 
the theoretical foundations of rough sets. The 
relationship between rough sets and statistical 
reasoning techniques has also attracted the attention 
of numerous researchers. Numerous additions to the 
"basic" paradigm of rough sets have also been 
developed and analyzed.  

 We have used the knowledge as an information 
system in characteristics reduction utilizing the nano 
topology in two real-life situations. We have 
identified a recent "Hepatitis C" outbreak using 
topological reduction in decision factors. Fever and 
yellow skin and eyes were recognized to be key 
factors for Hepatitis C.   

 Finally, a fascinating study that links the 
foundations of mathematics, quantum physics, and 
rough sets has recently been published [4,5,6,7].  

 Rough set model has also been used for 
knowledge representation, data mining, reducing 
knowledge representation, dealing with imperfect 
data and for analyzing attribute dependencies. 

 Finally, let us say that rough set theory is neither 
new set theory nor its improvement and it can be 
embedded in classical set theory 
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