

SOME TYPES OF GENERALIZED CLOSED AND GENERALIZED STAR CLOSED SETS IN TOPOLOGICAL ORDERED SPACES

Received: 18-08-2024 Accepted: 31-10-2024

V.V.S.Ramachandram^{a,*}, D.Nagapurnima^b, K.Jaya Rama Krishna^c

- ^a Professor in Mathematics, Department of H&BS, ISTS Women's Engineering College, Eastgonagudem, Rajahmundry, Andhra Pradesh
- ^b Professor in Mathematics, Department of H&BS, RIET Engineering College, Rajahmundry, Andhra Pradesh
- ^c Associate Professor in Mathematics, Department of H&BS, WISE Engineering College, Prakasaraopalem, Andhra Pradesh

* corresponding author: V.V.S.Ramachandram (<u>vvsrch@gmail.com</u>)

ABSTRACT. In the present work our intention is to establish relationship between new types of closed sets namely g*b-closed sets (resp.gb-closed) and g*i-closed sets(resp.gi-closed) and g*b-closed sets(resp.gb-closed) and g*d-closed sets(resp.gd-closed). We also established the independency between the notions g*i-closedness (resp.gi-closedness) and g*d-closedness (resp.gd-closedness).

KEYWORDS: Topological ordered space; Increasing set; Decreasing set; Balanced set; gi-closed set; gd-closed set; g*b-closed set; g*b-closed set; g*b-closed set; g*b-closed set.

2010 Mathematics Subject Classification: 54A05,54A06

1. INTRODUCTION

The notion of topological ordered space was first studied by L. Nachbin [9]. A triple (X, τ, \leq) where X is a non-empty set, τ is a topology and \leq is a partial order on X called as a topological ordered space. A subset A of topological ordered space (X, τ, \leq) is said to be an increasing set if A = i(A) and is a decreasing set if A = d(A) where $i(A) = \bigcup_{\substack{a \in A \\ a \in A}} [a, \rightarrow]$ and $d(A) = \bigcup_{\substack{a \in A \\ a \in A}} [\leftarrow, a]$. The sets $[x, \rightarrow] = \{y \in X / x \leq y\}$ and $[\leftarrow, x] = \{y \in X / y \leq x\}$ are defined for any $x \in X$. The complement of an increasing set is a decreasing set and vice versa. A subset of a topological ordered space (X, τ, \leq) is a balanced set if it is both increasing and decreasing set.

The study of Increasing closed set, Decreasing closed set and Balanced closed set(briefly i-closed, d-closed and b-closed) in topological ordered spaces was initialized by M. K. R. S. Veerakumar [12]. The notion of generalized closed set (briefly g-closed set) was introduced by N. Levin [7]. Later Bhattacharya and Lahiri [7] introduced and studied semi generalized closed sets (briefly sg-closed sets) in topological spaces. Also, generalized star closed sets (briefly g*-closed sets) were introduced by Veerakumar [13]. In the later years some Authors [11] introduced and studied g*i-closed sets, g*d-closed sets and g*b-closed sets in topological ordered spaces.

In the present work, we established that every g*b-closed (resp.gb-closed) set is both g*i-closed (resp. gi-closed) set and g*d-closed (resp. gd-closed) set. We also provided examples for the independency of the notions namely g*i-closedness and g*d-closedness.

2. PRELIMINARIES

Unless otherwise mentioned, (X, τ) represent nonempty topological space on which no separation axioms are assumed. The usual notations, cl(A), int (A) and C(A) denote the closure, the interior of A and the complement of A respectively for a subset A.

We recall the following definitions which are useful in the sequel.

DEFINITION 2.1.

A subset A of a topological space (X, τ) is called

- a generalized closed set (briefly g-closed [8]) if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). The compliment of a g-closed is a g-open set.
- 2. a g*-closed [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) .

DEFINITION 2.2. [11]

In a topological ordered space (X, τ, \le) , a subset A is a g*i-closed (resp. gi-closed) set if A is both increasing and g*-closed (resp. g-closed) set.

DEFINITION 2.3. [11]

In a topological ordered space (X, τ, \le) , a subset A is a g*d-closed (resp.gd-closed) set if A is both decreasing and g*-closed (resp. g-closed) set.

DEFINITION 2.4. [11]

In a topological ordered space (X, τ, \leq) , a subset A is g*b-closed (resp. gb-closed) set if A is both balanced and g*-closed (resp. g-closed) set.

3. SOME APPLICATIONS

THEOREM 3.1.

Every g*b-closed set is a g*i-closed set.

PROOF:

Let A be a g*b-closed set in the TOS (X, τ , \leq). Then, A is an increasing set and is a g*-closed set. Thus, A is a g*i-closed set.

The converse of the above theorem is not true. This can be seen in the following example.

EXAMPLE 3.2.

Let $X = \{a, b, c\}, \tau_6 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and ordering $\leq_9 = \{(a, a), (b, b), (c, c), (a, c)\}$. Then, (X, τ_6, \leq_9) is a topological ordered space. In this space, the g*i-closed sets are φ , X, $\{b\}, \{c\}, \{a, c\}, \{b, c\}$ and the g*bclosed sets are φ , X, $\{b\}, \{a, c\}$. Then, $A = \{b, c\}$ is a g*iclosed set but it is not a g*b-closed set.

THEOREM 3.3.

Every g*b-closed set is a g*d-closed set.

PROOF:

Let A be a g*b-closed set in the topological ordered space (X, τ , \leq). Then A is a decreasing set and is a g*-closed set. Thus, A is g*d-closed set.

The converse of the above theorem is not true. This can be seen in the following example.

EXAMPLE 3.3.

Let $X = \{a, b, c\}$, $\tau_6 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and the ordering $\leq_{10} = \{(a, a), (b, b), (c, c), (b, a), (b, c), (c, a), \}$. Then, (X, τ_6, \leq_{10}) is a topological ordered space. In this space the g*d-closed sets are φ , X, $\{b\}$, $\{b, c\}$ and the g*b-closed sets are φ , X. Then, A = $\{b, c\}$ is a g*d-closed set but it is not a g*b-closed set.

THEOREM 3.4.

Every gb-closed set is a gi-closed set.

PROOF:

Let A be a gb-closed set in the topological ordered space (X, τ , \leq). Then, A is an increasing set and is a g-closed set. Thus, A is a gi-closed set.

The converse of the above theorem is not true.

This can be seen in the following example.

EXAMPLE 3.5.

Let $X = \{a, b, c\}, \tau_6 = \{\varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ and the ordering $\leq_9 = \{(a, a), (b, b), (c, c), (a, c)\}$. Then, (X, τ_6, \leq_9) is a topological ordered space. In this space, the gi-closed sets are φ , X, $\{b\}, \{c\}, \{a, c\}, \{b, c\}$ and the gb-closed sets are φ , X, $\{b\}, \{a, c\}$. Then, the subset $A = \{b, c\}$ is a gi-closed set but it is not a gb-closed set.

THEOREM 3.6.

Every gb-closed set is a gd-closed set.

PROOF:

Let A be a gb-closed set in the topological ordered space (X, τ , \leq). Then A is a decreasing set and is a g-closed set. Thus, A is gd-closed set.

The converse of the above theorem is not true. This can be seen in the following example.

EXAMPLE 3.7.

Let $X = \{a, b, c\}, \tau_6 = \{\varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ and the ordering $\leq_{10} = \{(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)\}$. Then, (X, τ_6, \leq_{10}) is a topological ordered space. In this space, the gd-closed sets are φ , X, $\{b\}$, $\{b, c\}$ and the gb-closed sets are φ , X. Then, the subset $A = \{b, c\}$ is a gd-closed set but it is not a gb-closed set.

4. INDEPENDENT NOTIONS

THEOREM 4.1.

The notions g*i-closedness and g*d-closedness are independent.

PROOF:

Follows form the following examples.

EXAMPLE 4.2.

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and the ordering $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Then, (X, τ_1, \leq_2) is a topological ordered space. In this space the g*i-closed sets are ϕ , X, {b, c} and the g*d-closed sets are ϕ , X, {c}, {a, c}. Then, the subset A = {b, c} is a g*iclosed set but it is not a g*d-closed set. On the other hand, the subset B = {a, c} is a g*d-closed set but it is not a g*i-closed set.

THEOREM 4.3.

The notions gi-closedness and gd-closedness are independent.

PROOF:

Follows form the following examples.

EXAMPLE 4.4.

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and the ordering $\leq_2 = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$. Then, (X, τ_1, \leq_2) is a topological ordered space. In this space the gi-closed sets are ϕ , X, $\{b, c\}$ and the gd-closed sets are ϕ , X, $\{c\}$, $\{a, c\}$. Then, the subset $A = \{b, c\}$ is a giclosed set but it is not a gd-closed set. On the other hand, the subset $B = \{a, c\}$ is a gd-closed set but not a gi-closed set.

The following diagram shows the relationships established in the present work.

Here, $A \rightarrow B$ means A implies B but not conversely and $A \nleftrightarrow B$ denote A and B are independent notions.

DIAGRAM

5. CONCLUSIONS

In the present work, we established some relationships between g-closed type sets and g*-closed type sets in topological ordered spaces. We also provided examples for the independency of the two types of closedness. As a further study we will focus on the relationships of semi generalized closed type sets with other types of closed sets in topological ordered spaces.

REFERENCES

- [1] M. E. Abd El-Monsef, S. N. El Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983),77-90.
- [2] D. Andrijević, Semi-pre open sets, Mat. Vesnik, 38(1) 1986, 24-32.
- [3] [3]. P. Bhattacharya and B. K. Lahiri, Semigeneralized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [4] K. Krishna Rao, Some concepts in topological ordered spaces using semi-open sets, pre-open sets, α-open sets and β-open sets, Ph. D. Thesis, Acharya Nagarjuna University, October, 2012.

- [5] K. Krishna Rao and R. Chudamani, αhomeomorphisms in topological ordered spaces, International Journal of Mathematics, Technology and Humanities, 52(2012), 541-560.
- [6] K. Krishna rao and R. Chudamani, β-Homeomorphisms in topological ordered spaces, international e-Journal of Mathematics and Engineering, 182(2012),
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [9] L. Nachbin, Topology and order, D. Van Nostrand Inc., Princeton, New Jersey, (1965).
- [10] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [11] V.V.S. Ramachnadram, B. Sankara Rao and M.K.R.S. Veera Kumar, g- closed type, g*-closed type and sg-closed type sets in topological ordered spaces, Diophantus J. Math., 4(1)(2015), 1-9.
- [12] M.K.R.S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII(M)(1)2002, 67-76.
- [13] M.K.R.S. Veera Kumar, Between closed sets and gclosed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 21(2000), 1-19.