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ABSTRACT. The paper presents an adaptive mixed Crank-Nicolson finite el-
ement approach (CNM-FEM) integrated with an appropriate orthogonal de-
composition (POD) to efficiently solve the nonlinear reaction-diffusion prob-
lem. Because of their complexity and many unknowns, nonlinear reaction-
diffusion equations pose major computing difficulties; they find applications in
biology, chemistry, and physics, among other domains. The proposed approach
reduces this difficulty by dynamically changing the time step depending on er-
ror estimations over an adaptive time scale, hence improving computational ef-
ficiency while maintaining accuracy. The double-mesh technique, which solves
nonlinear problems on a coarse mesh then refines them on a finer mesh, has im-
proved the second-order accuracy and stability of the Crank-Nicolson method.

By means of appropriate orthogonal decomposition (POD), system dimen-
sionality is reduced, thereby enabling faster simulations without compromising
solution quality and reducing computational load. Often found in real-world
applications, Dirichlet and Neumann boundary conditions are addressed by
this method. Along with more general numerical testing, benchmark prob-
lems including the Allen-Cahn equation and more challenging real-world sce-
narios highlight the accuracy, stability, and efficiency of the proposed ap-
proach. Comparisons with traditional fixed-time scaling techniques expose
significant computing time savings, especially in areas where the solution de-
velops rapidly. The results confirm that an efficient and scalable framework
for solving large-scale nonlinear interaction-diffusion problems with boundary
conditions is provided by the adaptive hybrid Crank-Nicolson finite element
approach with suitable orthogonal decomposition.

2020 Mathematics Subject Classification. 35K57, 65M60, 65M15, 65M12.

Key words and phrases. Adaptive time-stepping, Crank-Nicolson method, Finite element
method, Proper orthogonal decomposition, Reaction-diffusion equations, Dirichlet boundary con-
ditions, Neumann boundary conditions.

Submitted Feb. 26, 2025.



NERMEEN SHEHAB, M. EL-SHEHAWEY, A. M. A. EL-SAYED , N. SWEILAM EJMAA-2025/13(2)

1. INTRODUCTION

Nonlinear reaction-diffusion equations play a fundamental role in modeling var-
ious phenomena in fields such as biology, chemistry, and physics. These equations
describe the evolution of chemical concentrations, biological species, and temper-
ature fields, governed by diffusion processes combined with reactive source terms.
The computational complexity of solving such equations arises due to the nonlin-
earity of the reaction terms and the presence of multi-scale phenomena, which often
lead to stiff systems that require high-resolution spatial and temporal discretiza-
tions [1]. Efficient numerical methods are essential for solving these problems,
particularly when applied to large-scale simulations in real-world scenarios like tu-
mor growth modeling [2], cardiac electrophysiology [3], and phase transitions in
material science [4].

The Crank-Nicolson method is widely used for solving parabolic partial differen-
tial equations (PDEs), including reaction-diffusion systems. It offers second-order
accuracy in both space and time and is unconditionally stable for linear problems
[5]. However, for nonlinear equations, applying Crank-Nicolson directly can lead to
computational inefficiencies due to the need for solving nonlinear systems at each
time step. To address these challenges, a mixed finite element method (FEM) can
be employed, which separates higher-order equations into systems of lower-order
equations that are easier to handle numerically [12]. Additionally, the use of two-
grid approaches, where nonlinear problems are solved on a coarse grid and refined
on a finer grid, further improves computational efficiency [7].

One major drawback of traditional Crank-Nicolson schemes is their reliance on
a fixed time step, which can lead to inefficiencies in regions where the solution
changes slowly and inaccuracies in regions where rapid changes occur. An adaptive
time-stepping strategy can overcome this limitation by dynamically adjusting the
time step based on error estimates at each step [8]. Such a strategy ensures that
the time step is reduced when the solution exhibits fast dynamics and increased
when the solution evolves slowly, thus improving both the accuracy and efficiency
of the method.

The incorporation of Proper Orthogonal Decomposition (POD) as a dimension
reduction technique provides another avenue for improving computational efficiency.
POD extracts the most significant modes of the system, enabling the construction of
a reduced-order model (ROM) that captures the dominant dynamics of the solution
while discarding unnecessary details [9]. This is especially beneficial for large-
scale simulations where the full system involves millions of degrees of freedom.
POD-based methods have demonstrated significant computational savings without
sacrificing accuracy in various applications, including fluid dynamics and structural
mechanics [10, 11].

In the context of reaction-diffusion equations, previous research has explored
various approaches to improve efficiency. For instance, Franca and Frey introduced
stabilized finite element methods for the incompressible Navier-Stokes equations,
providing a foundation for FEM-based stabilization techniques [12]. Codina later
extended this work to pressure stabilization and finite element approximation of
incompressible flows, which is relevant for handling nonlinear reaction-diffusion
systems involving fluid interactions [13]. Recent developments, such as those by
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Hachem et al., have applied stabilized FEM to optimize fluid flows in complex ge-
ometries, demonstrating the versatility of these methods in real-world applications
[14].

The use of mixed finite element methods in combination with adaptive time-
stepping has also been explored. For instance, Liu et al. developed a two-grid
Crank-Nicolson mixed finite element method for solving nonlinear fourth-order
reaction-diffusion equations with temporal fractional derivatives [15]. This ap-
proach introduces the idea of dimension reduction through POD to mitigate com-
putational costs, achieving unconditional stability and improved time accuracy.
Their work highlights the benefits of adaptive schemes when dealing with complex
reaction-diffusion systems involving fractional derivatives [16]. This paper builds on
such research by integrating adaptive time-stepping with POD in a Crank-Nicolson
framework for nonlinear systems.

Handling boundary conditions is another critical aspect of solving reaction-
diffusion problems accurately. Real-world applications often involve Dirichlet bound-
ary conditions, where the solution is fixed at the boundaries, and Neumann bound-
ary conditions, where the derivative of the solution is prescribed at the boundaries
[17]. These conditions are crucial for maintaining the physical fidelity of the model
and ensuring that the solution respects natural constraints imposed by the sys-
tem. Recent works have successfully incorporated such boundary conditions into
finite element models of reaction-diffusion systems, but few have addressed their
integration within an adaptive time-stepping framework [18].

This paper presents a novel approach that combines adaptive time-stepping
Crank-Nicolson mixed FEM with POD to efficiently solve nonlinear reaction-diffusion
equations with Dirichlet and Neumann boundary conditions. The proposed method
dynamically adjusts the time step based on local error estimates, leading to im-
proved accuracy and efficiency. Additionally, the POD-based dimension reduction
significantly reduces the computational cost while maintaining the solution’s accu-
racy. Numerical experiments demonstrate the robustness of the method in solving
benchmark problems such as the Allen-Cahn equation [19], as well as more com-
plex real-world applications such as phase separation in binary alloys [20] and tumor
growth simulations [2].

2. MATHEMATICAL FORMULATION

A well-defined mathematical formulation is essential for accurately modeling
reaction-diffusion equations, which describe the interplay between diffusion and
nonlinear reaction mechanisms. These equations require appropriate initial and
boundary conditions, along with a stable and accurate numerical discretization
method to handle their inherent nonlinearity and multi-scale dynamics.

2.1. Nonlinear Reaction-Diffusion Equation. The general form of a nonlinear
reaction-diffusion equation is given by [21]:

w =aVu(z,t) + f(v(z,t), for ze€Qt>0. (1)

where:

e v(xz,t) represents the unknown scalar field (e.g., concentration, tempera-
ture, or biological population density).
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e « is the diffusion coefficient, which could be constant or spatially varying
depending on the physical model.

e V2v is the Laplacian operator representing the diffusion term.

e f(v(z,t)) is a nonlinear reaction term, which models the local growth or de-
cay depending on the specific application (e.g., in the Allen-Cahn equation,
f(v) = v(1 — v?) models bistable dynamics [11]).

e () denotes the spatial domain in which the equation is solved.

This type of equation arises in various real-world applications, such as phase
separation, population dynamics, and chemical reactions [2, 3].

2.2. Initial and Boundary Conditions. To uniquely determine the solution of
the reaction-diffusion equation, appropriate initial and boundary conditions must
be specified.

Initial Condition The initial state of the system is provided by:

v(z,0) =vo(z), for ze€ . (2)

where vg(z) is the given initial distribution of v in the domain. For example, in
phase transition problems, this could represent the initial distribution of two phases

(4].
Dirichlet Boundary Condition: Dirichlet boundary conditions specify the
value of the solution on the boundary 0€2:

v(z,t) = g(x,t), for x€dN,t>0, (3)

where g(x,t) is a known function that enforces a fixed state at the boundary [5].
Neumann Boundary Condition: Neumann boundary conditions specify the
derivative (flux) of the solution normal to the boundary:
Ov(z,t
% = h(z,t), for x€dN,t>0, (4)
n

where 0% represents the derivative in the direction normal to the boundary and

h(x,t) is a prescribed flux [12, 7].

3. NUMERICAL TECHNIQUE

This section details the numerical approach adopted for solving the nonlinear
reaction-diffusion equation using a combination of adaptive time-stepping Crank-
Nicolson mixed FEM, POD for dimension reduction, and a two-grid strategy to
improve efficiency. We also incorporate boundary conditions critical for practical
applications. Each component of the method is discussed comprehensively.

3.1. FEM Formulation. Finite Element Method (FEM) is employed to discretize
the spatial domain 2 by dividing it into finite elements, each characterized by basis
functions that approximate the solution. The weak formulation of the nonlinear
reaction-diffusion equation is obtained by multiplying both sides by a test function
w and integrating over :

ov

—wd) = a/ Vv - VwdQ + / f()wds. (5)
Q Bt Q Q
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Using the Galerkin approach, we approximate v(z,t) as a linear combination of
basis functions:

oo, t) & Y065 (@) ©)

where Y;(t) are the time-dependent coefficients, and ¢;(z) are the finite element
shape functions.

Substituting this approximation into the weak form and selecting test functions
from the same basis leads to the discretized system:

av
Mo+ AV = F, (7)

where:
e M is the mass matrix with entries M;; = [, ¢i¢;dQ.
o A is the stiffness matrix with entries A;; = fﬂ aVa; - Vo,dS.
e F is the nonlinear reaction term vector with entries £} = jﬂ f(0)¢:dQ.
e V is the vector of unknown coefficients Vj(t).

3.2. Crank-Nicolson Time Discretization. The Crank-Nicolson scheme is used
for time integration, a second-order implicit method that ensures stability and
accuracy [8]. The semi-discrete system (4) is discretized in time as:

Vn+1 _ Vn
At
where V™ and V1! are the solution vectors at time steps n and n + 1, respec-
tively.
This results in a nonlinear algebraic system at each time step, which can be
handled efficiently using a two-grid approach [9].

£ GAV V) = SRV + F(VY), (8)

3.3. Two-Grid Mixed Finite Element Method. To reduce computational cost,
a two-grid approach is adopted. Instead of solving the full nonlinear system on a
fine grid, which is computationally expensive, the method first solves the problem
on a coarse grid and then uses this solution as an initial guess for a fine-grid solve
[10, 11]. This strategy significantly accelerates computations while maintaining
solution accuracy. The procedure is as follows:

3.3.1. Coarse Grid Solution. Discretization on the Coarse Grid
e Define a coarse grid Qg with mesh size H (where H > h, the fine grid mesh
size).
e The FEM approximation on this grid reduces the degrees of freedom, sim-
plifying the problem.
e The nonlinear system is solved iteratively using Newton’s method or a
fixed-point approach:

Vn+1 - Vi n n 1 n n
HTfH +An(VET + V) = E(FH(VH+1) + Fu(Vi)). (9)

where the subscript H denotes quantities associated with the coarse grid.
Nonlinear Solve on the Coarse Grid
The nonlinear system is solved iteratively using:

Ju(VE)SVir = —Ru(VH), (10)

My
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where Jy (V5) is the Jacobian matrix, Ry (V}) is the residual, and VAT = VE 4
6V updates the solution iteratively. Once the coarse solution Vi is obtained, it is
interpolated onto the fine grid.

Interpolation to Fine Grid

The coarse grid solution is used as an initial guess for the fine grid problem:

VY = I} Va, (11)
where [ 1}9 is the interpolation operator mapping coarse grid values to the fine grid.

3.3.2. Fine Grid Correction. Linearized System on the Fine Grid

Using the interpolated coarse solution as an initial guess, a linearized system is
solved on the fine grid:
Vn+1 _yn
S AV = B, (12)
where V}; is the coarse grid solution used as a predictor.

Correction Step

The fine grid correction involves solving:

Tn(V2)Vi, = —Ru (V). (13)

My,

The solution is updated as:
Vit =V + 6V (14)
Final Fine Grid Solution
The solution on the fine grid is refined using Newton’s method if necessary:

Vit = Vit (Vi T R (V). (15)

The two-grid method significantly reduces the cost of nonlinear solves, as the
expensive full nonlinear iteration is performed only on the coarse grid. The fine
grid solve is linearized around the coarse solution, reducing the number of iterations
required. This approach ensures fast convergence while maintaining high accuracy,
making it suitable for large-scale reaction-diffusion problems [12].

3.4. Proper Orthogonal Decomposition (POD) for Dimension Reduction.
To further enhance efficiency, POD is used to construct a reduced-order model
(ROM). The POD method is a model order reduction technique that approximates
the high-dimensional solution space using a reduced number of dominant modes
[15]. The POD basis functions are obtained from the snapshots of the solution
at different time steps and spatial locations using Singular Value Decomposition
(SVD):

V=UswT, (16)
where U contains the orthonormal basis functions, ¥ represents singular values,

and W holds the temporal coefficients. Restoring only the leading r modes, a
reduced-order approximation is obtained:

where r < N, drastically reducing computational complexity while preserving
accuracy. The number of modes r is typically much smaller than the number of
degrees of freedom in the full FEM solution [17].
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3.5. Adaptive Time-Stepping Strategy. Finally, to optimize the computational
effort, an adaptive time-stepping scheme is implemented. The adaptive time-
stepping mechanism dynamically adjusts At based on local error estimates. The
error estimate is calculated by comparing the solutions at consecutive time steps
[18]. At each step, the local truncation error is estimated as:

|‘/’n+1 _ Vn|
n= . 1
™ At (18)
The new time step is then computed as:

1

€ 2
Bt = a0, (£ (19)

Tn

where € is the user-defined tolerance. If the error is too high, At is reduced; if it is
too low, At is increased, optimizing computational efficiency. This adaptive time-
stepping ensures that the solution remains accurate while minimizing the number
of time steps required, especially in regions where the solution changes rapidly.

3.6. Boundary Condition Handling in FEM. Both Dirichlet and Neumann
boundary conditions are incorporated into the finite element framework. Dirichlet
conditions are imposed by modifying the global matrix system. The corresponding
rows in the system matrix are replaced by identity rows, ensuring the boundary
values are strictly enforced.

Neumann conditions naturally appear in the weak form as boundary integrals:

/F hwdl, (20)

which are added to the right-hand side vector, incorporating the prescribed flux at
the boundary.

4. RESULTS AND DISCUSSION

In this section, we present the results of numerical experiments conducted to
validate the proposed adaptive time-stepping Crank-Nicolson mixed FEM with
POD. The performance of the method is evaluated based on its accuracy, computa-
tional efficiency, and ability to handle Dirichlet and Neumann boundary conditions.
We consider several benchmark problems and real-world applications, including
reaction-diffusion equations, phase separation, and biological growth models. The
results are compared to both fixed time-stepping approaches and existing numerical
methods in the literature to highlight the advantages of the proposed method.

4.1. Benchmark Problem: Allen-Cahn Equation. The first numerical test is
based on the Allen-Cahn equation, a widely used model for phase separation in
binary alloys. The equation is given by:
ov(z,t)
ot
where v(z,t) represents the order parameter, and « is the diffusion coefficient.
This problem serves as an excellent test case due to the presence of sharp interfaces
(transition zones) that require accurate time and spatial discretization [1].
Problem Setup:
Domain: Q = [0,1]? (2D square domain).

aV2u(z,t) +v(z, t)(1 —v(z, t)?), (21)
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Initial Condition: v(x,0) = sin(7z) sin(7y).

Boundary Conditions: Homogencous Neumann boundary conditions are ap-
plied on all sides of the domain (i.e., zero flux across boundaries).

Parameters: Diffusion coefficient «« = 1, final time T = 1.

1.0

0.8

0.6

0.4

0.2

0.0

FicUure 1. Contour plot for the solution of Allen-Cahn equation
using the proposed CNM-FEM with POD.

Results:

(1)

Accuracy: The proposed method successfully captures the evolution of the
phase boundary, accurately resolving the sharp transitions between the two
phases. The adaptive time-stepping strategy enables efficient time integra-
tion by using smaller time steps during the early stages when the solution
exhibits rapid changes, and larger time steps when the solution approaches
equilibrium. A comparison of the numerical results with a reference solu-
tion obtained using a fine time step demonstrates that the error remains
within the specified tolerance.

Adaptive Time-Stepping: The adaptive time-stepping mechanism sig-
nificantly reduces the number of time steps compared to a fixed time-
stepping approach. For instance, the fixed time-stepping method required
1000 time steps, while the adaptive method required only 250 time steps to
achieve comparable accuracy. This leads to a 4-fold reduction in computa-
tional time, highlighting the efficiency of the adaptive strategy [2].
Computational Efficiency: The incorporation of POD further acceler-
ates the computation. By retaining only the first 10 POD modes, we reduce
the number of degrees of freedom by 90%, resulting in a reduction in the
computational cost while maintaining high accuracy. The computational
time for the reduced-order model is approximately 30% of the full-order
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model, without noticeable loss in accuracy [3]. See Figure 1 for a contour
plot of the solution using the proposed method.

4.2. Error Analysis. The numerical error is evaluated using the Ly-norm of the
difference between the numerical solution and the reference solution, see Figure 2
for error distribution. Table 1 shows the error and the number of time steps for
different tolerance values e.

' ' b 5 RLON3
0.24
0.21
0.18
0.15
0.12
0.09
0.06
0.03
0.2 04 06 0.8 Lo a0
X

F1GURE 2. Error Distribution for Allen-Cahn Equation solution
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The results clearly show that the adaptive method achieves high accuracy with
fewer time steps compared to the fixed step method, providing significant compu-
tational savings.

TABLE 1. Error and Computational Time Comparison Between
Adaptive and Fixed Time-Stepping Methods

€ Lo-error | Time Steps | Computational Time (s)
1x10°3 2.5 x 1073 250 45.3
1x10°* 5.6 x 107% 500 85.7
Fixed At=1x1073 | 2.1 x 10~* 1000 175.8

4.3. Test Case: Tumor Growth Model. In this test case, we apply the proposed
method to a simplified tumor growth model that combines reaction and diffusion
processes. The governing equation is given by:

ov(x,t)

ot
where v(z,t) represents the concentration of tumor cells, « is the diffusion co-
efficient and f(v) models the proliferation of cells. Tumor growth models often

= aV2u(z,t) + f(v(z,t)), (22)
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involve spatially and temporally varying dynamics, making them ideal candidates
for adaptive time-stepping approaches [3].
Problem Setup:

e Domain: 2 = [0,1]? (2D domain).
e Initial Condition: A Gaussian distribution representing the initial tumor
concentration,

v(z,0) = exp(—=50((x — 0.5)% + (y — 0.5)?)). (23)

e Boundary Conditions: Dirichlet boundary conditions are imposed on
the boundary 052, with v(z,t) = 0 (fixed tumor concentration) on the
boundary.

Results:

(1) Handling Dirichlet Boundary Conditions: The proposed method ac-
curately enforces the Dirichlet boundary condition, ensuring that the tu-
mor concentration remains zero at the boundary. This is critical in biolog-
ical applications where boundary conditions represent physical constraints,
such as nutrient supply or cell interaction at the boundaries.

Adaptive Time-Stepping Performance: The adaptive time-stepping
scheme proves highly efficient. Early in the simulation, where the tumor
grows rapidly, smaller time steps are used to accurately capture the dynam-
ics. As the tumor reaches a steady state, larger time steps are employed.
This adaptivity results in a 60% reduction in the number of time steps,
leading to faster simulations compared to a fixed time-step approach.
Impact of POD on Computational Efficiency: Using POD, we retain
the dominant modes of the solution and reduce the dimension of the system
by 85%. This enables faster computations while maintaining biological ac-
curacy. The reduced-order model captures the essential dynamics of tumor
growth, as demonstrated by the close match between the full-order and
reduced-order solutions. See Figure 7?7 for a contour plot of the solution.

(2)

3)

4.4. Error Analysis. The relative error in the solution is measured at different
points in the domain. The maximum error across all time steps is shown in Table
2.

TABLE 2. Impact of POD on Error and Computational Time

Number of POD | Maximum Rela- | Time Steps | Computational
Modes tive Error Time (s)

5 0.0012 400 32.1

10 0.0008 400 45.8

Full Model - 400 132.5

The results demonstrate that using just 10 POD modes achieves a very small
error, significantly reducing computational time. Figure 2 shows the error distri-
bution.
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Ficure 3. Contour plot for the solution of Tumor Growth Model
using the proposed CNM-FEM with POD.

4.5. Phase Separation in Binary Alloys. The third test case involves phase
separation in binary alloys, modeled by a higher-order reaction-diffusion equation.
This problem is challenging due to the presence of sharp interfaces and the need
for accurate time integration [12].

Problem Setup:

e Domain: Q = [0,1]%

e Initial Condition: Random perturbations around a constant value.

e Boundary Conditions: Neumann boundary conditions are applied, with
zero flux across all boundaries.

Results:

(1) Sharp Interface Resolution: The proposed method effectively captures
the evolution of sharp interfaces during phase separation. The adaptive
time-stepping strategy is crucial for resolving the rapid changes at the in-
terfaces, where fixed time-stepping methods tend to struggle.

(2) Neumann Boundary Conditions: The Neumann boundary conditions
are accurately enforced, ensuring that no material fluxes out of the domain.
This is particularly important in physical applications where mass conser-
vation must be strictly enforced [7]. Figure 5 shows the contour plot of the
solution using the proposed method.

Error Analysis

We evaluate the accuracy by comparing the evolution of the interface over time
between the adaptive method and a reference solution. The interface error is shown
in Table 3.
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FIGURE 4. Error Distribution for Tumor Growth Model
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FiGurE 5. Contour Plot of Phase Separation in Binary Alloys
using the proposed CNM-FEM with POD.

The adaptive method provides comparable interface accuracy with half the num-
ber of time steps, demonstrating the efficiency and accuracy of the proposed method.

4.6. Comparison with Existing Methods. Finally, we compare the perfor-
mance of the proposed method with other existing numerical approaches for solving
reaction-diffusion equations:
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TABLE 3. Accuracy Comparison Between Adaptive and Fixed
Time-Stepping Approaches

Atadaptive Interface Error | Time Steps | Computational
Time (s)
Adaptive (POD) 0.0031 300 50.2
Fixed At =1 x 10~* 0.0029 600 120.7

10 i . | x 107-6

1.44
0.8

1.20
0.6 0.96

>

0.72
0.4

0.48
0.2

0.24
g 0.2 04 06 08 1o 0

X

FIGURE 6. Error Distribution for Phase Separation in Binary Alloys.

(1)

®3)

Reduced-Order FEM with POD (Li et al., 2024) [16]: The Proposed
Adaptive CNM-FEM with POD outperforms Li et al. (2024) in terms of
accuracy (by an order of magnitude) and computational efficiency (by re-
ducing CPU time by ~30%). This confirms that integrating adaptive time-
stepping with POD provides significant advantages for solving nonlinear
reaction-diffusion equations.

Standard Crank-Nicolson Method: Compared to the standard Crank-
Nicolson method with fixed time-stepping, the proposed method reduces
the number of time steps by up to 70% in the cases tested, without sacri-
ficing accuracy [22].

Explicit Methods: Explicit methods, while simple to implement, require
extremely small time steps for stability in stiff problems, making them
impractical for large-scale simulations. In contrast, the proposed implicit
method with adaptive time-stepping is both stable and efficient, especially
for stiff systems [23].

5. CONCLUSION

In this paper, we presented an efficient and robust method for solving nonlin-
ear reaction-diffusion equations by combining the adaptive time-stepping Crank-
Nicolson mixed FEM with POD for dimension reduction. The proposed method
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TABLE 4. Performance Comparison of Adaptive CNM-FEM
Against Standard Numerical Methods

Method L2-Norm Accuracy (Error) | CPU Time (s)

Proposed Adaptive 3.5x10°6 3.68206 s
CNM-FEM with POD

Reduced-Order FEM 4.8 x 107° 5.13624 s
with POD (Li et al.,
2024) [16]

Standard Crank-Nicolson 7.2x 1075 8.33456 s
Method (Logg, 2012) [22]
Explicit Methods (Ascher 1.2x 1073 14.6701 s
et al.,

Constantinescu & Sandu,
2007) [23, 24]

1997;

offers significant advantages in terms of accuracy, computational efficiency, and
the ability to handle complex boundary conditions. Below, we summarize the key
findings and contributions of the research:

(0

(2)

®3)

(4)

Adaptive Time-Stepping: The adaptive time-stepping strategy dynam-
ically adjusts the time step based on local error estimates, significantly re-
ducing the number of time steps compared to traditional fixed time-stepping
methods. This adaptivity allows the method to efficiently resolve regions
with rapid changes in the solution while using larger time steps in areas
where the solution evolves more slowly. In benchmark problems such as
the Allen-Cahn equation, this approach achieved a reduction in computa-
tional time by up to 70% without sacrificing accuracy.

Two-Grid Approach: The two-grid method effectively reduces compu-
tational complexity by solving the nonlinear system on a coarse grid and
refining the solution on a finer grid. This approach ensures that the com-
putational burden of solving the full nonlinear system is minimized, while
maintaining accuracy in capturing fine details of the solution. The two-
grid strategy proved especially useful in large-scale simulations such as the
tumor growth model, reducing overall computational cost.

Proper Orthogonal Decomposition (POD): POD was employed to
significantly reduce the dimensionality of the system, leading to faster
computations without compromising the solution accuracy. By retaining
only the dominant POD modes, the computational cost was reduced by
up to 85%, making the method highly scalable for large-scale simulations.
The POD-based reduced-order model performed well across all test cases,
demonstrating its effectiveness in accelerating computations.

Handling of Boundary Conditions: The method seamlessly incorpo-
rated both Dirichlet and Neumann boundary conditions into the finite
element framework. In particular, the Dirichlet conditions were applied
directly to the boundary nodes, while the Neumann conditions were nat-
urally included in the weak form through boundary integrals. These capa-
bilities were validated through numerical experiments, demonstrating the
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(1]

2

(3]
(4]

(5]
(6]

(7

8

[

(10]

(1]
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method’s versatility in handling real-world boundary conditions, such as
those encountered in heat conduction and biological growth models.

(5) Accuracy and Efficiency: Numerical experiments on benchmark prob-
lems, including the Allen-Cahn equation, tumor growth models, and phase
separation in binary alloys, confirmed that the proposed method provides
highly accurate solutions with substantial reductions in computational cost.
The method’s ability to adaptively adjust the time step, coupled with POD-
based dimensionality reduction, resulted in a significant improvement in
both accuracy and computational efficiency over traditional methods.

(6) Comparison with Existing Methods: Compared to traditional Crank-
Nicolson methods with fixed time-stepping, as well as explicit methods that
suffer from stringent stability constraints, the proposed method demon-
strated superior stability and efficiency, particularly in stiff systems. The re-
sults showed that the adaptive time-stepping Crank-Nicolson method with
POD not only reduces computational time but also achieves the desired
accuracy with fewer time steps.
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