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ON FIXED CIRCLES IN C∗-ALGEBRA VALUED S-METRIC

SPACES AND APPLICATION TO EXPONENTIAL LINEAR

UNIT FUNCTION

N. DEĞIRMEN, N. TAŞ

Abstract. In this article, we introduce the concept of a fixed circle in a

C∗-algebra valued S-metric space and explore some interesting existence and
uniqueness theorems for self-mappings that have fixed circles in various di-

rections. With a geometric viewpoint, we delve into the properties of these

self-mappings and provide a deeper understanding of their mathematical foun-
dations and applications. Additionally, we present several illustrative examples

to verify the accuracy of our findings and to concretely demonstrate the ap-

plicability of the concept. These examples serve to validate the theoretical
results related to fixed circles and their extendability. We also investigate the

interplay between the algebraic structure of the C∗-algebra and the geometric

properties of the fixed circles, highlighting how these interactions contribute to
the richness of the theory. Finally, we apply the obtained fixed-circle results to

activation functions used in neural networks, providing a meaningful example
of how these mathematical structures can be utilized in practice. In doing

so, we offer a broader perspective on the potential applications and practical

implications of these theoretical insights, particularly in fields such as machine
learning and nonlinear analysis, where the understanding of such mappings

can lead to advancements in both theory and application.

1. Introduction and preliminaries

The Banach contraction principle [4] has studied by many mathematicians in a
long period of time not only in many branches of mathematics but also in mathe-
matical physics and engineering sciences with wide range of applications to many
exciting problems in various directions. It is a power tool used for the existence
and uniqueness of solutions of many nonlinear problems appearing in engineering
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sciences and physics. In this regard, two main purposes of researchers are to gen-
eralize the Banach contraction principle in many ways and to obtain new results in
different metric spaces (for example, [11] and the references therein).

Sedghi et al. [30] have presented the concept of an S-metric space as a generalized
form of metric spaces and stated some fixed-point results in S-metric spaces that
are corresponding in S-metric spaces of the Banach contraction principle valid for
metric spaces.

In 2014, Ma et al. [17] have introduced the notion of C∗-algebra valued metric
space and furnished some types of celebrated Banach’s fixed-point theorem for self-
mappings satisfying the expansive or contractive conditions on such spaces. So far,
there have been many great attempts by mathematicians to extend and generalize
C∗-algebra valued metric spaces [14, 12, 31, 1, 2, 19, 22, 34, 3]. Kalaivani and
Kalpana [14] introduced the concept of a C∗-algebra valued S-metric space as a
new addition to the existing literature and studied fixed-point problem on such
spaces. Other works are noted in [12, 31, 16].

The fixed-circle problem in metric spaces initiated by Özgür and Taş [25] has
been developed very fast in recent times due to their use in different fields of math-
ematical sciences such as neural networks. Some articles have appeared for the
improvement and generalization of contractive conditions with various aspects in
both metric spaces and S-metric spaces. Main articles on fixed circles of self-
mappings on S-metric spaces are [26], [23] and [9] in which authors have obtained
some noteworthy fixed-circle results using different techniques with some exam-
ples to substantiate the importance and effectiveness of their findings. For further
studies, we recommend [32, 20, 27, 33].

In [10], we have created an introduction and standard reference for specialized
articles in the future works by giving geometric properties of fixed circles of a self-
mapping and obtaining some solutions to fixed-circle problem in the setting of an
C∗-algebra valued metric space.

In the present study, we consider the fixed-circle problem on C∗-algebra valued S-
metric spaces and examine its solutions for self-mappings on such spaces using some
auxiliary functions and defining some contractive conditions. Also, we construct
some nontrivial illustrative examples to support our assumptions and to prove the
usability of our findings and application to neural networks. The theory of C∗-
algebra is a popular topic in operator theory and functional analysis, so the results
of this article gain importance in new exciting applications to theoretical physics
and noncommutative geometry.

Now, we introduce a basic review of C∗-algebras and C∗-algebra valued metric
spaces.

We begin with the definition of a C∗-algebra and some related results used in
this discussion.

Definition 1.1. [21] A mapping x → x∗ of a complex algebra A into A is called
an involution on A if the following properties hold for all x, y ∈ A and λ ∈ C :

(i) (x∗)
∗
= x,

(ii) (xy)
∗
= y∗x∗,

(iii) (λx+ y)
∗
= λx∗ + y∗.

A complex Banach algebra A with an involution such that for every x in A

∥x∗x∥ = ∥x∥2
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is called a C∗-algebra.

In the continuation of the article, A will denote a unital C∗-algebra with a unit
I.

We note that ∥x∗∥ = ∥x∥ for all x ∈ A and if x ∈ A is invertible, then x∗ is

invertible and (x∗)
−1

=
(
x−1

)∗
.

The spectrum of x in A is defined by σ (x) = {λ ∈ R : x− λI is non-invertible} .
Let Ah = {x ∈ A : x = x∗} . An element x ∈ A is said to be positive if x ∈ Ah

and σ (x) ⊂ R+. If x ∈ A is positive, we write it as θ ⪯ x, where θ is the zero
element in A. We denote the set of all positive elements of A by A+. Besides, ⪯
becomes a partial ordering on the set by defining x ⪯ y to mean y − x ∈ A+.

Regarding these, we also have the following properties that we will use in the
next sections:

(i) If x, y, z ∈ Ah, then x ⪯ y implies x+ z ⪯ y + z.
(ii) If x, y ∈ Ah and z ∈ A, then x ⪯ y implies z∗xz ⪯ z∗yz.
(iii) If θ ⪯ x ⪯ y, then ∥x∥ ≤ ∥y∥
(vi) If x, y ∈ A+ and α, β ∈ R+ ∪ {0} , then αx+ βy ∈ A+.
(v) A+ = {x∗x : x ∈ A} [21].
We denote the set {a ∈ A : ab = ba for all b ∈ A} by A′.
Now, let us remember the definitions of a notion of a C∗−algebra valued metric

space and a notion of a C∗-algebra valued b-metric space.

Definition 1.2. [17] Let X be a nonempty set. Suppose the mapping d : X×X → A
satisfies:

(i) θ ⪯ d (x, y) for all x, y ∈ X and d (x, y) = θ ⇔ x = y;
(ii) d (x, y) = d (y, x) for all x, y ∈ X;
(iii) d (x, y) ⪯ d (x, z) + d (z, y) for all x, y, z ∈ X.

Then, d is called a C∗-algebra valued metric on X and (X,A, d) is called a C∗-
algebra valued metric space.

Definition 1.3. [18] Let X be a nonempty set, and A ∈ A′ such that A ⪰ I.
Suppose the mapping d : X ×X → A satisfies:

(i) θ ⪯ d (x, y) for all x, y ∈ X and d (x, y) = θ ⇔ x = y;
(ii) d (x, y) = d (y, x) for all x, y ∈ X;
(iii) d (x, y) ⪯ A [d (x, z) + d (z, y)] for all x, y, z ∈ X.

Then, d is called a C∗-algebra valued b-metric on X and (X,A, d) is called a C∗-
algebra valued b-metric space.

Using the concept of a positive element in a C∗-algebra, Kalaivani and Kalpana
[14], Ege and Alaca [12] and Shatarah and Özer [31] presented the notion of a
C∗-algebra valued S-metric space in different articles in the following way:

Definition 1.4. [14, 12, 31] Let X be a nonempty set. Suppose the mapping S :
X ×X ×X → A satisfies:

(i) θ ⪯ S (x, y, z) for all x, y, z ∈ X;
(ii) S (x, y, z) = θ if and only if x = y = z;
(iii) S (x, y, z) ⪯ S (x, x, a) + S (y, y, a) + S (z, z, a) for all x, y, z, a ∈ X.

Then, S is called a C∗-algebra valued S-metric on X and (X,A,S) is called a
C∗-algebra valued S-metric space.

Lemma 1.1. [14, 12, 31] Let (X,A,S) be a complete C∗-algebra valued S-metric
space. Then, S (x, x, y) = S (y, y, x) .
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Definition 1.5. [31] Let (X,A,S) be a C∗-algebra valued S-metric space, x ∈ X
and ρ > 0. Then, the open ball BSA (x, ρ) and the closed ball BSA [x, ρ] with center
x and radius ρ are defined as follows:

BSA (x, ρ) = {y ∈ X : ∥S (y, y, x)∥ < ρ}

and

BSA [x, ρ] = {y ∈ X : ∥S (y, y, x)∥ ≤ ρ} .

The topology induced by the C∗-algebra valued S-metric space is the topology
generated by the base of all open balls in X [31].

Kalaivani and Kalpana [14] established the following main theorems which im-
plies the existence and uniqueness of fixed point on complete C∗-algebra valued
S-metric spaces.

Theorem 1.1. [14] Let (X,A,S) be a complete C∗-algebra valued S-metric space.
Suppose that the mapping T : X → X satisfies

S (Tx, Tx, Ty) ⪯ a∗S (x, x, y) a,

where a ∈ A′
+ with ∥a∥ < 1 for all x, y ∈ X. Then, there exists a unique fixed point

in X.

Theorem 1.2. [14] Let (X,A,S) be a complete C∗-algebra valued S-metric space.
Suppose that the mapping T : X → X satisfies

S (Tx, Tx, Ty) ⪯ a (S (Tx, Tx, x) + S (Ty, Ty, y)) ,

where a ∈ A′
+ and ∥a∥ < 1

2 for all x, y ∈ X. Then, there exists a unique fixed point
in X.

Theorem 1.3. [14] Let (X,A,S) be a complete C∗-algebra valued S-metric space.
Suppose that the mapping T : X → X satisfies

S (Tx, Tx, Ty) ⪯ a (S (Tx, Tx, y) + S (Ty, Ty, x)) ,

where a ∈ A′
+ and ∥a∥ < 1

2 for all x, y ∈ X. Then, there exists a unique fixed point
in X.

Ege and Alaca [12] introduced the extension of Banach’s fixed-point theorem [4]
for self-mappings defined on C∗-algebra valued S-metric spaces, which guarantees
the existence and uniqueness of fixed point as follows:

Definition 1.6. [12] Let (X,A,S) be a complete C∗-algebra valued S-metric space.
A map T : X → X is said to be C∗-algebra valued contractive mapping on X, if
there exists A ∈ A with ∥A∥ < 1 such that

S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A

for all x, y ∈ X.

Theorem 1.4. [12] Let (X,A,S) be a complete C∗-algebra valued S-metric space
and T : X → X be a C∗-algebra valued contractive mapping. Then T has a unique
fixed point x0 ∈ X.
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2. Main results

Our purpose in this section is to define the notion of a fixed circle on a C∗-algebra
valued S-metric space and establish some fixed-circle theorems for self-mappings
on C∗-algebra valued S-metric spaces.

In the following proposition, we show that the relationship between a C∗-algebra
valued b-metric and a C∗-algebra valued S-metric.

Proposition 1. Let (X,A,S) be a C∗-algebra valued S-metric space and the map-
ping d : X ×X → A be defined as

dS (x, y) = S (x, x, y)

for all x, y ∈ X. Then, (X,A, dS) is a C∗-algebra valued b-metric space.

Proof. Using Definition 1.4 and Lemma 1.1, we can easily see that the conditions (i)
and (ii) in Definition 1.3 are satisfied. Now, using the condition (iii) of Definition
1.4 and Lemma 1.1, we get

dS (x, y) = S (x, x, y) ⪯ S (x, x, a) + S (x, x, a) + S (y, y, a)

= 2S (x, x, a) + S (y, y, a)

= 2dS (x, a) + dS (y, a) (1)

and

dS (x, y) = S (x, x, y) = S (y, y, x)

⪯ S (y, y, a) + S (y, y, a) + S (x, x, a)

= 2S (y, y, a) + S (x, x, a)

= 2dS (y, a) + dS (x, a) . (2)

From the inequalities (1) and (2), we obtain

2dS (x, y) ⪯ 3 [dS (x, a) + dS (a, y)]

and so

dS (x, y) ⪯ 3

2
[dS (x, a) + dS (a, y)] .

Consequently, dS is a C∗-algebra valued b-metric with A = 3
2 and (X,A, dS) is a

C∗-algebra valued b-metric space. □

In the subsequent proposition, we observe that the relationship between a C∗-
algebra valued metric and a C∗-algebra valued S-metric.

Proposition 2. Let (X,A, d) be a C∗-algebra valued metric space and the mapping
Sd : X ×X ×X → A be defined as

Sd (x, y, z) = d (x, z) + d (y, z)

for all x, y, z ∈ X. Then, (X,A,Sd) is a C∗-algebra valued S-metric space.

Proof. It can be easily proved that the conditions (i) and (ii) of Definition 1.4 are
satisfied. Now, we show that the condition (iii) is satisfied. Using the triangle
inequality and symmetry property of a C∗-algebra valued metric d, we get

Sd (x, y, z) = d (x, z) + d (y, z)

⪯ d (x, a) + d (a, z) + d (y, a) + d (a, z)

⪯ 2d (x, a) + 2d (y, a) + 2d (z, a)

= Sd (x, x, a) + Sd (y, y, a) + Sd (z, z, a) .
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Consequently, Sd is a C∗-algebra valued S-metric space. □

We call the mapping Sd as the C∗-algebra valued S-metric generated by C∗-
algebra valued metric d. But, there exists a C∗-algebra valued S-metric which is
not generated by d as mentioned in the following example.

Example 1. Let X = [0, 1] and A =M2 (R) with ∥A∥ = max {a1, a2, a3, a4} where
ai (i ∈ {1, 2, 3, 4}) are the entries of A. Then, (X,A,S) is a C∗-algebra valued
S-metric space, where

S (x, y, z) =

[
|x− z|+ |x+ z − 2y| 0

0 |x− z|+ |x+ z − 2y|

]
,

and partial ordering on A is given by[
a1 a2
a3 a4

]
⪰

[
b1 b2
b3 b4

]
⇔ ai ≥ bi for i ∈ {1, 2, 3, 4} .

But C∗-algebra valued S-metric S is not generated by a C∗-algebra valued metric
d, that is,

S ≠ Sd.

Conversely, we suppose that there is a C∗-algebra valued metric d such that

Sd (x, y, z) = d (x, z) + d (y, z)

for all x, y, z ∈ [0, 1] . Then, we get

Sd (x, x, z) = 2d (x, z) =

[
2 |x− z| 0

0 2 |x− z|

]
and so

d (x, z) =

[
|x− z| 0

0 |x− z|

]
for all x, y, z ∈ [0, 1] . Also, we similarly get d (y, z) =

[
|y − z| 0

0 |y − z|

]
for all

x, y, z ∈ [0, 1] . So, we write

Sd (x, y, z) =

[
|x− z|+ |y − z| 0

0 |x− z|+ |y − z|

]
= d (x, z) + d (y, z) ,

a contradiction. Hence, S ≠ Sd.

Remark 1. Since there is at least one C∗-algebra valued S-metric that cannot be
generated with any C∗-algebra valued metric and because of above relationships, it
is of great importance to study in C∗-algebra valued S-metric spaces.

Now, we define the concept of a circle on a C∗-algebra valued metric space with
some nontrivial examples.

Definition 2.7. Let (X,A,S) be a C∗-algebra valued S-metric space, x0 ∈ X and
r ∈ A+. Then, the circle with the centered x0 and the radius r is defined by

CC∗,S
x0,r = {x ∈ X : S (x, x, x0) = r} .
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Example 2. Let X = R, A = R2 and S (x, y, z) = (|x− z|+ |y − z| , 0) . Then,
(X,A,S) is a C∗-algebra valued S-metric space [12]. Choose the center x0 = − 1

2
and the radius r = (1, 0) . Then, we get

CC∗,S
− 1

2 ,(1,0)
=

{
x ∈ R : S

(
x, x,−1

2

)
= (1, 0)

}
=

{
x ∈ R :

(
2

∣∣∣∣x+
1

2

∣∣∣∣ , 0) = (1, 0)

}
= {−1, 0} .

Example 3. Let X = [0, 1] and A = M2 (R) with ∥A∥ = max {a1, a2, a3, a4} ,
where ai’s are the entries of A. Then, (X,A,S) is a C∗-algebra valued S-metric
space, where

S (x, y, z) =

[
|x− z|+ |y − z| 0

0 |x− z|+ |y − z|

]
,

and partial ordering on A is given by[
a1 a2
a3 a4

]
⪰

[
b1 b2
b3 b4

]
⇔ ai ≥ bi for i = 1, 2, 3, 4

[12]. Choose the center x0 = 1 and the radius r =

[
3
2 0
0 3

2

]
. Then, we obtain

CC∗,S
1,r =

{
x ∈ [0, 1] : S (x, x, 1) =

[
3
2 0
0 3

2

]}
=

{
x ∈ [0, 1] :

[
2 |x− 1| 0

0 2 |x− 1|

]
=

[
3
2 0
0 3

2

]}
=

{
x ∈ [0, 1] : |x− 1| = 3

4

}
=

{
1

4

}
.

Example 4. Let M2 (C) denote the set of bounded linear operators on a Hilbert
space C2. Define S : R× R× R → M2 (C) by

S (x, y, z) =

[
|x− z|+ |y − z| 0

0 k |x− z|+ |y − z|

]
,

where k > 0 is a constant. Then, (R,M2 (C) ,S) is a complete C∗-algebra valued

S-metric space [14]. Choose the center x0 = 0 and the radius r =

[
2 0
0 4

]
, we get

for k = 3

CC∗,S
0,r =

{
x ∈ R : S (x, x, 0) =

[
2 0
0 4

]}
=

{
x ∈ R :

[
2 |x| 0
0 4 |x|

]
=

[
2 0
0 4

]}
= {x ∈ R : |x| = 1} = {−1, 1} .

Example 5. Let E be a Lebesgue measurable set and L
(
L2 (E)

)
denote the set of

bounded linear operators on Hilbert space L2 (E) . Define S : L∞ (E) × L∞ (E) ×
L∞ (E) → L

(
L2 (E)

)
by

S (f, g, p) = π|f−p|+|g−p|,

for all f, g, p ∈ L∞ (E), where πh : L2 (E) → L2 (E) is the multiplication operator
defined by πh (ϕ) = h·ϕ for all ϕ ∈ L2 (E) . Then, S is a C∗-algebra valued S-metric
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and
(
L∞ (E) , L

(
L2 (E)

)
,S

)
is a complete C∗-algebra valued S-metric space [14].

Let E = [0, 1]. Choose the center x0 as the function f ∈ L∞ [0, 1] defined by

f : [0, 1] → R, f (x) = χ[ 12 ,1]
(x) =

{
1 , x ∈

[
1
2 , 1

]
0 , x /∈

[
1
2 , 1

] ,

the radius r as the multiplication operator πh ∈ L
(
L2 [0, 1]

)
and the function h ∈

L∞ [0, 1] be defined by

h : [0, 1] → R, h (x) =

{
1 , x ∈ (R\Q) ∩ [0, 1]
∞ , x ∈ Q ∩ [0, 1]

in Example 5 in [10]. Then, we get

CC∗,S
f,πh

= {g ∈ L∞ [0, 1] : S (g, g, f) = πh} =
{
g ∈ L∞ [0, 1] : 2π|g−f | = πh

}
=

{
g ∈ L∞ [0, 1] : π2|g−f | = πh

}
= {g ∈ L∞ [0, 1] : 2 |g − f | = h}

= {g ∈ L∞ [0, 1] : 2 |g (x)− f (x)| = h (x) for each x ∈ [0, 1]}

=

{
g ∈ L∞ [0, 1] : 2 |g (x)− 0| = 1 for each x ∈ (R\Q) ∩

[
0,

1

2

)}
∪
{
g ∈ L∞ [0, 1] : 2 |g (x)− 0| = ∞ for each x ∈ Q ∩

[
0,

1

2

)}
∪
{
g ∈ L∞ [0, 1] : 2 |g (x)− 1| = 1 for each x ∈ (R\Q) ∩

[
1

2
, 1

]}
∪
{
g ∈ L∞ [0, 1] : 2 |g (x)− 1| = ∞ for each x ∈ Q ∩

[
1

2
, 1

]}
=

{
g ∈ L∞ [0, 1] : g (x) = −1

2
or g (x) =

1

2
for each x ∈ (R\Q) ∩

[
0,

1

2

)}
∪
{
g ∈ L∞ [0, 1] : g (x) = −∞ or g (x) = ∞ for each x ∈ Q ∩

[
0,

1

2

)}
∪
{
g ∈ L∞ [0, 1] : g (x) =

1

2
or g (x) =

3

2
for each x ∈ (R\Q) ∩

[
1

2
, 1

]}
∪
{
g ∈ L∞ [0, 1] : g (x) = −∞ or g (x) = ∞ for each x ∈ Q ∩

[
1

2
, 1

]}
.

Now, we give a new concept as the foundation of this paper.

Definition 2.8. Let (X,A,S) be a C∗-algebra valued S-metric space, T : X → X
be a self-mapping and CC∗,S

x0,r be a circle on X. Then, the circle CC∗,S
x0,r is called as

the fixed circle of T , if Tx = x for all x ∈ CC∗,S
x0,r .

2.1. The existence of fixed circles. In this part, we explore the existence con-
ditions of fixed-circles for self-mappings defining some contractive conditions with
the help of some auxiliary functions in the context of C∗-algebra valued S-metric
spaces.

Theorem 2.5. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X. Define the mapping φ : X → A+ as

φ (x) = S (x, x, x0) , (3)
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for all x ∈ X. If T is a self-mapping defined on X satisfying the conditions

S (x, x, Tx) ⪯ φ (x) + φ (Tx)− 2r (4)

and

S (x, x, Tx) + S (Tx, Tx, x0) ⪯ r, (5)

for all x ∈ CC∗,S
x0,r , then the circle CC∗,S

x0,r is a fixed circle of T.

Proof. Let x be any point in the circle CC∗,S
x0,r . Then, using the (3), (4), (iii) given

in Definition 1.4, Lemma 1.1, (5) and the definition of the relation ⪯, we get

S (x, x, Tx) ⪯ φ (x) + φ (Tx)− 2r

= S (x, x, x0) + S (Tx, Tx, x0)− 2r

⪯ S (x, x, Tx) + S (x, x, Tx) + S (x0, x0, Tx) + S (Tx, Tx, x0)− 2r

= 2S (x, x, Tx) + 2S (Tx, Tx, x0)− 2r

⪯ 2r − 2r = θ

and so S (x, x, Tx) = θ which means that Tx = x. As a result, we obtain that
CC∗,S

x0,r is a fixed circle of T. □

Remark 2. 1. The inequality (4) means that Tx is not in the interior of the
circle CC∗,S

x0,r for each x ∈ CC∗,S
x0,r . In the same way, the inequality (5) says that

Tx is not in the exterior of the circle CC∗,S
x0,r for each x ∈ CC∗,S

x0,r . It follows that

T
(
CC∗,S

x0,r

)
⊂ CC∗,S

x0,r regarding the conditions (4) and (5).
2. Notice that Theorem 2.5 in C∗-algebra valued S-metric spaces is analogous to

Theorem 3.1 given in metric spaces in [26] and Theorem 2.5 generalizes Theorem
3.1.

3. By Proposition 1, the obtained result in Theorem 2.5 is also valid for C∗-
algebra valued b-metric dS generated by any C∗-algebra valued S-metric S.

Example 6. Consider the C∗-algebra valued S-metric space
(
R,R2,S

)
and the

circle CC∗,S
− 1

2 ,(1,0)
given in Example 2. Let us define the self-mapping T : R → R as

Tx =

{
x , x ∈ CC∗,S

− 1
2 ,(1,0)

5 , x /∈ CC∗,S
− 1

2 ,(1,0)

.

Then, by doing the necessary calculations one can see that T satisfies the conditions

(4) and (5). That is to say that the circle CC∗,S
− 1

2 ,(1,0)
is a fixed circle of T.

Theorem 2.6. Let (X,A,S) be a C∗-algebra valued S-metric space, the mapping
φ be as in (3) and CC∗,S

x0,r be any circle on X. If T is a self-mapping defined on X
providing the conditions

S (x, x, Tx) ⪯ φ (x) + φ (Tx)− 2r (6)

and

S (Tx, Tx, x0) ⪯ r (7)

for all x ∈ CC∗,S
x0,r , then the circle CC∗,S

x0,r is a fixed circle of T.
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Proof. Let x be any point in the circle CC∗,S
x0,r . If we use (3), (6), (7) and the

definition of the relation ⪯, then we get

S (x, x, Tx) ⪯ φ (x) + φ (Tx)− 2r

= S (x, x, x0) + S (Tx, Tx, x0)− 2r

⪯ 2r − 2r = θ

and so S (x, x, Tx) = θ which implies that Tx = x. Thus, we derive the desired
result. □

Remark 3. 1. The inequality (6) says that Tx is not in the interior of the circle
CC∗,S

x0,r for each x ∈ CC∗,S
x0,r . Similarly, the inequality (7) guarantees that Tx is not

in the exterior of the circle CC∗,S
x0,r for each x ∈ CC∗,S

x0,r . These two results show that

T
(
CC∗,S

x0,r

)
⊂ CC∗,S

x0,r under the conditions (6) and (7).
2. Note that Theorem 2.6 is a new version of Theorem 2.2 given in metric spaces

in [25].
3. Theorem 2.6 obtained in C∗-algebra valued S-metric spaces corresponds to

Theorem 3.11 given in S-metric spaces in [23].
4. Proposition 1 says that Theorem 2.6 is also provided for C∗-algebra valued

b-metric dS generated by any C∗-algebra valued S-metric S.

Example 7. Consider the C∗-algebra valued S-metric space ([0, 1] ,M2 (R) ,S) and
the circle CC∗,S

1,r given in Example 3. Let us define the self-mapping T : [0, 1] → [0, 1]
as

Tx =

{
x , x ∈ CC∗,S

1,r√
2
2 , x /∈ CC∗,S

1,r

.

It is apparent that T satisfies the conditions (6) and (7), and we derive that the

circle CC∗,S
1,r is a fixed circle of T applying Theorem 2.6 with mapping T.

Theorem 2.7. Let (X,A,S) be a C∗-algebra valued S-metric space, the mapping
φ be as in (3) and CC∗,S

x0,r be any circle on X. If T is a self-mapping defined on X
satisfying the conditions

S (x, x, Tx) ⪯ φ (x)− φ (Tx) (8)

and

S (Tx, Tx, x0) ⪰ r (9)

for all x ∈ CC∗,S
x0,r , then the circle CC∗,S

x0,r is a fixed circle of T.

Proof. Let x be arbitrary point in CC∗,S
x0,r . Then, using (3), (8), (9) and the definition

of the relation ⪯, we get

S (x, x, Tx) ⪯ φ (x)− φ (Tx)

= S (x, x, x0)− S (Tx, Tx, x0)

⪯ r − S (Tx, Tx, x0)

⪯ r − r = θ

and so S (x, x, Tx) = θ. Then, it should be Tx = x. Therefore, we deduce that
CC∗,S

x0,r is a fixed circle of T. □
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Remark 4. 1. The condition (8) shows that Tx is not in the exterior of the circle
CC∗,S

x0,r for each x ∈ CC∗,S
x0,r . In the same manner, the condition (9) means that Tx

is not in the interior of the circle CC∗,S
x0,r for each x ∈ CC∗,S

x0,r . Accordingly, these

results show that T
(
CC∗,S

x0,r

)
⊂ CC∗,S

x0,r due to the conditions (8) and (9).
2. Wee observe that Theorem 2.7 is a generalization of Theorem 2.1 given in

metric spaces in [25].
3. We become aware of the fact that Theorem 2.7 is a new version of Theorem

3.2 given in S-metric spaces in [23].
4. Theorem 2.7 is also true for C∗-algebra valued b-metric dS generated by any

C∗-algebra valued S-metric S from Proposition 1.

Example 8. Consider the C∗-algebra valued S-metric space
(
L∞ (E) , L

(
L2 (E)

)
,S

)
for E = [0, 1] and the circle CC∗,S

f,πh
given in Example 5, and also, the function

g0 ∈ L∞ [0, 1] defined by

g0 : [0, 1] → R, g0 (x) =

{
1 , x ∈ (R\Q) ∩ [0, 1]
∞ , x ∈ Q ∩ [0, 1]

and the self-mapping T : L∞ [0, 1] → L∞ [0, 1] defined by

Tg =

{
g , g ∈ CC∗,S

f,πh

g0 , g /∈ CC∗,S
f,πh

in Example 10 in [10]. Then, with a direct computation it can be seen that the

self-mapping T satisfies the conditions (8) and (9). Observe that the circle CC∗,S
f,πh

is a fixed circle of T.

Theorem 2.8. Let (X,A,S) be a C∗-algebra valued S-metric space, the mapping
φ be as in (3) and CC∗,S

x0,r be any circle on X. If T is a self-mapping defined on X
satisfying the conditions

S (x, x, Tx) ⪯ φ (x)− φ (Tx) (10)

and

A∗S (x, x, Tx)A+ S (Tx, Tx, x0) ⪰ r (11)

for all x ∈ CC∗,S
x0,r and some A ∈ A with ∥A∥ < 1, then the circle CC∗,S

x0,r is a fixed
circle of T.

Proof. Assuming x ∈ CC∗,S
x0,r such that x ̸= Tx, we obtain

θ ⪯ S (x, x, Tx) ⪯ φ (x)− φ (Tx)

= S (x, x, x0)− S (Tx, Tx, x0)

= r − S (Tx, Tx, x0)

⪯ A∗S (x, x, Tx)A+ S (Tx, Tx, x0)− S (Tx, Tx, x0)

= A∗S (x, x, Tx)A.

Using the (3), (10) and (11), we get

0 ≤ ∥S (x, x, Tx)∥ ≤ ∥A∗S (x, x, Tx)A∥
≤ ∥A∗∥ ∥S (x, x, Tx)∥ ∥A∥
= ∥A∥2 ∥S (x, x, Tx)∥
< ∥S (x, x, Tx)∥ .
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This inequality is a contradiction with our assumption. Thus, we deduce that
x = Tx for all x ∈ CC∗,S

x0,r and it is apparent that CC∗,S
x0,r is a fixed circle of T. □

Remark 5. 1. The inequality (10) guarantees that Tx is not in the exterior of the
circle CC∗,S

x0,r for each x ∈ CC∗,S
x0,r . Similarly, the inequality (11) means that Tx is

not in the interior of the circle CC∗,S
x0,r for each x ∈ CC∗,S

x0,r . These results indicate

that T
(
CC∗,S

x0,r

)
⊂ CC∗,S

x0,r taking the conditions (10) and (11) into account.
2. We notice that Theorem 2.8 in C∗-algebra valued S-metric spaces is corre-

sponding of Theorem 2.3 given in metric spaces in [25].
3. Theorem 2.8 is a generalization of Theorem 3.2 given in S-metric spaces in

[26].
4. Note that Theorem 2.8 can be rewritten for C∗-algebra valued b-metric dS

generated by any C∗-algebra valued S-metric S by Proposition 1.

Example 9. Consider the C∗-algebra valued S-metric space (R,M2 (C) ,S) and

the circle CC∗,S
0,r given in Example 4. Define the self-mapping T : R → R as

Tx =

{
x , x ∈ CC∗,S

0,r

2 , x /∈ CC∗,S
0,r

.

It is not hard to prove that T satisfies the conditions (10) and (11) for

A =

[
− 1

9 0
0 3

10

]
∈ M2 (C)

with ∥A∥ = 3
10 < 1, and we see that the circle CC∗,S

0,r is a fixed circle of T .

Remark 6. Notice that the number of elements of the circles given in Example 2,
Example 3, Example 4 and Example 5 indicates the number of fixed points of the
self-mappings T given in Example 6, Example 7, Example 8 and Example 9.

Theorem 2.9. Let (X,A,S) be a C∗-algebra valued S-metric space, the mapping
φ be as in (3) and CC∗,S

x0,r be any circle on X. If T is a self-mapping defined on X
satisfying the conditions

S (x, x, Tx) ⪯ φ (x)− r (12)

or

S (x, x, Tx) ⪯ φ (Tx)− r (13)

and

S (Tx, Tx, x0) ⪯ r +A∗S (x, x, Tx)A, (14)

for all x ∈ CC∗,S
x0,r and some A ∈ A with ∥A∥ < 1, then the circle CC∗,S

x0,r is a fixed
circle of T.

Proof. Let x ∈ CC∗,S
x0,r such that x ̸= Tx. Then, if the condition (12) holds, we find

S (x, x, Tx) ⪯ φ (x)− r = S (x, x, x0)− r = r − r = θ,

and so S (x, x, Tx) = θ, a contradiction. This implies that Tx = x.
On the other hand, if the condition (13) holds, we get by (14)

S (x, x, Tx) ⪯ φ (Tx)− r = S (Tx, Tx, x0)− r

⪯ r +A∗S (x, x, Tx)A− r

= A∗S (x, x, Tx)A,
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and so

0 ≤ ∥S (x, x, Tx)∥ ≤ ∥A∗S (x, x, Tx)A∥
≤ ∥A∗∥ ∥S (x, x, Tx)∥ ∥A∥
= ∥A∥2 ∥S (x, x, Tx)∥
< ∥S (x, x, Tx)∥ .

This is a contradiction with our assumption. Thus, we deduce that x = Tx for all
x ∈ CC∗,S

x0,r and more precisely, CC∗,S
x0,r is a fixed circle of T. □

Remark 7. 1. The conditions (12) and (13) guarantees that Tx is not in the
interior of the circle CC∗,S

x0,r for each x ∈ CC∗,S
x0,r . Similarly, taking the inequality

(14) into account, Tx is not in the exterior of the circle CC∗,S
x0,r for each x ∈ CC∗,S

x0,r .

These results indicate that T
(
CC∗,S

x0,r

)
⊂ CC∗,S

x0,r under the conditions (12) or (13)
and (14).

2. We emphasize that Theorem 2.9 obtained in C∗-algebra valued S-metric spaces
corresponds to Theorem 4.2 given in S-metric spaces in [9].

3. Since any C∗-algebra valued S-metric S generates C∗-algebra valued b-metric
dS given in Proposition 1, Theorem 2.9 can be rearranged for dS .

Let IX : X → X be the identity map defined as IX (x) = x for all x ∈ X. We
note that the identity map satisfies the conditions in Theorem 2.5, Theorem 2.6,
Theorem 2.7, Theorem 2.8 and Theorem 2.9 for any circle. Now we determine a
condition which excludes IX in Theorem 2.5, Theorem 2.6, Theorem 2.7, Theorem
2.8 and Theorem 2.9 modifying Caristi’s fixed point theorem [5] and Caristi type
contractive condition in C∗-algebra valued metric spaces [29] as follows:

Theorem 2.10. Let (X,A,S) be a C∗-algebra valued S-metric space, the mapping
φ be as in (3) and CC∗,S

x0,r be any circle on X. T is a self-mapping defined on X
satisfying the condition

A∗S (x, x, Tx)A ⪯ φ (x)− φ (Tx) (15)

for all x ∈ X where A ∈ A is an invertible element and
∥∥A−1

∥∥ < 1√
2
if and only if

T fixes the circle CC∗,S
x0,r and T = IX .

Proof. Suppose that T be a self-mapping defined on X satisfying the rule (15). Let
x be any point in X. We assert that x = Tx. Suppose, on contrary that x ̸= Tx.
Then, using the (3), (15), (iii) given in Definition 1.4 and Lemma 1.1, we get

A∗S (x, x, Tx)A ⪯ φ (x)− φ (Tx)

= S (x, x, x0)− S (Tx, Tx, x0)

⪯ S (x, x, Tx) + S (x, x, Tx) + S (x0, x0, Tx)− S (Tx, Tx, x0)

= 2S (x, x, Tx) + S (Tx, Tx, x0)− S (Tx, Tx, x0)

= SS (x, x, Tx) ,

and so

S (x, x, Tx) ⪯ (A∗)
−1

2S (x, x, Tx)A−1 =
(
A−1

)∗
2S (x, x, Tx)A−1.
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After some elementary calculations, it follows that

∥S (x, x, Tx)∥ ≤
∥∥∥(A−1

)∗
2S (x, x, Tx)A−1

∥∥∥
≤ 2

∥∥∥(A−1
)∗∥∥∥ ∥S (x, x, Tx)∥

∥∥A−1
∥∥

= 2
∥∥A−1

∥∥2 ∥S (x, x, Tx)∥
< ∥S (x, x, Tx)∥ .

However it is not possible and T = IX .
Conversely, suppose that T fixes the circle CC∗,S

x0,r and T = IX . Then, since
Tx = x for all x ∈ X, the condition (15) holds for any invertible element A ∈ A
with

∥∥A−1
∥∥ < 1√

2
. This completes the proof. □

Remark 8. Theorem 2.10 says that if a self-mapping fixes a circle by satisfying
(4) and (5) (or (6) and (7), or (8) and (9), or (10) and (11), or [(12) or (13)]
and (14)), but does not satisfy the condition (15), then the self-mapping cannot be
identity map.

Now, we state a new existence theorem for fixed circles using another auxiliary
function.

Theorem 2.11. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X. Define the mapping φr : A+ → A as

φr (u) =

{
u− r , u ∈ A+ − {θ}
θ , u = θ

,

for all u ∈ A+. If T is a self-mapping defined on X satisfying the conditions

S (Tx, Tx, x0) = r (16)

for all x ∈ CC∗,S
x0,r ,

S (Tx, Tx, Ty)− r ∈ A+ − {θ} (17)

for all x, y ∈ CC∗,S
x0,r and x ̸= y, and

S (Tx, Tx, Ty) ⪯ S (x, x, y)− φr (S (x, x, Tx)) (18)

for all x, y ∈ CC∗,S
x0,r , then the circle CC∗,S

x0,r is a fixed circle of T.

Proof. Let x be any point in the circle CC∗,S
x0,r . Let x ̸= Tx and y = Tx. Then, using

the conditions (16) and (17), we write

S
(
Tx, Tx, T 2x

)
− r ∈ A+ − {θ} , (19)

for y = Tx ∈ CC∗,S
x0,r . Also, on account of the condition (18) we have

S
(
Tx, Tx, T 2x

)
⪯ S (x, x, Tx)− φr (S (x, x, Tx))

= S (x, x, Tx)− S (x, x, Tx) + r = r.

This implies that r−S
(
Tx, Tx, T 2x

)
∈ A+. It is a contradiction with (19). Hence

CC∗,S
x0,r is a fixed circle of T. □

Remark 9. 1. The condition (16) in Theorem 2.11 says that Tx is on the circle
CC∗,S

x0,r for every x ∈ CC∗,S
x0,r .

2. We see that Theorem 2.11 is a new version of Theorem 3 given in metric
spaces in [24].
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3. Notice that Theorem 2.11 is a generalization to C∗-algebra valued S-metric
spaces of Theorem 4.1 given in S-metric spaces in [9].

4. From Proposition 1, we know that Theorem 2.11 is also valid for C∗-algebra
valued b-metric dS generated by any C∗-algebra valued S-metric S.

Note that IX satisfies the conditions in Theorem 2.11 for any circle. In the
following theorem, we investigate a condition which excludes IX in Theorem 2.11.

Theorem 2.12. Let (X,A,S) be a C∗-algebra valued S-metric space, the mapping
φr be as in (??) and CC∗,S

x0,r be any circle on X. T is a self-mapping defined on X
satisfying the condition

φr (S (x, x, Tx)) + r − S (x, x, Tx) ∈ A+ − {θ} (20)

for all x ∈ X if and only if T fixes the circle CC∗,S
x0,r and T = IX .

Proof. Suppose that T be a self-mapping defined on X satisfying the rule (20). Let
x be any point in X. Let x ̸= Tx. Then, we get

φr (S (x, x, Tx)) + r − S (x, x, Tx) = S (x, x, Tx)− r + r − S (x, x, Tx)

= S (x, x, Tx)− S (x, x, Tx)

= θ,

a contradiction. It follows that x = Tx for all x ∈ X and T = IX .
Contrarily, assume that T fixes the circle CC∗,S

x0,r and T = IX . Then, since Tx = x
for all x ∈ X, the condition (20) holds for all x ∈ X. The proof is completed. □

2.2. The uniqueness of fixed circles. In this subsection, we prove some unique-
ness theorems for fixed circles in the existence theorems given in Subsection 2.1.
To do this, the following example emphasizes that fixed circles of a self-mapping
may not be unique.

Example 10. Let us consider the C∗-algebra valued S-metric space ([0, 1] ,M2 (R) ,S)
[12]. If we define the self-mapping T : [0, 1] → T [0, 1] as

Tx =

{
x2 + 3

16 , x ∈
{

1
4 ,

3
4

}
0 , x ∈ [0, 1] \

{
1
4 ,

3
4

}
for all x ∈ X. Then, T fixes the circles CC∗,S

0,r =
{

1
4

}
and CC∗,S

1,r =
{

3
4

}
, where

r =

[
1
2 0
0 1

2

]
. In other words, the fixed circles of T is not unique.

Firstly, we discuss the uniqueness of fixed circles in Theorem 2.5 using Theorem
1.1 and Theorem 1.4 which are modified forms of Banach’s fixed-point theorem [4]
in the subsequent theorem.

Theorem 2.13. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and T be a self-mapping satisfying the conditions (4) and (5) given in
Theorem 2.5. If T satisfies

S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A, (21)

for all x ∈ CC∗,S
x0,r , y ∈ X −CC∗,S

x0,r and some A ∈ A′
+ with ∥A∥ < 1, then the circle

CC∗,S
x0,r is unique fixed circle of T.
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Proof. Assume that CC∗,S
x1,δ

is another fixed circle of T. Let x ∈ CC∗,S
x0,r and y ∈ CC∗,S

x1,δ
.

Then, considering the condition (21) we get

S (x, x, y) = S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A,

and so

∥S (x, x, y)∥ ≤ ∥A∗S (x, x, y)A∥ ≤ ∥A∥2 ∥S (x, x, y)∥ < ∥S (x, x, y)∥ .

But this is not possible. Hence, the self-mapping T fixes only circle CC∗,S
x0,r . □

Corollary 2.9. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and T be a self-mapping satisfying the conditions (4) and (5) given in
Theorem 2.5. If T satisfies (21) for all x ∈ CC∗,S

x0,r , y ∈ X−CC∗,S
x0,r and some A ∈ A

with ∥A∥ < 1, then the circle CC∗,S
x0,r is unique fixed circle of T.

Proof. The proof is clear from Theorem 2.13. □

Now, we determine the uniqueness condition for the fixed circles in Theorem 2.6
utilizing the condition given in Theorem 1.2 which is an enlargement of Kannan’s
fixed-point condition [15].

Theorem 2.14. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and T be a self-mapping providing the conditions (6) and (7) given in
Theorem 2.6. If T satisfies the contraction condition

S (Tx, Tx, Ty) ⪯ A (S (Tx, Tx, x) + S (Ty, Ty, y)) (22)

for all x ∈ CC∗,S
x0,r , y ∈ X −CC∗,S

x0,r and some A ∈ A′
+ with ∥A∥ < 1

2 , then the circle

CC∗,S
x0,r is unique fixed circle of T.

Proof. Suppose that CC∗,S
x1,δ

is another fixed circle of T. For arbitrary points x ∈
CC∗,S

x0,r and y ∈ CC∗,S
x1,δ

, we get by (22)

S (x, x, y) = S (Tx, Tx, Ty) ⪯ A (S (Tx, Tx, x) + S (Ty, Ty, y)) ,

so that

∥S (x, x, y)∥ ≤ ∥A (S (Tx, Tx, x) + S (Ty, Ty, y))∥
≤ ∥A∥ ∥(S (x, x, x) + S (y, y, y))∥
= 0,

which is a contradiction which means that x = y. This shows that the self-mapping
T fixes only circle CC∗,S

x0,r . □

Subsequently, we find the uniqueness condition for the fixed circles in Theo-
rem 2.7 by employing the condition given in Theorem 1.3 which is a new form of
Chatterjea’s contractive condition [6].

Theorem 2.15. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and T be a self-mapping satisfying the conditions (8) and (9) given in
Theorem 2.7. If T satisfies the contraction condition

S (Tx, Tx, Ty) ⪯ A (S (Tx, Tx, y) + S (Ty, Ty, x)) (23)

for all x ∈ CC∗,S
x0,r , y ∈ X −CC∗,S

x0,r and some A ∈ A′
+ with ∥A∥ < 1

2 , then the circle

CC∗,S
x0,r is unique fixed circle of T.
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Proof. Assume that CC∗,S
x1,δ

is another fixed circle of T. For any points x ∈ CC∗,S
x0,r

and y ∈ CC∗,S
x1,δ

, we have the following statement by (23):

S (x, x, y) = S (Tx, Tx, Ty) ⪯ A (S (Tx, Tx, y) + S (Ty, Ty, x)) .

So, we see that

∥S (x, x, y)∥ ≤ ∥A (S (Tx, Tx, y) + S (Ty, Ty, x))∥
≤ ∥A∥ ∥S (Tx, Tx, y) + S (Ty, Ty, x)∥
= ∥A∥ ∥2S (x, x, y)∥
< ∥S (x, x, y)∥ .

This yields a contradiction which implies that x = y. So, T fixes only circle CC∗,S
x0,r .

□

Finally, we state our three uniqueness theorems for the fixed circles in Theorem
2.8, Theorem 2.9 and Theorem 2.11 by revising Ćirić’s and Reich’s fixed point
theorems [7], [28].

Theorem 2.16. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and T be a self-mapping satisfying (10) and (11) given in Theorem 2.8.
If T satisfies the contraction condition that there exists

U ∈ {S (x, x, y) ,S (Tx, Tx, x) ,S (Ty, Ty, y) ,S (Ty, Ty, x) ,S (Tx, Tx, y)}
such that

S (Tx, Tx, Ty) ⪯ A∗UA, (24)

for all x ∈ CC∗,S
x0,r , y ∈ X − CC∗,S

x0,r and some A ∈ A with ∥A∥ < 1, then the circle

CC∗,S
x0,r is unique fixed circle of T.

Proof. Assume that CC∗,S
x1,δ

is another fixed circle of T, and x and y be any points

in CC∗,S
x0,r and CC∗,S

x1,δ
, respectively. Then, we get

S (x, x, y) = S (Tx, Tx, Ty) ⪯ A∗UA

from the condition (24). But we get a contradiction because of

∥S (x, x, y)∥ ≤ ∥A∗UA∥ ≤ ∥A∥2 ∥U∥ < ∥U∥

≤ max

{
∥S (x, x, y)∥ , ∥S (Tx, Tx, x)∥ , ∥S (Ty, Ty, y)∥ ,

∥S (Ty, Ty, x)∥ , ∥S (Tx, Tx, y)∥

}
= max {∥S (x, x, y)∥ , 0} = ∥S (x, x, y)∥ .

Hence x = y and T fixes only circle CC∗,S
x0,r . □

Theorem 2.17. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and the T be a self-mapping satisfying the conditions (12) or (13) and
(14) given in Theorem 2.9. If T satisfies the contraction condition that there exists

V ∈ {S (Tx, Tx, x) ,S (Ty, Ty, y) ,S (Ty, Ty, x) ,S (Tx, Tx, y)}
such that

S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A+B∗V B, (25)

for all x ∈ CC∗,S
x0,r , y ∈ X − CC∗,S

x0,r and some A,B ∈ A with ∥A∥ < 1√
2

and

∥B∥ < 1√
2
, then the circle CC∗,S

x0,r is unique fixed circle of T.
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Proof. Assume that CC∗,S
x1,δ

is another fixed circle of T. Suppose x and y be arbitrary

points in CC∗,S
x0,r and CC∗,S

x1,δ
, respectively. Then, we get by (25)

S (x, x, y) = S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A+B∗V B

so that

∥S (x, x, y)∥ ≤ ∥A∗S (x, x, y)A+B∗V B∥
≤ ∥A∥2 ∥S (x, x, y)∥+ ∥B∥2 ∥V ∥
≤ ∥A∥2 ∥S (x, x, y)∥

+ ∥B∥2 max

{
∥S (Tx, Tx, x)∥ , ∥S (Ty, Ty, y)∥ ,
∥S (Ty, Ty, x)∥ , ∥S (Tx, Tx, y)∥

}
= ∥A∥2 ∥S (x, x, y)∥+ ∥B∥2 max {∥S (x, x, y)∥ , 0}

=
(
∥A∥2 + ∥B∥2

)
∥S (x, x, y)∥ < ∥S (x, x, y)∥ .

Therefore a contradiction is reached. As a result we get x = y indicates the self-
mapping T fixes only circle CC∗,S

x0,r . □

Theorem 2.18. Let (X,A,S) be a C∗-algebra valued S-metric space, CC∗,S
x0,r be any

circle on X and T be a self-mapping satisfying the conditions (16), (17) and (18)
given in Theorem 2.11. If T satisfies the contraction condition such that

S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A+B∗S (Tx, Tx, x)B + C∗S (Ty, Ty, y))C (26)

for all x ∈ CC∗,S
x0,r , y ∈ X − CC∗,S

x0,r and some A,B,C ∈ A+ with ∥A∥ < 1√
3
, ∥B∥ <

1√
3
and ∥C∥ < 1√

3
, then the circle CC∗,S

x0,r is unique fixed circle of T.

Proof. Assume that CC∗,S
x1,δ

is another fixed circle of T. Let x and y be arbitrary

points in CC∗,S
x0,r and CC∗,S

x1,δ
, respectively. Then, we get by (26)

S (x, x, y) = S (Tx, Tx, Ty) ⪯ A∗S (x, x, y)A+B∗S (Tx, Tx, x)B+C∗S (Ty, Ty, y)C

so that

∥S (x, x, y)∥ ≤ ∥A∗S (x, x, y)A+B∗S (Tx, Tx, x)B + C∗S (Ty, Ty, y)C∥
≤ ∥A∥2 ∥S (x, x, y)∥+ ∥B∥2 ∥S (Tx, Tx, x)∥+ ∥C∥2 ∥S (Ty, Ty, y)∥

= ∥A∥2 ∥S (x, x, y)∥ <
1

3
∥S (x, x, y)∥ < ∥S (x, x, y)∥ ,

a contradiction, and so x = y. Hence, the self-mapping T fixes only circle CC∗,S
x0,r . □

Remark 10. The uniqueness theorems in this subsection are equivalents of Theo-
rem 3.1, Theorem 3.2 and Theorem 3.3 in [25] for metric spaces, and also, Theorem
3.4 in [26], Theorem 3.10 and Theorem 3.16 in [23] and Theorem 4.3 in [9] for S-
metric spaces.

3. An application to exponential linear unit activation functions

Activation functions define the output of that node given an input or set of
inputs in neural networks. In the literature, there are a lot of examples of activa-
tion functions. The most common activation functions are ridge functions, radial
functions and fold functions. More details about neural networks and activation
functions can be found in [13] and the references therein.
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One of several activation functions is “Exponential Linear Unit Function” defined
as

ELU (x) =

{
α (ex − 1) , x ≤ 0

x , x > 0
,

with parameter α (see [8] for more details).
Let us consider C∗-algebra valued S-metric space ([0, 1] ,M2 (R) ,S) defined in

Example 1. If we take α = 1 and X = [0, 1] , then we have

ELU (x) =

{
ex − 1 , x = 0

x , x ∈ (0, 1]
,

for all x ∈ [0, 1] . Then, ELU satisfies the conditions of the existence theorems and

fixes the circles CC∗,S
0,r =

{
1
16

}
and CC∗,S

1,r =
{

15
16

}
, where

r =

[
1
8 0
0 1

8

]
.

We note that the fixed circles of ELU is not unique. Also, the selection of the

center or the radius is not unique. For example, the centers of CC∗,S
0,r and CC∗,S

1,r

are different. If we get the radius

r =

[
1
10 0
0 1

10

]
,

then ELU fixes the circles CC∗,S
0,r =

{
1
20

}
and CC∗,S

1,r =
{

19
20

}
.

4. Conclusion and future works

In this article, we review the existence and uniqueness conditions for fixed circles
of self-mappings satisfying different kinds of contractive conditions on C∗-algebra
valued S-metric spaces with constructed various techniques by giving some numer-
ical examples to support our newly fulfilled results. Also, we give an application
to exponential linear unit activation functions used in the neural networks. Each
of the uniqueness theorems given in subsection 2.2 can be also stated using the
contraction conditions in other uniqueness theorems given in the same subsection
instead of its own contraction conditions. So, we can obtain several more conse-
quences. But since the approaches are the same as another, we avoid listing all
possible corollaries.

Furthermore, there is no reference on the existence and uniqueness of fixed circles
of self-mappings on such spaces. So, since we consider and develop the fixed-circle
problem in C∗-algebra valued S-metric spaces, we believe that our results will
motivated many authors to study continuing works and applications.
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[10] N. Değirmen, Some fixed-circle results in C∗-algebra valued metric spaces, arXiv preprint

arXiv:2104.03070, 2021.
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