
Abstract

Remote sensing is crucial for producing accurate land use and land cover (LULC) maps. It provides contin-
uous historical data, vital for sustainable development programs, where LULC is a crucial input criterion.
Furthermore, natural carbon sinks like agriculture help reduce greenhouse gas emissions. Consequently,
the primary objectives of this study are: 1) to monitor the LULC changes in the western Nile Delta, Egypt,
spanning the period from 1985 to 2021; and 2) to quantify soil carbon sequestration (SCS) within the study
area. In order to achieve these objectives, a supervised classification method was utilized, making use of
eight Landsat satellite photos from the years 1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2021. This ap-
proach aimed to detect patterns of LULC changes. Four distinct LULC categories were identified in the
study area, namely agriculture, urban, bare land, and water. The findings unveiled a predominant trans-
formation from bare land to agriculture, with approximately 3.8%, 5.4%, 6.4%, 13.4%, 23.6%, 24.3%, and
42.19% of bare land transitioning to agriculture during the periods of 1985-1990, 1990-1995, 1995-2000,
2000-2005, 2005-2010, 2010-2015, and 2015-2021, respectively. Furthermore, the analysis of SCS data in-
dicated that soil carbon sequestration predominantly ranged from 440 to 2125 g/m2, thereby highlighting
the potential of the study area in terms of carbon storage. In conclusion, the analytical approach works
efficiently for carbon sequestration evaluation. The study should be used to make land use decisions for
carbon sequestration management.

Keywords: Land Use/ Land Cover, Change Detection, Carbon Sequestration, Remote Sensing, Western
Nile Delta.

1. Introduction

Egypt’s population has been steadily increas-
ing, particularly in the past century. Most of this
population growth has occurred in the densely
populated Nile delta, which is considered one of
the most crowded regions worldwide. The delta
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is home to approximately half of Egypt’s popula-
tion and encompasses about two-thirds of its culti-
vated land. After Nigeria and Ethiopia, Egypt ranks
as the third most populous African country [1].
Consequently, successive governments have prior-
itized addressing the issue of overpopulation and
its impact on the agriculture sector’s continuous
demand for increased agricultural production. As
a result, Egyptian authorities have focused on re-
claiming land and establishing new agricultural
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communities on the eastern and western fringes
of the Nile delta, as well as other desert areas,
particularly in the western desert. From 1997 to
2017, approximately 3.4 million feddans of culti-
vated land were added through land reclamation
efforts in Egypt [2]. These development projects
require careful monitoring to prevent large-scale
environmental degradation caused by natural pro-
cesses and human activities. Changes in land
use/land cover (LULC) are major drivers of cli-
mate change [3]. Despite ongoing research on
LULC change patterns, there remains an urgent
need to develop fundamental datasets that pro-
vide quantitative and spatially explicit information
on LULC changes [4]. Many countries are cur-
rently dealing with a serious environmental and
climatic crisis as a result of the increase in anthro-
pogenic greenhouse gases (GHG), particularly car-
bon dioxide (CO2), in the atmosphere [5–8]. There-
fore, it is crucial to quantify the impacts of LULC
changes on CO2 sources and sinks in the West-
ern Delta [9]. Access to LULC information is es-
sential for policymaking, business activities, and
administrative purposes. Furthermore, such data,
with their spatial details, are vital for environmen-
tal protection and spatial planning [4, 10]. Accu-
rate land use classification is essential as it pro-
vides input data for environmental modeling, in-
cluding climate change models and policy devel-
opment [11]. Moreover, remotely sensed data ob-
tained from orbiting satellites, with their repeti-
tive coverage and consistent image quality, are par-
ticularly useful for change detection analysis [12].
Change detection involves identifying differences
in the condition of an object or phenomenon by
observing it at multiple time points [13–15]. It
enables the quantification of temporal effects us-
ing multitemporal datasets [16]. Remote sens-
ing (RS) technology is about to have a extensive
impact on planning agencies and land manage-
ment projects that track changes in land use and
land cover at different spatial scales [17–19]. Fur-
thermore, change detection has numerous appli-
cations related to LULC changes, such as shifting
cultivation, land degradation and desertification,
landscape changes, coastal changes, urban sprawl,
urban landscape patterns, deforestation, quarrying

activities, landscape fragmentation, and cumula-
tive changes [20–22]. Therefore, there is an ongoing
demand for accurate and up-to-date LULC infor-
mation to support sustainable development pro-
grams, with LULC serving as a significant input cri-
terion. Consequently, various research efforts have
recognized the importance of adequately mapping
LULC and tracking its changes over time to in-
form decision-making processes. For instance,
land cover change assessment in urban environ-
ments and dynamic land cover monitoring have
been applied [23, 24]. Change detection based
on RS data has become an indispensable tool for
providing comprehensive information to decision
support systems for natural resource management
and sustainable development. Consequently, as-
sessing and mapping the current LULC situation
and changes over time is critical for understand-
ing and addressing social, economic, and environ-
mental challenges [14, 24]. Even though many dif-
ferent change detection methods have been devel-
oped over the years, it is still hard to come up with
the right one, especially for urban and fringe ar-
eas where factors are complicated and land uses
quickly shift from rural to residential, commercial,
industrial, and recreational [2].Carbon sequestra-
tion, particularly the capture and storage of CO2,
the most common GHG, is crucial for reducing at-
mospheric CO2 levels and slowing down the rate of
climate change [25, 26]. The United States Geolog-
ical Survey (USGS) assesses two main types of car-
bon sequestration: geologic and biologic [27]. Car-
bon sequestration helps mitigate climate change
by transferring additional carbon (C) from the at-
mosphere, primarily in the form of CO2, to terres-
trial biospheres like soil and vegetation, thereby
limiting or shifting the increase in atmospheric
CO2 concentration [8]. Soil carbon sequestration
refers to the increase in soil carbon content result-
ing from changes in management practices within
the same landscape. This process traps additional
carbon in the soil, separating it from other ecosys-
tem components [28]. When a positive imbalance
persists, the soil system eventually reaches a new,
higher steady state of carbon stocks by removing
CO2 from the atmosphere. Enhanced soil organic
carbon provides numerous benefits beyond miti-
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gating climate change, including improved soil and
water quality, ecological restoration, and increased
crop yields [8]. One solution to mitigate CO2 emis-
sions is through carbon sequestration, which in-
volves capturing and storing atmospheric carbon
(C) in the terrestrial biosphere. Agricultural ar-
eas represent significant potential sinks and can
absorb substantial amounts of carbon when trees
are strategically integrated and managed along-
side crops [27]. Numerous factors, including soil
type, climate, topography, crop management, and
anthropogenic activities, have an impact on the
soil organic carbon pool (SOCP). SOCP is a critical
global concern and a vital component of the United
Nations Sustainable Development Goals (SDGs).
LULC changes affect regional and global climate
change through carbon emissions. Carbon seques-
tration can help replenish the carbon cycle and
contribute to CO2 emission reductions [29].

The primary objective of the study was to an-
alyze changes in LULC within the study area us-
ing multitemporal remote sensing data. The study
employed a supervised classification approach to
monitor transformations in the western Nile Delta
of Egypt across categories such as agricultural, ur-
ban, water, and bare land. The core focus was on
identifying and quantifying changes from 1985 to
2021 by subtracting classified images from differ-
ent years. Additionally, the study also estimated
the soil carbon content in the study area as base-
line information for any further carbon sequestra-
tion studies.

2. Material and methods

2.1. Study area

2.1.1. Location:
Delta, Egypt. It encompasses geographical co-

ordinates between longitudes 30◦ 40 and 30◦ 40 E
and latitudes 30◦ 8 and 30◦ 32 N (Fig. 1). With
an approximate area of 2622 km (262,200 ha), the
study area is predominantly part of the desert re-
gion within the Beheira governorate. However, it
is important to small section in the southeast that
belongs to the Giza governorate.

Figure 1. Location of the study area in the west-
ern Nile delta, Egypt.

Figure 1: Location of the study area in the western Niledelta,
Egypt

2.2. Soil description and Soil Carbon data collec-
tion:

The soils of Wadi El Natrun mainly consist of
Sabkha formations located within desert depres-
sions. The northern region’s soil is predominantly
sandy with calcareous crusts and sand dunes from
the deltaic lacustrine complex. In contrast, the
eastern area (El Sadat City) features gravel and
gravelly sand soils associated with the deltaic
phase, along with sand dunes. The southern re-
gion showcases gravely sand lithosols, accompa-
nied by scattered patches of brown loamy soils
in the desert [20]. The study area has undergone
significant development as part of the western
Nile Delta’s land reclamation since the early 1980s.
The Egyptian government’s approach focuses on
not only land reclamation but also sustainable
village communities, addressing issues like unem-
ployment and housing shortages. About 250,000
settlers and their families have benefitted from
this project, with beneficiaries including unem-
ployed graduates, former tenants, small farmers,
and others [20].

For the current study, 18 soil samples were col-
lected in July 2021 to assess and quantify soil car-
bon content, as shown in Table 8 and Figure 2.
Samples were collected at a depth of 30 cm and
stored in proper plastic bags to be sent to the lab for
further analysis. Moreover, the geographic coordi-
nates were recorded using a handheld device. The
coordinates were collected for the soil carbon con-
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tent mapping using the inverse distance-weighted
(IDW) interpolation algorithm. Which determines
pixel values using a linearly weighted combination
of a set of sample points using the following equa-
tions:

w(x) = A

B
(1)

A =∑n
i=1

1

d(x, xi )p ui (2)

B =∑n
i=1

1

d(x, xi )p (3)

Where: w is the predicted value, d is the distance, x
is the unknown point, xi is the nth known point, ui
is the value of the known point, and p is the power.

Carbon sequestration in grams per square me-
ter was calculated using the following equation
based [30].

Cs = 100 ∗ OC ∗ Bd ∗ e (4)

where: Cs = Organic Carbon Sequestration (g/m2),
OC = Organic Carbon (%), Bd = Soil Bulk Density
(g/cm3), and e = Depth of Sampling (cm) [30].

Figure 2: Soil samples sites in the study area

2.3. Climate

The meteorological data over the past four
decades between 1981 and 2021 is represented
in Table 1 (EMA). The average meteorological data
of the climatic parameters of temperature (min-
imum, mean, maximum, range, and earth skin
temperature at 2m, ◦C), wind speed (minimum,
mean, maximum, and range at both 2m and 10m,
m/s), precipitation (daily average, mm/day, and
sum, mm), and humidity (relative, % and specific,
g/kg at 2m). The monthly means of the climatic
parameters were averaged over a total period of 40
years and shown in Table 1.

The study area belongs to the arid zone since
the summation of annual precipitation is 48mm
with zero precipitation during the summer months
(July, August, and September). The minimum
temperature of 4◦C occurred during the winter
months in January and February, besides the an-
nual minimum temperature. The maximum tem-
perature was 41.5◦C in June and July, with a max-
imum annual temperature of 42.6◦C. The mean
temperatures are 12◦C and 28◦C in January and
July, respectively, with an annual mean of 20.7◦C.
All average values for temperature at 2m height.
The earth’s skin temperature average ranged from
around 12◦C in January to 30◦C in July and August,
with an annual average of around 22◦C.

The maximum wind speed generally increases in
the winter months (January, February, and March)
compared with the summer months. Additionally,
the maximum wind speed at 10m is higher com-
pared to the maximum wind speed at 2m. The av-
erage recorded maximum wind speed, at 2m, was
6.7 m/s in August, September, and October and
increased to around 8 m/s from January to April.
At 10m, the recorded maximum wind speed was
around 9 m/s in August, September, and October
and increased to around 11 m/s from January to
April.

The relative humidity ranged from around 50 to
66.5% in May and January, respectively, with an an-
nual average of around 59%. The surface pressure
for all months is around 101 kPa.

Data source: Egyptian Meteorological Author-
ity (EMA) and data reported by weather station:
623570, Latitude: 30.4 | Longitude: 30.35 | Altitude
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2.4. Remote sensing data:

The study utilized a dataset of eight Landsat
satellite images, spanning 36 years, acquired on
specific dates detailed in Table 2. It includes Land-
sat 5 images for 1985, 1990, 1995, 2005, and 2010;
Landsat 7 for 2000; and Landsat 8 (OLI) for 2015
and 2021. These images are freely accessible from
the USGS-managed Landsat archive through links:
http://glovis.usgs.gov and http://edcsns17.cr.usgs
.gov. The images have Universal Transverse Mer-
cator projection (zone 36N, datum WGS-84), with
a 30m x 30m spatial resolution. Acquired in sum-
mer to minimize cloud cover, they capture dis-
tinct spectral variations among agricultural fields,
bare land, and urban areas. The analysis used all
available Landsat image bands and supplemented
the image classification with archived data, sketch
maps, and Google Earth references.

Characterization of Satellite data sets for the
study area

Data source: United States Geological Survey
(USGS)

2.5. Image enhancement and visual interpretation:

Image enhancement involves altering image val-
ues to emphasize information within the picture
and enhance its visual interpretability by augment-
ing distinctions between features. This approach
aims to optimize the collaborative strengths of
human cognition and computational processing.
Typically, these improved images find utility in
visual assessments, while the unaltered originals
serve automated analyses. In this study, prior to
image classification, LULC features are classified
according to established methodologies [17, 18,
31].

2.6. Image classification:

The ArcGIS software facilitates the digital image
processing of the Landsat image sets mentioned
earlier. The classification process was achieved
using the supervised maximum likelihood classi-
fier tool. Representative sites set up training sam-
ples for predetermined types of LULC. These are
done by using enclosed polygon pixels to find spec-
tral signatures that are unique to each type based

A. H. F. Mohamed et al./ Advances in Environmental and Life Sciences 5(2)(2024) 1-20 5



Table 2: Characterization of Satellite data sets for thestudy area

Acquired date Spacecraft/Sensor Path/Row Pixel Size (m) Coordinate
System/Datum

7/12/1985 LANDSAT_5/TM 177/39 30 UTM/WGS 84
7/10/1990 LANDSAT_5/TM 177/39 30 UTM/WGS 84
7/8/1995 LANDSAT_5/TM 177/39 30 UTM/WGS 84

7/13/2000 LANDSAT_7/ETM 177/39 30 UTM/WGS 84
7/3/2005 LANDSAT_5/TM 177/39 30 UTM/WGS 84

7/17/2010 LANDSAT_5/TM 177/39 30 UTM/WGS 84
7/15/2015 LANDSAT_8/OLI 177/39 30 UTM/WGS 84
7/15/2021 LANDSAT_8/OLI 177/39 30 UTM/WGS 84

Data source: United StatesGeological Survey (USGS)

on records from satellite images. Spectral signa-
tures aim for minimal confusion between mapped
land covers. This method yields a thematic raster
layer (classified image) and a distance file [8, 19–
23, 27, 29, 31].

2.7. Change detection:

Change detection is a prevalent remote sensing
approach that involves comparing multiple images
of the same area taken at different times to iden-
tify alterations in specific image attributes. Au-
thors have widely embraced digital change de-
tection techniques, encompassing a variety of re-
motely sensed data and methodologies, including
newer emerging methods. For instance, [35] pre-
sented diverse change detection techniques appli-
cable to synthetic aperture radar (SAR) and optical
images. They assessed various aspects of this pro-
cess, such as data pre-processing, change detec-
tion generation, and techniques employed [14, 32].

3. Results and discussion

3.1. The classification accuracy assessment

Maximum likelihood showed better classifica-
tion results than other classification algorithms.
The overall accuracies and Kappa coefficients of all
classification algorithms improved progressively
from TM (1985,1990, and 1995) and ETM (2000,
2005, and 2010) toward OLI (2015 and 2021). This
can be attributed to the fact that the fifth data set
(OLI 2015 and 2021) was acquired closer in time to
the collection of training and validation points.

As presented in Tables 3, 4 and 5, the results of
accuracy assessment were 83%, 85%, 83%, 85%,
82%, 86%, 92% and 92%, for the years of 1985, 1990,
1995, 2000, 2005, 2010, 2015, and 2021, respec-
tively.

3.2. Land use/cover Classes area as obtained from
the classification

The data presented in Table 4 represent the to-
tal area of each LULC category for each study year
(1985, 1990, 1995, 2000, 2005, 2010, 2015, and
2021), respectively. In 1985, as presented in Fig-
ure 6 and Table 3, barren land was the largest
class, representing 2518.52 km2 of the total LULC
categories assigned. The area of agriculture class
had increased significantly; after being about 51.55
km2 in 1985, it now occupies about 927.50km2 of
the study area in 2005. In 2021, the percentage
of the agriculture class had doubled significantly
again, resulting in the agriculture class becoming
the largest class, occupying 1733.95 km2 of the
study area.

In 1985, Figure (4a) illustrates the dominant land
class in the study area, with "barren class" occupy-
ing the largest extent. This class accounted for 96%
of the total land use and land cover (LULC) classes,
covering an area of 2518.5 km2. On the contrary,
the "agriculture" class remained relatively small,
comprising only 51.5 km2, which represented 1.9%
of the study area. This limited coverage can be at-
tributed to the scarcity of agricultural investment
projects during that period. The "water" class en-
compassed 10.9 km2, equating to 0.41% of the
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Table 6: Displays the areas of different land use and land cover classes as determined by the classification process.

Classes
Area (km2)

Agriculture Bare land Urban Water
Km 2 % Km 2 % Km 2 % Km 2 %

1985 51.5 1.9 2518.5 96 41.4 1.5 10.9 0.41
1990 146.8 5.6 2423.9 92.4 44.5 1.6 7.2 0.27
1995 255.3 9.7 2310.8 88.1 45.4 1.7 10.9 0.41
2000 466.2 17.7 2030.2 77.4 112.1 4.2 11.4 0.43
2005 927.5 35.3 1542.05 58.8 139.6 5.3 10.8 0.41
2010 1148.11 43.6 1146.6 43.7 319.06 12.1 8.6 0.33
2015 1304.8 49.7 1011.08 38.5 299.2 11.4 7.2 0.27
2021 1734 66.1 634.08 24.1 247.0 9.4 7.3 0.28

Figure 3: LULC different classes area (km2) in the investigated
year

study area, while the "urban" class occupied 41.4
km2, constituting 1.5% of the total study area.

Figure (4b) illustrates notable changes in land
cover classes between 1985 and 1990. The agricul-
ture class experienced a significant increase, dou-
bling from approximately 1.9% and covering an
area of 2518.5 km2 in 1985 to occupying about 6.2%
and representing 146.8 km2 of the study area in
1990. This growth can be attributed to the govern-
ment’s increased focus on agricultural land recla-
mation projects in the Wadi El-Natrun area.

In contrast, the bare land class witnessed a de-
cline from around 96% in 1985 to 92.4% in 1990,
representing an area of 2423.9 km2. This decrease
of 4.5% was a result of agricultural development
initiatives.

Simultaneously, the urban class expanded
slightly, with its coverage increasing from 41.4
km2 (1.5% of the study area) in 1985 to 44.5 km2

(1.6% of the study area) in 1990.

Furthermore, the water class experienced a de-
crease, shrinking from 10.9 km2 (0.41% of the study
area) in 1985 to 7.7 km2 (0.27% of the study area) in
1990.

Figure (4c) illustrates significant changes in land
cover classes during the period of 1995. The agri-
culture class experienced another notable increase,
doubling from approximately 5.6% and covering an
area of 146 km2 in 1990 to occupying 9.7% and
255.4 km2 of the study area in 1995. This expan-
sion indicates a continued focus on agricultural de-
velopment projects, resulting in the conversion of
other land cover types to agricultural land.

Consequently, the bare land class witnessed a
decline, decreasing to approximately 88% and cov-
ering an area of 2310.8 km2.

Moreover, the water class experienced an in-
crease, rising from representing 0.27% of the total
study area in 1990 to 0.41% in 1995.

Additionally, the urban class exhibited a slight
increase, with its coverage expanding from 1.6% in
1990 to 1.7% in 1995. This growth suggests urban-
ization trends and the expansion of built-up areas
over time.

Figure (4d) depicts substantial changes in the
study area, particularly the transformation of large
areas from the bare land class to the agricultural
class. The agriculture class experienced a remark-
able increase of 15.8% between 1985 and 2000. In
2000, it occupied 17.7% of the study area, covering
an expansive 466 km2. This significant expansion

A. H. F. Mohamed et al./ Advances in Environmental and Life Sciences 5(2)(2024) 1-2010



Figure 4: Land use and land cover maps produced by the supervised classification.
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highlights the successful implementation of agri-
cultural reclamation projects, leading to the con-
version of previously barren land into productive
agricultural areas.

There is a noticeable expansion of the urban
class in contrast to the total area of bare land. The
urban class’s coverage increased from 1.5% in 1985
to 4.2% in 2000. This expansion signifies the growth
of urban areas and the conversion of land for resi-
dential, commercial, and infrastructural purposes.
Consequently, the bare land class decreased to ap-
proximately 77.4% in 2000, a significant decline
from its dominance of 96% in 1985.

Overall, Figure (4d) portrays a dynamic land-
scape where the bare land class underwent sub-
stantial changes, with a significant portion being
converted into agricultural land. The expansion of
the urban class demonstrates the ongoing urban-
ization processes in the study area.

Figure (4e) demonstrates significant changes in
the study area, particularly regarding agriculture
and bare land classes. The agriculture class under-
went another substantial increase, doubling from
occupying 17.7% and covering 466 km2 in 2000
to representing 35.3% and encompassing 927 km2

in 2005. This significant expansion highlights the
continued success of agricultural development ini-
tiatives, resulting in the conversion of additional
land into productive agricultural areas.

Conversely, the bare land class witnessed a no-
table decline, decreasing from 77.4% and covering
2030 km2 in 2000 to 58.8% and 1542 km2 in 2005.

Moreover, Figure (4e) reveals a noticeable expan-
sion of the urban class in relation to the total area
of bare land. The urban class coverage increased
from 4.2% in 2000 to 5.3% in 2005.

Additionally, the water class experienced a de-
cline, decreasing to approximately 0.41% in 2005
from its dominance of 0.43% in 2000.

In summary, Figure (4e) depicts significant shifts
in land cover classes, with a substantial increase in
agriculture, a corresponding decline in bare land,
an expansion of urban areas, and a decrease in the
water class. These changes reflect the ongoing agri-
cultural and urban development as well as poten-
tial alterations in hydrological patterns within the
study area during the specified period.

Figure (4f) illustrates the land use and land cover
maps resulting from supervised classification in
2010, providing insights into notable changes.
The most significant transformation occurred in
the urban class, which experienced a doubling
in coverage. It expanded to represent 12.1% of
the study area, covering 319 km2, compared to
approximately 5.3% and 139 km2 in 2005.

Additionally, there was a noticeable expansion
in the agricultural class, which increased to 1145.5
km2, representing 43.6% of the study area in 2010.
In 2005, it covered approximately 927.5 km2, ac-
counting for 35.3% of the area.

This increase in agricultural land was directed
against the total area of bare land, indicating the
conversion of bare land into agricultural areas.

The bare land class in 2010 covered 1146.7 km2,
representing 43.7% of the study area. This marked
a decrease from its coverage of approximately 1542
km2, accounting for 58.8% in 2005.

Furthermore, the water class witnessed a de-
cline, occupying 0.33% in 2010 compared to 0.41%
in 2005. Changes in hydrological conditions, land
use patterns, or human interventions that affect
water bodies may all have an impact on this de-
crease.

In summary, Figure (4f) indicates significant
changes in land use and land cover patterns. The
urban class expanded, while the agricultural class
increased at the expense of bare land. The decrease
in the water class suggests potential alterations in
the hydrological landscape. These changes reflect
the dynamics of urbanization, agricultural devel-
opment, and potential environmental shifts within
the study area during the specified period.

Figure (4g) portrays the changes in land use and
land cover in 2015, revealing several noteworthy
observations. Firstly, there was a slight increase in
the agriculture class compared to 2010. In 2010, the
agriculture class accounted for about 43.6% of the
area, covering 1145.5 km2. However, in 2015, it ex-
panded to represent 49.7% of the area, encompass-
ing 1304 km2.

Conversely, the bare land class exhibited a de-
crease in coverage. In 2010, the bare land class ac-
counted for 1146.7 km2, comprising 43.6% of the
area. However, by 2015, it had decreased to 38.5%

A. H. F. Mohamed et al./ Advances in Environmental and Life Sciences 5(2)(2024) 1-2012



of the area, covering 1012 km2. This decline sug-
gests a conversion of bare land into other land
cover classes, such as agricultural or urban areas.

Moreover, the total area of the water class expe-
rienced a slight decrease. It diminished to 7.2 km2
in 2015 from 8.6 km2 in 2010.

Additionally, the urban class witnessed a slight
decrease in coverage. In 2015, it accounted for ap-
proximately 11.4% of the area, while in 2010, it rep-
resented 12.1%. This indicates a relatively slower
pace of urban expansion during the specified pe-
riod, potentially influenced by factors such as ur-
ban planning, land use regulations, or economic
factors.

In summary, Figure (4g) highlights a slight in-
crease in the agriculture class, a decrease in the
bare land class, a slight decrease in the total area of
the water class, and a slight decrease in the urban
class in 2015 compared to 2010. These changes re-
flect the dynamic nature of land use and land cover
patterns, influenced by various factors such as
agricultural development, land management prac-
tices, water dynamics, and urbanization processes
within the study area during the specified period.

Figure (4h) reveals several significant land use
changes between the years 2015 and 2021. The
land use change analysis technique detected addi-
tional loss in the total area of bare land, which de-
creased to nearly 24% in 2021 compared to approx-
imately 38.5% in 2015. This indicates a substantial
reduction in bare land cover within the specified
period.

On the other hand, the agriculture class experi-
enced an increase in coverage. In 2015, it occupied
49.7% of the area, but by 2021, it expanded to cover
approximately 66.1%.

Moreover, there was a decrease in the urban
class. In 2015, the urban class accounted for 11.4%
of the area, but by 2021, it had decreased to 9.4%.
Furthermore, there was a slight increase in the wa-
ter class, which occupied 0.28% in 2021 compared
to the same percentage in 2015.

3.3. Change Detection results

The presented data in Table 6 and Figure 4 pro-
vide information on the total area of each land use
and land cover (LULC) category for specific study

years (1985, 1990, 1995, 2000, 2005, 2010, 2015, and
2021). Additionally, Figure 3 displays the area (in
km2) of different LULC classes during the investi-
gated years. The spatial distribution of these cate-
gories can be observed in Figures 5 and 6.

In 1985, barren land constituted the largest class,
covering 96% (2518.52 km2) of the assigned LULC
categories. However, the agriculture class experi-
enced significant growth during the study period.
It started at 1.9% (51.55 km2) in 1985 and expanded
to occupy approximately 35% (927.50 km2) of the
study area by 2005. By 2021, the percentage of the
agriculture class had doubled once again, making
it the largest class, covering 66% (1733.95 km2) of
the study area.

This substantial increase in agricultural land can
be attributed to land reclamation projects carried
out between 1985 and 2005.

The implementation of these projects likely con-
tributed to the expansion of agricultural areas. This
trend continued between 2005 and 2021, resulting
in the dominance of the agriculture class in the
study area.

It is important to note that the detailed spa-
tial distribution of the LULC categories can be ob-
served in Figures 5 and 6, providing further insights
into the patterns and changes in land use and land
cover over time.

3.4. Nature and location of changes in LULC

rovides information on the change detection sta-
tus, percentages of changed areas, and the rate of
change in each land use and land cover (LULC)
class. The location of these changes is depicted in
the maps presentedin Figures 5 and 6. Analysis of
the data in Table 6 and Table 7 revealed moderate
to slight undesirable long-term changes, including
conversions from agricultural land to barren land
and urban areas.

The total long-term change rate indicates a sig-
nificant increase in agricultural land from 1985
to 2021, reaching almost 66%. In contrast, there
was a decrease in the change rate of barren land
by approximately 24% during the same period.
These changes can be attributed to the implemen-
tation of land reclamation projects in the study
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Table 7: LULC Change Detection summary.

Classes
Area (Km2 )

Agriculture Bare
land

Urban Water

1985 51.55 2518.52 41.44 10.96
1990 146.80 2423.89 44.55 7.23
Change
(1990:
1985)

95.25 -94.63 3.11 -3.73

1995 255.33 2310.78 45.42 10.94
Change
(1995 -
1990)

108.53 -113.11 0.87 3.71

2000 466.73 2030.17 112.17 11.40
Change
(2000 -
1995)

213.40 -280.61 66.75 0.46

2005 929.91 1542.05 139.69 10.82
Change
(2005-2000)

461.18 -488.12 27.52 -0.58

2010 1148.11 1146.62 319.06 8.68
Change
(2010-2005)

218.20 -395.43 179.37 -2.14

2015 1304.87 1011.08 299.28 7.24
Change
(2015-2010)

156.76 -135.54 -19.78 -1.44

2021 1733.98 634.08 247.02 7.39
Change
(2021-2015)

429.11 -377.00 -52.26 0.15

Change
(2021 -
1985)

1682.40-1884.29 205.58 -3.57

Classes
changepercentage (%)

Agriculture Bare
land

Urban Water

1990 - 1985 184.8 -3.8 7.5 -34.0
1995 - 1990 73.9 -4.7 2.0 51.4
1995 - 2000 82.5 -12.1 147.0 4.2
2000 - 2005 98.9 -24.0 24.5 -5.1
2005 - 2010 23.5 -25.6 128.4 -19.8
2010 - 2015 13.8 -11.7 -6.2 -16.6
2015 - 2021 33.0 -37.3 -17.5 2.0

Figure 5: The spatial distribution ofLULC change occurred
between (1985 to 1990), (1990 to 1995), (1995 to 2000)
and(2000 to 2005)

Figure 6: The spatial distribution of LULCchange occurred
between (2005 to 2010), (2010 to 2015), (2015 to 2021) and
(1985 to 2021)
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area, which facilitated the expansion of agricultural
land.

Comparing the periods 1985 –2000 and 2000
–2015, it was observed that the rate of expansion in
the urban class significantly increased in the latter
period. The percentage change in the urban class
was 1.5%, 1.6%, 1.7%, 4.2%, 5.3%, 12.1%, 11.4%,
and 9.4% for the years 1985, 1990, 1995, 2000, 2005,
2010, 2015, and 2021, respectively. This substantial
increase in the urban class is likely attributed to the
expansion of residential allotments and industrial
areas since 2005.

Regarding the water class, the results of image
classification indicated several increases from 1985
to 2000, where it occupied 10.9 km2 in 1985 and ex-
panded to 11.4 km2 in 2000. However, from 2000 to
2021, there was a significant decrease, with the wa-
ter class covering 7.3 km2 in 2021. The decrease in
the water class is a result of hydrological changes
that lead to fluctuations in the underground water
levels, consequently affecting the lakes of Wadi El-
Natron.

In summary, Table 7 provides insights into the
change detection status and rates of change in each
LULC class. The maps in Figures 5 and 6 illus-
trate the spatial distribution of these changes. The
findings highlight the increase in agricultural land
and decrease in barren land, the significant expan-
sion of the urban class, and the changes in the wa-
ter class over the study period. Government poli-
cies regarding water bodies, urbanization, and land
reclamation initiatives are some of the factors that
affect these changes.

3.5. Soil Carbon Sequestration:

In this study, the soil carbon sequestration (SCS)
was calculated in the study area as a baseline. As
shown in Figure 7, The SCS results indicated that
the sequester carbon in the soil ranged mostly from
440 to 2125 g/m2.

These findings underscore the potential of agri-
cultural activities to mitigate greenhouse gas emis-
sions and enhance carbon sequestration in the re-
search area. Effective carbon sequestration not
only prevents the release of CO2 into the atmo-
sphere but also aids in the removal of existing CO2,

resulting in a direct decrease in atmospheric con-
centrations. This decline in CO2 levels generates a
positive feedback effect by diminishing the green-
house effect and subsequently decelerating global
warming. The findings of this research will improve
our understanding of the crucial role that carbon
sequestration plays in addressing climate change
and provide useful insights into the potential ben-
efits and difficulties associated with its widespread
implementation.

Figure 7: Carbonsequestration in grams per square meter in
the study area

The adoption of effective carbon sequestration
methods may hold significant potential substan-
tially reducing CO emissions and contributing to
global endeavors [30].

Figure 7. Carbon sequestration in grams per
square meter in the study area

4. DISCUSSION

Egypt’s population has been steadily increas-
ing, particularly in the past century. Most of this
population growth has occurred in the densely
populated Nile delta, which is considered one of
the most crowded regions worldwide [1]. Conse-
quently, successive governments have prioritized
addressing the issue of overpopulation and its im-
pact on the agriculture sector’s continuous de-
mand for increased agricultural production [2].
Accordingly, these development projects require
careful monitoring to prevent large-scale environ-
mental degradation caused by natural processes
and human activities.
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Table 8: Soil parameters for subsurface horizon in the studied area at Western Delta.

ID Depth (cm) Bulk Density (g/cm3) OC (%) Cs (g/m2) Lu/Lc class Soil type

S1 20 1.80 0.12 439.53 Agriculture coarse sand
S2 30 1.58 0.10 496.05 Agriculture coarse sand
S3 20 1.42 0.29 825.58 Agriculture Medium sand
S4 20 1.60 0.58 1860.47 Agriculture Fine sand
S5 20 1.62 0.30 979.53 Agriculture Medium sand
S6 30 1.62 0.15 706.40 Agriculture Medium sand
S7 30 1.63 0.26 1279.36 Agriculture Medium sand
S8 50 1.61 0.18 1472.88 Agriculture Fine sand
S9 30 1.67 0.28 1382.09 Agriculture medium sand

S10 30 1.62 0.35 1718.37 Agriculture Fine sand
S11 30 1.66 0.43 2128.44 Agriculture Fine sand
S12 40 1.65 0.14 897.54 Agriculture Medium sand
S13 45 1.62 0.15 1088.81 Agriculture Medium sand
S14 40 1.64 0.15 954.66 Agriculture Medium sand
S15 15 1.63 0.21 512.37 Agriculture coarse sand
S16 30 1.68 0.12 587.48 Agriculture coarse sand
S17 30 1.60 0.23 1084.75 Agriculture Medium sand
S18 25 1.64 0.14 557.56 Agriculture coarse sand

The analysis of land use and land cover (LULC)
change patterns in the western Nile Delta of Egypt
revealed several significant transformations. The
predominant change observed over the study pe-
riod was the conversion of bare land to agricul-
ture. This conversion occurred progressively, with
a substantial increase in agricultural land between
1985 and 2021. The findings indicate a continu-
ous expansion of agricultural activities in the re-
gion, likely driven by land reclamation efforts and
the increasing demand for agricultural production
due to population growth. The observed changes
in LULC provide valuable insights into the dynam-
ics of land transformation and the implications for
environmental management and sustainable de-
velopment in the study area.

Remote sensing and image classification tech-
niques played a crucial role in detecting and an-
alyzing LULC changes over the study period. The
use of Landsat satellite data and a supervised clas-
sification approach allowed for the accurate iden-
tification and mapping of different land cover cat-
egories, including agriculture, urban areas, bare
land, and water bodies [1]. The availability of his-

torical Landsat images spanning several decades
enabled the assessment of long-term LULC dy-
namics. The findings demonstrate the effective-
ness of remote sensing as a tool for monitoring and
understanding land-use changes, providing valu-
able information for land management strategies
and decision-making processes [11].

Our ability to forecast and mitigate the conse-
quences of climate and land cover changes re-
lies, in part, on a precise description of the dis-
tribution of soil organic carbon (SOC) and car-
bon stocks (CS), as well as an understanding of
the factors influencing the inputs and outputs of
SOC [33, 34]. Moreover, investigating land use and
land cover (LULC) changes and their spatial distri-
bution, along with the content of carbon stocks,
is crucial for examining the global carbon cycle
and the greenhouse effect [35–37]. Consequently,
it is essential to quantitatively assess the impacts
of LULC changes on carbon dioxide (CO2) sources
and sinks in the Western Delta [9]. As presented in
Figure 3 and Table 6, in 1985, barren land was the
largest class, representing 2518.52 km2 of the total
LULC categories assigned. The area of agriculture
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class had increased significantly; after being about
51.55 km2 in 1985, it occupied about 927.50km2 of
the study area in 2005. The increase in agriculture
class that occurred at the expense of the decrease
in bare land class can be attributed to the continu-
ous expansion of agricultural reclamation projects
in the study area, which aimed to maximize land
utilization and increase agricultural productivity to
provide food security for the continued population
growth.

In 2021, the percentage of the agriculture class
had doubled significantly again, resulting in the
agriculture class becoming the largest class, occu-
pying 1733.95 km2 of the study area.

The total long-term change rate of the increase
in agricultural land (from 1985 to 2021) increased
to almost 66%, in contrast to a decrease in the
change rate of barren land by approximately 24%
in the same period.

The number of agricultural land reclamation
projects doubled by in these periods as a result of
the country’s interest in agricultural development
in the study area and its plans to achieve food secu-
rity by encouraging agricultural investment com-
panies to invest in this area and providing a lot
of facilities to these companies. And this interest
came for many reasons. For example, Egypt has a
rapidly growing population, and with that comes
the need to produce more food to meet the increas-
ing demand. This necessitates the expansion of
agricultural land to maximize food production [2].
Furthermore, from an economic importance view-
point, agriculture plays a crucial role in the Egyp-
tian economy, employing a significant portion of
the population and contributing to the country’s
export earnings. Increasing agricultural land helps
enhance productivity and boost the agricultural
sector’s contribution to the national economy [1].

Agricultural policy and incentives: The Egyp-
tian government has implemented various policies
and incentives to encourage agricultural expan-
sion. These include providing subsidies, facilitat-
ing access to credit, and offering support to farmers
in terms of infrastructure and irrigation systems.
These measures have encouraged farmers to con-
vert bare land into agricultural land [38].

Land reclamation projects: Egypt has under-

taken extensive land reclamation projects to con-
vert barren or marshy areas into productive agri-
cultural land. These projects involve draining wa-
terlogged areas, building dykes to control flooding,
and applying techniques like soil improvement,
leveling, and proper drainage systems [39].

Agricultural development programs: Various
agricultural development programs and initiatives
are implemented to enhance productivity and
increase crop yields. This often involves convert-
ing bare land into cultivated fields to maximize
agricultural output [39].

Compared to the period 1985-2000, the period
2000-2015 witnessed a huge increased in the rate
of expansion in the urban class. The classification
result by percentage of the change in the urban
class was 1.5%, 1.6%, 1.7%, 4.2%, 5.3%, 12.6 %, and
11.4%, respectively. This was probably due to the
increased expansion rate that has happened in res-
idential allotments and industrial areas since 2005.
This growth indicates ongoing urbanization pro-
cesses and the conversion of bare land class for ur-
ban development, including residential, commer-
cial, and infrastructure projects to meet the in-
crease in agricultural and industrial projects.

Within the period from 1985 to 2021, minor
changes occurred in the water class. These changes
may be attributed to factors such as changes in hy-
drological conditions affecting water bodies during
the specified timeframe.

The results of image classification and LULC
change detection indicated that an intensive de-
velopment program has been implemented in the
study area during the last four decades. Develop-
ments within the study area include land reclama-
tion and the expansion of irrigated areas into the
desert, as well as the establishment of many ru-
ral, industrial, and commercial communities. All
of these (bio) physical changes within the setting
of the region’s ecosystems reflect the dynamics of
human impacts on the study area.

Soil organic carbon (SOC) plays a crucial role in
soil sustainability, fertility, degradation, and crop
production. When considering a large-scale con-
text and monitoring SOC, soil properties have been
utilized as effective tools to assess the impact of
land use change on SOC levels. [40–42].
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The estimation of carbon (C) emissions result-
ing from land-use changes involves applying car-
bon sequestration and soil organic carbon (SOCP)
assessments to soil profiles [43, 44].

The study investigated the impact of LULC
change on soil carbon sequestration (SCS) in the
western Nile Delta, as shown in Figure 7. The re-
sults indicate that the sequestered carbon in the
soil varied within a range of 440 to 2125 g/m2. This
indicates the capacity of the study area to act as
a carbon sink, contributing to the mitigation of
greenhouse gas emissions. The conversion of bare
land to agriculture, which accounted for a signif-
icant proportion of the observed LULC changes,
likely contributed to increased carbon sequestra-
tion in the soil. Agricultural practices, such as the
cultivation of crops and the application of organic
matter, can enhance carbon storage in the soil [45].
These findings highlight the potential of agricul-
tural activities as a means to mitigate greenhouse
gas emissions and promote carbon sequestration
in the study area.

The implementation of efficient carbon seques-
tration methods holds tremendous potential for
combating rising atmospheric CO2 concentrations.
By capturing CO2 from industrial processes, power
plants, and other emission sources, and storing it
in stable carbon sinks, such as agricultural land
and geological formations. Effective carbon se-
questration not only prevents the release of CO2

into the atmosphere but also facilitates the removal
of CO2 already present, leading to a direct decrease
in atmospheric concentrations [46]. This reduction
in CO2 levels has a positive feedback effect, as lower
concentrations result in a diminished greenhouse
effect and a subsequent slowdown in global warm-
ing.

The insights gained from this study have impor-
tant implications for environmental management
and policy development in the western Nile Delta.
The observed trends in land use change and car-
bon sequestration highlight the need for sustain-
able land management practices that balance agri-
cultural expansion with environmental conserva-
tion.

Future research efforts could focus on evalu-
ating the ecological and socio-economic impacts

of LULC changes, investigating the effectiveness
of different land management strategies in pro-
moting carbon sequestration, and assessing the
resilience of the region’s ecosystems to ongoing
environmental changes. Such research is essen-
tial for informing targeted policies and interven-
tions aimed at achieving sustainable development
goals and mitigating the adverse effects of climate
change in the study area [27].

In finale, the present study has provided ba-
sic data for one of the most important Egyptian
agriculture regions, which in turn will offer scien-
tific guidance for policy making efforts to improve
agriculture practices and control CO2 emissions in
Egypt.

5. Conclusion

It can be concluded from this study that the
combination of GIS and remote sensing data,
known as RS&GIS, is a valuable and efficient tool
for accurately detecting changes in land use and
land cover across large areas. This data may help
to explain local changes observed for different
LULC types. The study used eight Landsat pictures
from over 36 years, taken in 1985, 1990, 1995, 2000,
2005, 2010, 2015, and 2021, to make land use maps
using maximum likelihood classification methods.
These maps included a signature file for the west-
ern Nile delta region. According to the different
land cover types existing in the study area, the
signature file was created by selecting four classes.
The selected classes of land cover were water, agri-
cultural, urban, and bare land. The results show
that agricultural classes increased by 64% from
the year 1985 to 2021; after being about 1.9% in
1985, they now occupy 66% in 2021. However, the
bare land had decreased due to the increase of
urban and agricultural lands. The results of SCS
indicated that the sequester carbon in soil ranged
mostly from 600 to 1800 g/m2. This estimation is
highly valuable for strategizing sustainable plans
in agriculture, as well as for the effective manage-
ment of water resources and future projects related
to agricultural, urban development, and water
management.
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