Electronic Journal of Mathematical Analysis and Applications
Vol. 13(1) Jan. 2025, No.15.

ISSN: 2090-729X (online)

ISSN: 3009-6731(print)

http://ejmaa.journals.ekb.eg/

STUDY OF THE DYNAMICS OF HIV-CHOLERA
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ABSTRACT. In this article, we propose and analyze a compartmental model for
HIV-Cholera co-infection. We establish the existence, uniqueness, and positiv-
ity of the solution. The disease-free equilibrium (DFE) point is then identified
and its local and global stability is analyzed to better understand the dynam-
ics of this co-infection. A sensitivity analysis is conducted to explore potential
strategies for limiting secondary infections. Finally, numerical simulations il-
lustrate our theoretical results, showing that when the contact rate between
susceptible and infected individuals is significantly reduced, the infected pop-
ulation will decline, with cholera disappearing after 400 days and HIV after
500 days. This study highlights that the most influential parameters for con-
trolling the disease are the contact rates Sy, B¢, and Bgc. Numerical results
show that both diseases will disappear when the basic reproduction number
Ro remains below one, but the diseases remain endemic in the population
when R is greater than one.

1. INTRODUCTION

HIV/AIDS is a sexually transmitted disease that can also spread through contact with
contaminated objects. The infection is caused by a retrovirus that transcribes its RNA
into viral DNA after infecting a host cell, a process mediated by the enzyme reverse
transcriptase [13].

The HIV virus contains three retroviral genes coding for various viral proteins. As of
2023, over 40 million people worldwide are living with HIV. The first mathematical model
addressing HIV was introduced in 1986 [3].

A study by [5] described the seroprevalence of HIV among tuberculosis patients in
Chad, analyzing epidemiological characteristics and associated risk factors. Additionally,
[15] investigated the feasibility of cervical smear tests for HIV-positive women in Chad.
Cervical cancer, a leading cause of cancer-related deaths among women in sub-Saharan
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Africa, has seen increased incidence due to HIV infection, reinforcing WHO recommen-
dations for screening precancerous lesions[15]. While antiretrovirals have improved the
survival of people living with HIV (PLHIV), emerging non-HIV-related comorbidities pose
significant challenges for patient management [11].

Cholera, on the other hand, is an intestinal disease caused by the bacterium Vibrio
cholerae, which colonizes the human gut. This pathogen is part of the environmental
microbial community [6]. Standard bacteriological procedures to isolate V. cholerae from
environmental samples, including water, are often unsuccessful between outbreaks [6].
Cholera transmission primarily occurs through contaminated water, food, and seafood
from endemic regions [9]. The disease manifests as severe, profuse diarrhea, leading to
acute dehydration and potentially death without prompt treatment [8]. Clinical forms
include dry cholera, characterized by shock and rapid death; classic cholera, with diarrhea
and vomiting, which can lead to fatal outcomes; and mild cholera, which may present no
symptoms, requiring laboratory diagnosis. Treatment involves rehydration and antibiotics,
while prevention includes sanitation measures, water treatment, and improved hygiene and
nutrition [10].

Both cholera and HIV rank among the most significant infections in sub-Saharan Africa
in terms of morbidity and mortality [4]. The impact of cholera on HIV represents a critical
public health issue due to the complex interactions between the two infections and their
consequences on population health. The WHO has issued recommendations on the use
of antiretrovirals for HIV treatment since 2002, with subsequent revisions in 2003, 2006,
and 2010 [13].

In this context, it is crucial to study the mutual effects of these two diseases on the
spread of infection.

The objective of our study is to examine the impact of cholera on people living with
HIV (PLHIV) in terms of transmission and recovery, and to analyze the dynamics of this
co-infection using an SIR-type mathematical model. This model will provide a better
understanding of the interactions between these two diseases.

2. MODEL FORMULATION

We consider an epidemiological model of the STR type to describe the dynamics of HIV
and cholera propagation. Each population is subdivided into several subpopulations: Sg
represents individuals susceptible to HIV, S¢ represents individuals susceptible to cholera,
Stc represents individuals susceptible to both diseases, I represents individuals infected
with HIV, Ic represents individuals infected with cholera, Iy represents individuals
co-infected with HIV and cholera, Ry represents individuals recovered from HIV, R¢
represents individuals recovered from cholera, and Ry¢c represents individuals recovered
from both diseases.

We assume that individuals recovered from HIV are those who have undergone an-
tiretroviral (ARV) treatment. Additionally, the recruitment of susceptible individuals is
constant and is denoted respectively by Ag for those susceptible to HIV, Axc for those
susceptible to both diseases, and A¢ for those susceptible to cholera.

The transmission rates are given by:

e [y, representing the rate at which individuals susceptible to HIV become infected,

e (¢, representing the rate at which individuals susceptible to cholera become in-
fected,

e [mc, representing the rate of simultaneous infection by both HIV and cholera.

Individuals infected with HIV and/or cholera die at rates pm for HIV and pc for
cholera, respectively.

The interactions between co-infected individuals and susceptibles are modeled by the
following terms:



aglnc represents contact between a co-infected individual and an individual
susceptible to HIV,

aclgc represents contact between a co-infected individual and an individual
susceptible to cholera.

Finally, v& and ¢ denote the recovery rates for HIV and cholera, respectively.
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Equipped with initial conditions:
Sw(0) > 0,58¢(0) > 0,Suc(0) > 0,15(0) > 0,1c(0) > 0,1nc(0) > 0, Ru(0) > 0, Rc(0) > 0, Ruc(0) > 0.
(1)

Variable Description

Su Density of the population healthy and not infected with HIV
I Density of the population infected with HIV
Ry Density of the population recovered from HIV

Sc Density of the population healthy and not infected with cholera
Ic Density of the population infected with cholera
Rc Density of the population recovered from cholera

Suc Density of the population healthy and not infected with HIV /cholera
Iuc Density of the population infected with both HIV and cholera
Ruc Density of the population recovered from both HIV and cholera

TABLE 1. Table of model variables.

Parameters Epidemiological Interpretation

Ang Constant recruitment of population susceptible to HIV
Ac Constant recruitment of population susceptible to cholera
Apc Constant recruitment of population susceptible to both diseases
B HIV transmission rate

Be Cholera transmission rate

WH Mortality rate due to HIV

we Mortality rate due to cholera

YH Recovery rate from HIV

Yo Recovery rate from cholera

af Effect of HIV on cholera transmission

ac Effect of cholera on HIV transmission

TABLE 2. Table of model parameters.

3. MATHEMATICAL ANALYSIS OF THE MODEL
3.1. Positivity.

Theorem 1. The components Su(t), Sc(t), Iu(t), Ic(t), Ru(t), Rc(t), [uc(t), Rac(t) re-
main positive for all time t.

Proof. The equation (1a) implies

ds
dtH =An — (Bala + aglc + d)SH,
which can be rewritten as: s
— A f(©)5n = A, 2)

where f(t) = Bulu(t) + anlc(t) + d.
The solution to this differential equation is:

t
Su(t) = e Jo f(ar [SH(O)—i—AH / elo f(T)des] >0.
0
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Similarly, S¢ > 0.
For Iy, the equation (1f) implies:
dlgc

P (BrcSuc — v —v¢ —d — pu — pc)luc,

whose solution is:

IHC(t) — Kef(f(ﬁHnch(T)—’YH—’Yn—d—MH—HO)d"' > 0.

Similarly, Ic > 0.
For I, the equation (1d) yields:

¢
In(t) = e Jo 9(mdr {IH(O) + OéH/ SH(T)IHC(T)efo Q(s)dsdT] >0,
0

where g(t) = —BuSu(t) + vu + pu + d.

Similarly, Rg, Rc, Rac > 0 can be shown using (2) and the fact that Iy, Ic, Inc >
0. d
3.2. Boundedness of the total population.

Theorem 2. The total population remains bounded for all time t.

Proof. Let N denote the total population. Then:
N(t) = Su(t)+ Sc(t) + Suc(t) + Iu(t) + Ic(t) + Inc(t) + Ru(t) + Re(t) + Ruc(t).
Differentiating N (t) gives:
N'(t) =A—dN(t) — pule — pele — (pu + pe)luc,

where A = Ay + Ac + Auc.
This implies:
N'(t) < A—dN (1),
whose solution is: ,
N(t) <e [N(O) + A/ edsds} .
0

Thus:
A A
<e ¥ -S|+ =,
N(t)<e {N(O) d]—l—d
Therefore:
NH<h o HNO <4, @)
N(t) < N(0) if N(0) > 4.
Hence: A
0 < N(t) <max(N(0), 2
Consequently:

Qo = {X = (Su,Sc, Suc, In,Ic, Inc, R, Re, Rac) € R? | 0 < N(t) < max(N(0), %)}
(4)
O

3.3. Equilibrium Points without Disease (DFE). We solve the system when there
are no diseases in the population, i.e., when Iy = Ic = Inc = 0. Thus, we have

Ag Ac Awc
Eo = (=2 26 2HC 40.0,0,
0 ( d ) d ) d 70,05070,050)
which is the unique equilibrium point without discase (DFE).
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3.4. Basic Reproduction Number. Let F = (BuSuluy + auSuluc,BcSclc + acScluc, ﬁHcSHIHc)T
represent the new infections in the infected classes Ix, I, Imc and V represent other flows
within and outside the infected classes I'y, Ic, Inc (note that V has a negative sign).

The basic reproduction number is the average number of secondary infections produced
by an infected individual when introduced into a population of susceptibles. In our case,
V is given by:

(ya +du + pu)lu
V= (ve +dc + pc)lc
(ve +vc + pa + pe +d)Iuc
The matrix of new infections F' and the transfer matrix between compartments V' are

the Jacobian matrices obtained by differentiating F and V with respect to the infected
variables, i.e.:

OF
DF(E) = ——————— 5
( 0) O(IH,IC,IHC) By ( )
Thus, we have:
BulAu 0 anAmg
d d
A A
F = 0 BC C acic (6)
d d
BucAuc
0 0 _
d
and
Yu +pE +d 0 0
V= 0 Yo +uc +d 0
0 0 YH +YC + pE + pe +d
Thus, the matrix of the next generation is given by:
Bulu 0 aglAu - 0 0
d d YH + pH +d
vl — 0 BcAc aclAc 0 1 0
d d Yo + pe +d
BacAuc 1
0 0 _ 0 0
d YH + Y + pE + po +d
i.e.
BaAm 0 0
d(ye + pu +d) BA
FV~'= 0 S 0
d(ve + po +d)
0 0 BacAuc

d(ya +vc + pa + pe + d)
Since FV ™! is diagonal, its eigenvalues are the diagonal elements:

A= BuAn )= BcAc As = BucArc
d(yu + pu +d)’ d(ye + pe +4d)’ dive +vo + pr + pe +d)’

Thus,

Ro = p(FV™') = max (Ry, Rz, R3) (7)
where

BrAn BcAco BrcAuC

s Ry=—————— Ry = :
d(ye + p + d) T dve+pe+d) T d(ve + vo + pm + po + d)
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3.5. Local stability analysis.
Theorem 3. The DFE Ey is locally asymptotically stable if Ro < 1.

Proof. The Jacobian matrix at the point Ey is

—d 0 0 _% 0 _ OHiAH
a a
BoA ac A
0 —-d o 0 —fctc —aecha
0 0 —d 0 0 _BuchAHC
J(Bg) = 0 0 o PHMH oy oy —d 0 C‘HdgH
“=1lo o o ) faldc _ oo —d N adhc
0 0 0 0 0 2HCRIC _ vy — o — ppy — pe —d
o 0o o i 0 0
o 0 o 0 Yo 0
o 0 0 0 0 YE + 0
N (8)
The eigenvalues of this matrix are A\ = Ao = A3 = s = A5 = X¢ = —d, A7 = BHTH _

v — pg —d, s = 2C2C — o — o —d, and Ng = BHCMIC — yy — o — g — po — d.
Thus,

M = (ya+pag+d)(Ri—-1) (9)
As = (Yot po+d)(R:—1) (10)
Ao = (va+7c+pr+pc+d)(Rs—1) (11)
If Ro < 1, then all the eigenvalues are negative.
Thus, the equilibrium point Ey is locally asymptotically stable when Ro < 1. a

3.6. Global stability of the disease-free equilibrium point.
Theorem 4. The DFFE Ey is globally asymptotically stable if Ro < 1.

Proof. Let’s check the conditions of the Castillo-Chavez theorem.

(1) Let z1 = (Su,Sc, Suc, Ru, Rc, Ruc) represent the class of uninfected individu-
als, and z2 = (Iu, Ic, Inc) represent the class of infected individuals. For z2 = 0,
the system (1) becomes

dSu

o - Apg —dSH (12)
dSc
ds
dI:C = Agc — dSgrc (14)
dRy
dRc
ek dRc (16)
dRuc
— . 1
7 dRuc a7
Solving each of these equations, we get
_ A A
SH(t) =e dt |:SH(0) — 7H:| + TH
_ A A
Sc(t) = e dt |:SC(O) - 70:| + 7C

_ A A
Shc(t) =e [SHC(O) - %C} +=2C
and Ry (t) = Ro(t) = Ruc(t) = ke~ . Taking the limit as ¢ — oo, we get
. Ag Ac A .
e = (55 5 0.00) =
7
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Hence, 27 is globally stable when zo = 0.
(2) Now consider the system of the infected individuals:

dl
dlc
d; = BcScle —vyole + acScluc — (d+ pe)le = g2 (19)
dl
d};C = BucSucluc — (va + ve)luc — (d+ puc)luc = g3 (20)

Let A = a(y%ﬁ’g“)(ﬂ)). We have

Bt —yg — pg —d 0 o A
A= 0 Bere —ye — pe —d acte
0 0 ﬁHcA%Q—’YH—“/G—ﬂH—,Uc—d
Since
. g1
G:AZQ_ g2
g3
we have

(ATH — SH) (Bualg + anluc)
G= (AT - Sc) (Bclc +acluc) | 20
Bucluc (A%C - SHC)
in the domain
d
Hence, Ey is globally asymptotically stable when Ro < 1. a

Q= {(SH,SC,SHc)eRalossHs Mo < s < 250 < e < AHC}

4. SENSITIVITY ANALYSIS

We will use the data in (3) for the numerical sensitivity analysis. It should be noted that
some data were not found in the literature regarding co-infection, and we have assumed
them. However, the recruitments are random.

Parameters Intervals Values References
Apn - 10 assumed
Ac,Auc - 5 assumed
B 0.000004-0.15  0.000012 [3]
Bc 0.000001-0.1  0.000032 [12]
Brc 0.000002-0.015 0.00022 assumed
WH 0.0001-0.001  0.0007 3]
we 0.0001-0.001  0.0006 [14]
YH 0.004-0.15 0.02 3]
Yo 0.004-0.15 0.02 [14]
ap 0.0004-0.1 0.00115  assumed
ac 0.00002-0.1 0.00125 assumed
d 0.00001-0.1 0.0001 [14]

TABLE 3. Model parameters table.
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FIGURE 2. PRCC of R using the parameter values in (3).

Interpretation: Figure (2) indicates that parameters far from the origin influence the
variation of R1, Rz, and Rs. For example, 8u, B¢, Buc, and the recruitments. However,
this PRCC suggests promoting natural death, which we cannot consider. Therefore, to
control R, these parameters must be controlled.

5. NUMERICAL SIMULATIONS

We use the parameter data from Table (3) for numerical simulations to graphically
illustrate the results. First, we will simulate with the exact data, then we will adjust some
parameters recommended by the PRCC to see the trend of the curves.

Evolution des populations Evolution des populations

=
g 84 —  ShiSusceibles VH) qig
v SeiSusceplivies ehalera) 2 BT
B s g
g 87 2 g
H i g
EE 2
CE 3B
1] i
] ]
o — o
‘ : ‘ : : : : ; : . : : :
a 100 200 30 400 500 G0 L] 20 40 &0 a0 100
Temps Temps
(a) Susceptible populations (b) Infected populations

FIGURE 3. Temporal behavior of the susceptible and infected
populations (with Ry = 48.5, Ry = 42.35, R3 = 38.1, and
Bu = 0.00022, Sz = 0.00012, and Brc = 0.00034).
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Interpretation: Figures (3(a))-(3(b)) show that the susceptible population will dis-
appear within the next 400 days due to the high reproduction rate of the infection. This
phenomenon is further strengthened by a high contact rate between susceptible and in-
fected individuals, promoting rapid disease transmission.

Evolution des populations

— In(infecté VIH)
le(Infecté choléra)
— Ihc{Infecté VIH et choléra)
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FIGURE 4. Temporal behavior of infected populations (with Ry =
1.05, Ry = 0.95, Rz = 0.81, and By = 0.0000022, S = 0.0000012,
and Sgc = 0.0000034).

Interpretation: Figure (4) indicates that, when the contact rate between susceptible
and infected individuals is significantly reduced, the infected population will disappear
after the next 400 days for cholera and 500 days for HIV, because biologically speaking,
the recovery from cholera is faster than that from HIV.

6. CONCLUSION

The studied HIV-Cholera co-infection model is of the SIR type. We have established
the local and global stability of the disease-free equilibrium (DFE). We also performed a
sensitivity analysis of the reproduction number. This study allowed us to understand that
the most influential parameters for controlling the disease would be the contact rates Bu,
Bc, and Brc. Numerical results show that both diseases will disappear when the basic
reproduction number Ry remains below one.

As future work, we plan to explore the endemic equilibrium points and investigate
whether there will be any bifurcation.

REFERENCES

[1] Agarwal M., Verma V. Modeling and analysis of the spread of an infectious disease cholera
with environmental fluctuations. Applications and Applied Mathematics: An International
Journal (AAM), 7(1): 27, 2012.

[2] Al-Arydah M., Mwasa A., Tchuenche J. M., Smith R. J. Modeling cholera disease with
education and chlorination. Journal of Biological Systems, 21(4): 1340007, 2013.

[3] Alassane M. Modélisation et simulations numériques de I’épidémie du VIH-SIDA au Mali.
PhD Thesis, INSA de Lyon ; Université du Mali, 2012. Disponible : https://theses.hal.
science/tel-01339825.

[4] AFRIQUE SUBSAHARIENNE, UN COUPLE MAUDIT. Article de synthese, 2010.

[5] Bessimbaye N., Moussa A. M., Mbanga D., Tidjani A., Mahamat, S. O., Ngawara, M. N.,
Ngarnayal, G., Fissou, H. Y., Sangare, L., Ndoutamia, G., & al. Séroprévalence de I’Ag HBs
et de lanticorps Anti VHC chez les personnes infectées par le VIH1 & N’Djamena, Tchad.
Bulletin de la Société de pathologie exotique, 107, 327-331, 2014.

[6] Colwell R. R. Climat mondial et maladies infectieuses: le paradigme du choléra. Science,
274(5295): 2025-2031, 1996.

10



[7]

8

9

(10]

(11]

(12]

(13]

(14]

(15]

Codeco C. T. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir.
BMC Infectious Diseases, 1: 1-14, 2001.

Eliot E., Daudé E., Bonnet E. Interpréter les épidémies du passé: I’exemple de 1’épidémie du
choléra-morbus en Normandie en 1832.

Griffith D. C., Kelly-Hope L. A., Miller M. A. Review of reported cholera epidemics worldwide,
1995-2005. The American Journal of Tropical Medicine and Hygiene, 75(5): 973-977, 2006.
Longini Jr I. M., Nizam A., Ali M., Yunus M., Shenvi N., Clemens J. D. Controlling endemic
cholera with oral vaccines. PLoS Medicine, 4(11): 336, 2007.

Ozanne, Alexandra. Activation immunitaire, immuno-sénescence et inflammation : Analyses
statistiques des liens avec les comorbidités non liées au VIH lors de linfection par le VIH.
These de doctorat, Université de Bordeaux, 2017. Disponible en ligne : https://theses.hal.
science/tel-01757534.

Pasteur Institute. Cholera: Symptoms, treatment, prevention; 2024. Available at: https://
www.pasteur.fr/en/medical-center/disease-sheets/cholera. Accessed December 6, 2024.
C. Régional de ’Afrique. Lignes directrices consolidées sur l'utilisation des médicaments an-
tirétrovirauz pour le traitement et la prévention des infections a VIH; recommandations pour
une approche de sante publigue—implications pour la Région africaine: rapport du Secrétariat,
2013.

Tien J. H., Earn D. J. D. Multiple transmission pathways and disease dynamics in a water-
borne pathogen model. Bulletin of Mathematical Biology, 72: 1506—-1533, 2010.

TO, CH., ND, M., ANG, NG., DJ, N., & RI, V. Etude de la séroprévalence du VIH chez les
patients atteints d’une tuberculose pulmonaire en 1999 au Tchad. Médecine tropicale, 62(6):
627, 2002.

ABDRAMANE ANNOUR SAAD

LABORATORY OF MATHEMATICAL MODELING, COMPUTER SCIENCE, APPLICATIONS AND SIMULA-

TIO

Ns (L2MIAS), UNIVERSITY OF N’DJAMENA, N’DJAMENA, CHAD
Email address: annoursaadabdramane31@gmail.com, saad@abdramane.com

DJIMRAMADJI HIPPOLYTE

LABORATORY L2MIAS, UNIVERSITY OF N’DJAMENA, N’DJAMENA, CHAD

Email address: hippolytedjimramadji@gmail.com

MAHAMAT SALEH DAOUSSA HAGGAR

LABORATORY L2MIAS, UNIVERSITY OF N'DJAMENA, N’DJAMENA, CHAD

Email address: msdhaggar@gmail.com

11



