
Electronic Journal of Mathematical Analysis and Applications
Vol. 13(1) Jan. 2025, No.14.
ISSN: 2090-729X (online)
ISSN: 3009-6731(print)
http://ejmaa.journals.ekb.eg/

CHRONOLOGICAL VERIFICATION OF THE COLLATZ

CONJECTURE USING THEORETICALLY PROVEN SIEVES

S. DUTTA

Abstract. Lothar Collatz proposed a conjecture in number theory in 1937.

The widely known Collatz conjecture has not been proven or disproven till

date. There are several algorithmic approaches for verication of the conjec-

ture. The sieve of Collatz is a new and popular algorithm to trace back the non

linear problem to a linear cross back algorithm, speeding up the verication

process. This paper presents a novel algorithmic approach to generate math-

ematically proven sieve bitsets of O(2m) elements, where m ∈ N. The paper

further presents a multi-core distributed approach for computational conver-

gence verication of the Collatz conjecture using the pre-computed sieve. Our

multi-threaded CPU implementation can verify 1.3× 109 128-bit integers per

second on Intel(R) Core(TM) i7-11850H CPU.

1. Introduction

The Collatz conjecture is one of the most famous unsolved problems in mathematics.
It states that given any arbitary positive integer n, the function f(n), dened as n2 if
x is even and 3n + 1 if n is odd, generates a nite sequence that eventually converges to
the trivial cycle passing through the value of 1. This nite sequence is also known as the
Collatz sequence. There is no theoretical proof of this conjecture till date despite many
authors’ signicant contributions [1–3] in solving this conjecture. There is no counter
example to disprove the conjecture either. However, there are experimental evidence [4,5]
and heuristic arguments that support it. The conjecture has been checked by computers
and found to follow the conjecture for all numbers n ≤ 268 [1].

The function f(n) can be written more elegantly as:

f(n) =


3n+ 1 if n is odd
n2 if n is even

(1)

2020 Mathematics Subject Classication. 11Y16.
Key words and phrases. Computational Number Theory, Collatz Conjecture, Sieve, Parallal

Computing, Algorithm.

Submitted Nov. 18, 2024.

1



2 S. DUTTA EJMAA-2025/13(1)

Note that the result of the odd branch will always be even, ensuring the next iteration
going through the even branch. The formulation can be expressed in terms of iterations
of the function

T (n) =


(3n+ 1)2 if n ≡ 1 (mod 2)

n2 if n ≡ 0 (mod 2)
(2)

The conjecture can be also represented as a weakly connected directed graph whose
vertices are positive integers n and the edges are directed from n to T (n) [2]. A portion
of the Collatz graph is presented in Fig 1.

Figure 1. A portion of the Collatz graph.

The iterates of T can be dened in a simple manner. T 0(n) = n, T 1(n) = T (n), and

for k ∈ N, T k(n) = (T (T k−1(n))). The T-trajectory of n will be the sequence iterates
(T 0(n), T 1(n), T 2(n), ...) [6]. For example, the T trajectory of 5 will be:

5, 16, 8, 4, 2, 1, 
The trajectory of n can show three possible behaviours where n ∈ N [2]:

• T k(n) = 1 for some k ∈ N
• The trajectory becomes periodic and T k(n) ̸= 1 for any k ∈ N.
• limk→∞ T k(n) = ∞

The conjecture states that for every n ≥ 1, there is an iterate T k(n) = 1 [7]. In other

words, all trajectories are convergent for every n ∈ N. For all n > 1, T k(n) can not occur

without T k(n) < n occurring [2]. So, we can conclude that the trajectory of n converges

if T k(n) < n for any nite positive integer value of k. The stopping time of n, denoted
by σ(n), is the minimum iteration after which a value smaller than the starting number

n is reached. In other words, σ(n) is the smallest value of k for which T k(n) < n, if it
exists [8]. Otherwise, innity.

Our approach to initiate the convergence verication process is to apply the Collatz
function (3) on a range of numbers and monitor their eventual convergence towards 1. To
estimate the verication time for a given sequence of numbers, we drew upon our previous
checks of number sequences known to satisfy the conjecture. These prior examinations
enabled us to establish a baseline for anticipated verication duration, keeping the in-
crement in verication time with increment in the size of the integers in consideration.



EJMAA-2025/13(1) CHRONOLOGICAL VERIFICATION OF THE COLLATZ 3

Sequences with number(s) deviating from the conjecture would result in innitely pro-
longed verication periods. This process is extended to encompass several sequences of
numbers, continuing until a sequence exhibits an unbounded verication time that signif-
icantly exceeds the anticipated duration. Upon encountering such a sequence of numbers,
we plan to partition that sequence into smaller sub-sequences, allowing more targeted
investigations, ultimately identifying the non-conforming number.

An important acceleration technique to test the convergence of numbers is the usage
of sieve [9]. Kaiser [10] proposed the sieve algorithm to trace back the non-linear 3n + 1
problem to a linear cross out algorithm. Using a sieve, only those numbers are checked
that can not be shown to converge within a few steps. Using the current sieve strategy,
using a sieve of 216 (a sieve has the size of 2m entries where m ∈ N) leaves only 1720 out
of every 216 (65536) numbers to be checked [4]. The sieve method looks for numbers that
can be crossed out, starting with the simplest consideration of crossing out even numbers
as they are bound to be united with the odd numbers [10].

The past and ongoing competitive projects verifying the convergence of numbers use
huge pre-computed lookup tables to calculate multiple iterates in a single step [9]. Barina
[9] used a dierent approach to avoid the additive step in the Collatz function by switching
between n and n+1 domains in a smart way when calculating the function iterates. Both
of these approaches to speed up the verication process is out of the scope of our study,
hence, not used.

The rest of the paper is organised as follows. Section 2 reviews related works, including
competitive algorithms and heuristic proofs. Section 3 lead to the construction of a novel
algorithm to generate the sieve and an ecient algorithm for convergence verication.
The convergence verication algorithm, that can be distributed across multiple cores of a
CPU, or multiple CPUs, is discussed in Section 4. The results of the sieve algorithm and
the exhaustive convergence verication algorithm is reported in section 5. Finally, section
6 concludes the paper.

2. Related Works

In the past decades, several mathematicians have tried to prove and disprove the con-
jecture, giving us a greater insight into the conjecture. Lagarias et al. [2] discusses the 3x
+ 1 problem in great detail and points out the generalizations of the problem, like heuris-
tic arguments and behaviour of the stopping time. Schwob et al. [11] presented novel
theorems and generalizations that explore a mapping that follows the Collatz conjecture
in two sections. The rst section focuses on calculating the number of Collatz iterations
for a natural number to reach 1 while the second section analyses the peak values. Rahn et
al.’s work [12] proposes a methodology to linearize the Collatz convergence using complete
binary tree and the complete ternary tree.

Diverse algorithmic approaches have been presented by a number of authors for the
convergence verication of the Collatz conjecture [9,13–16]. Several past projects, as well
as some ongoing ones are trying to verify the convergence for all numbers up to some
upper bound, or disprove it. The ongoing project by David Barina [5] claims that the
convergence of all numbers below 1450 × 260 has been veried. Honda et al. [17] claims
that their GPU implementation can verify 131× 1012 64-bit numbers per second and the
sequential CPU implementation can verify 525 × 109 64-bit numbers per second. Long
ago, in 1992, Leavens et al. [6] veried the convergence for all numbers up to 561013. In
a recent study, Ren et al. [16] proposed new algorithms that can verify very large numbers
than known algorithms. Their algorithm is claimed to be able to verify numbers as large
as 100000 bits.



4 S. DUTTA EJMAA-2025/13(1)

3. Sieve of Collatz

To ensure the convergence verication, the algorithm follows a sequential approach. For
a positive integer n, the Collatz function (3) is repeatedly applied until a value smaller than

n is reached. We consider the trajectory of n to be converged when we get T k(n) < n for
any nite positive integer value of k. To ensure the aforementioned statement to be true,
the sequences of numbers subjected to verication consist of numbers within a specic
range in an ascending order with no numbers missing in the range. The starting element
of the sequence is denoted by a0 and it is established that all numbers from 1 to (a0 − 1)

adhere to the conjecture. Suppose we are verifying a0 for convergence and T k(a0) < a0.

This means, T k(a0) ≤ a0−1. Since it is previously established that all numbers from 1 to
a0 − 1 adheres the conjecture, we can conclude that the trajectory of a0 converges. After
verifying that a0 converges, we can move to verifying a1 for convergence in the same way,
where a1 = a0 + 1, and so on. Due to the chronological nature of the verication process,
it is ensured that a number converges when it reaches a value smaller than itself.

It is observed that even numbers can be crossed out because they unite with the odd
numbers after a nite number of steps [10]. An alternative way to formulate this is as
follows. Consider an even number 2p where p is a positive integer. After the rst iteration
of the Collatz function, we get T 1(2p) = p. We know that p < 2p for all p ≥ 1. Thus,
we can conclude that all even numbers converge after a single iteration of the Collatz
function.

With this understanding, we modied our algorithm to skip all even numbers during the
verication process. To achieve this, we adapted an iterator that traverses the sequence of
numbers to be veried by incrementing it by 2 after verifying each odd number. Starting
the sequence of numbers to be veried with an odd number ensures incrementing the
iterator by 2 always direct us to the subsequent odd number that necessitates convergence
verication.

This sequence of numbers can be denoted as follows:

ap = 2p+ 1 (3)

where p ∈ N.
The aforementioned algorithm was implemented and the number of steps required for

convergence of each number was recorded. Fig 2 illustrates the relationship between the
number of steps and the frequency of numbers converging within each step count (for odd
numbers from 1 to 1024). We can observe a discernible pattern emerging in this graphical
representation.

Figure 2. Convergence steps count and their frequency.



EJMAA-2025/13(1) CHRONOLOGICAL VERIFICATION OF THE COLLATZ 5

25% of the numbers (among all odd and even numbers) converged in just 3 steps. By
running the algorithm for a sequence of numbers from 1 to 1000, we found a pattern in the
numbers that converged in 3 steps. The numbers were of the form 4p+1. Furthermore, we
established a mathematical proof of convergence using the following converging sequence:

4p+ 1 → 12p+ 4 → 6p+ 2 → 3p+ 1
Since 3p+1 < 4p+1 for all p ≥ 1, we can conclude that all numbers of the form 4p+1

converges in 4 steps. As a result, it is evident that only one number out of every four
numbers requires verication. Numbers of the form 4p + 0 and 4p + 2 can be skipped as
they are even numbers. Numbers of the form 4p + 1 converges in 3 steps, hence, can be
skipped. This leaves number of the form 4p+ 3 requiring convergence verication.

We re-modied our algorithm to ensure all numbers of the form 4p+ 1 is skipped. We
adapted an iterator that traverses the sequence of numbers to be veried by incrementing
it by 4 after verifying each number of the form 4p + 3. Starting the sequence with a
number of the same form ensures incrementing the iterator by 4 always direct us to the
subsequent number of the same form that necessitates convergence verication.

This sequence of numbers can be denoted as follows: an = 4p+3+ n, where p, n ∈ N .
We also observed 625% of the numbers converged in 6 and 8 steps. Further investi-

gation revealed that numbers of the form 16n + 3 converges in 6 steps. Also, numbers
of the form 32n + 11 and 32n + 23 converges in 8 steps. Mathematical proof of these
convergences are as follows:

16p+ 3 → 48p+ 10 → 24p+ 5 → 72p+ 16 → 36p+ 8 → 18p+ 4 → 9p+ 2
Since 9p + 2 < 16p + 3 for all p ≥ 1, we can conclude that all numbers of the form

16p + 3 converges in 6 steps. Similarly the convergence of 32p + 11 and 32p + 23 can be
proved as follows:

• 32p + 11 → 96p + 34 → 48p + 17 → 144p + 52 → 72p + 26 → 36p + 13 →
108p+ 40 → 54p+ 20 → 27p+ 10

• 32p + 23 → 96p + 70 → 48p + 35 → 144p + 106 → 72p + 53 → 216p + 160 →
108p+ 80 → 54p+ 40 → 27p+ 20

Similar convergence patterns can be seen for the following number forms:

• 128p+ 7 converges with 81p+ 5 in 11 steps.
• 128p+ 15 converges with 81p+ 10 in 11 steps.
• 128p+ 59 converges with 81p+ 38 in 11 steps.
• 256p+ 39 converged with 243p+ 38 in 13 steps.
• 256p+ 79 converged with 243p+ 76 in 13 steps.
• 256p+ 95 converged with 243p+ 91 in 13 steps.
• 256p+ 123 converged with 243p+ 118 in 13 steps.
• 256p+ 175 converged with 243p+ 167 in 13 steps.
• 256p+ 199 converged with 243p+ 190 in 13 steps.
• 256p+ 219 converged with 243p+ 209 in 13 steps.

Let’s have a look at the number forms discussed above. It was shown that there is
a way to unite these numbers with a certain number of steps. These steps are the sieve
of collatz. Using this sieve we will test only those numbers for convergence that are not
mathematically proven to be converging in a certain number of steps. The number forms
found to be converging can be represented as 2mp+j. Thus, a sieve bitset can be developed
of size 2m where m ∈ N and the i-th position of the bitset will represent the number form
2mp + i. The bitset will have values true for number forms that are proven to converge,
and false otherwise. A converging number form 2mp + j will populate the elds of the
bitset of size 2mbitset with true for p=[0, 2mbitset2m), p ∈ N . For example, the number
form 4p + 1 (22p + 1) will populate the following positions with true in a sieve bitset of
size 25: (22 × 0) + 1, (22 × 1) + 1, (22 × 2) + 1, (22 × 2) + 1, (22 × 3) + 1, (22 × 4) + 1.

While checking a number n, we will rst check if (n mod 2m) is true in the bitset,
if yes, we can conclude that n is convergent, thus, can be skipped. We will check n for



6 S. DUTTA EJMAA-2025/13(1)

convergence otherwise. We observed that with each increasing value of k, new number
forms are found to be convergent. So, we developed an algorithm to nd all convergent
number forms for any given value of k.

First, we start with a small value of m1 and a bitset B0 of size 2m1 . To create the
bitset of size 2m1+1, rst we generate a new bitset B of the same size with all positions
lled with false. We ll the position 0 with true, because numbers of form 2m1p + 0 is
an even number, thus, convergent. Next, we iterate from 1 to 2m1+1 − 1 and check for
positions that can be marked as true. For a position i, if the position i mod 2m1 is marked
as true in B0, it is known that the number form 2m1+1p+ i is convergent. Thus, position
i is marked as true in B. Otherwise, further checking is done to determine if that number
form mathematically converges.

The number is represented in the form αp + β, where α = 2m1+1 and β = i. This
is to mimic how we represented a number as 2mp + i while checking for convergence of
number forms manually. Then we assume p = 1 and the Collatz function is applied on it
repeatedly until βk < β and αk ≤ α, where αk and βk are the values of α and β after k
steps. Thus, for every αp+ β, αkp+ βk < αp+ p, for p ≥ 0. To apply to Collatz function
on the number represented as α + β, we make sure that α is even and check if β is even
or odd to determine if α+ β is even or odd. If α is found to be odd after any number of
steps, we stop this check and populate the i-th position of the bitset with false. This is
because, if alpha is odd, a number of the form αp + β can’t be determined if it is even
or odd based on just the value of β, it will depend on the value of p as well. This makes
the convergence checking of the number form exceptionally dicult, thus, we avoid it by
assuming that the certain number form does not converge.

3.1. Alortm I - Sv Btst Gnraton.
Require: B0 is a bitset of size 2m1

Require: B is a bitset of size 2m1+1 lled with false
Require: Integer i, α, β

(1) i ← 1
(2) repeat
(3) α ← 2m1+1

(4) β ← i
(5) αk ← α
(6) βk ← β
(7) repeat
(8) if B0[β] is true:
(9) B[i] ← true

(10) break
(11) if αk ≤ α and βk < β:
(12) B[i] ← true
(13) break
(14) if βk is even:
(15) αk ← αk2
(16) βk ← βk2
(17) if βk is odd:
(18) αk ← αk × 3
(19) βk ← βk × 3 + 1
(20) until αk is odd
(21) i ← i+ 1
(22) until i ≤ 2m1+1 − 1

A sieve bitset of size 216 leaves only 323028% of the numbers to be checked for con-
vergence. Since each true or false boolean value takes only 1 bit of space, it takes 8KB



EJMAA-2025/13(1) CHRONOLOGICAL VERIFICATION OF THE COLLATZ 7

space to store the bitset. A sieve bitset of size 232 leaves 09626% of the numbers to be
checked for convergence and takes 512MB of space.

The bitsets can be saved as text les and distributed. They can be later opened by
the convergence verication program and loaded into the main memory to speed up the
verication process. The best way to save the bitsets as text les is to save 1 in place of
true values and 0 otherwise. This requires 1 Byte of space for each character, requiring
64KB of space to save the bitset of size 216, and 4GB of space to save the bitset of size
232.

4. Convergence Verification

The convergence verication is executed on a sequence of numbers as discussed in
section 3. We start checking from a0 where a0 is a number of the form 4p + 3 upto an,
incrementing the iterator by 4 after each number is checked. For a number ai, it is rst
checked if the element at position (ai mod 2k) in the sieve bitset B is true or false. If it
is true, the checking is skipped and we increment the iterator by 4 to move to the next
number. If it is false, the number is checked for convergence. To eliminate this extra step
of calculating (ai mod 2k) for every number, we shifted to using an arbitrary precision

integer p to keep track of the value of (ai mod 2k). For this, we rst get the initial value of

p for a0 by calculating a0 mod 2k. Then we increment p by 4 after checking each number.
For example, we can use a 8 bit integer as p with a bitset of size 28, which allows p to reset
to 0 when ai ≡ 0 (mod 28), eectively serving as a faster alternative to computing the
modulo operation. This minimizes the computational overhead associated with repeated
modulo calculations.

4.1. Alortm 2: Convrnc Vrcaton.
Require: n0, nmax, k are positive integers
Require: B is a sieve bitset of size 2k

Require: p is a positive k-bit integer

(1) l ← (n0 mod 4)
(2) n0 ← n0 + (3− l)

(3) p ← (n0 mod 2k)
(4) repeat
(5) n ← n0

(6) if B[p] is false:
(7) repeat
(8) if n is even:
(9) n ← n2

(10) if n is odd:
(11) n ← 3n+ 1
(12) until n < n0

(13) n0 ← n0 + 4
(14) p ← p+ 4
(15) until n0 ≥ nmax

We can use multiple cores of a CPU for this verication process by distributing the
sequence is multiple cores. Same thing can be done by distributing a large sequence among
dierent CPUs. The chronological nature of the verication process allows us to do it.
For a large sequence from a0 to ax, where all numbers from 0 to a0 has been veried, we
can distribute the sequence among d cores or d dierent CPUs to speed up the verication
process. For ease of explanation, we will be referring to both dierent CPUs or dierent
cores in a CPU as cores. Let’s call the i-th core ci, where 0 ≤ i < d and i ∈ N. Core ci
will be assigned to check numbers from a0 + x

d
i to a0 + x

d
(i + 1). For example, core c0

will check numbers from a0 to a0 +
x
d
, i.e, a0 to a x

d
. Core c1 will check numbers from a x

d



8 S. DUTTA EJMAA-2025/13(1)

to a 2x
d
, and so on. Here, each core will assume that all numbers from zero to the starting

number the core starts checking from, has been veried. And each core will update the
last number veried with each new number’s verication.

This way, the core ci+1 will assume that all numbers from a0 to a xi
d

has been veried

while the core ci will still be busy verifying that range of numbers. This assumption will
not result in we missing a non-converging number, as, if any number in the range a0 to a xi

d

actually does not follow the conjecture and the ci+1 core’s assumption was wrong, the core
ci will nd the number not following the number in it’s run. Later, an innite amount of
non-converging number can be generated using that one non-convergent number, including
the number we marked as veried as a false positive.

In case multiple cores of a CPU is used for the convergence verication, a single sieve
bitset loaded in the main memory can be used by all of the cores, eliminating needs for
excessive memory usage. Choosing a range of integers to be checked where the count
of integers is divisible by the number of cores being used will ensure the sequence being
divided equally among all cores.

5. Results and Discussions

We implemented our proposed algorithm for sieve bitset generation in Python program-
ming language. As we needed more control and ease of implementation for this perticular
program, and execution speed did not matter, we chose to write it in Python. The pro-
gram can generate a sieve bitset of size 216 in 46865 microseconds, and a bitset of size 232

in 3083 seconds.
The convergence verication program is written in C++ and can verify units of 1013

128-bit numbers in a single run. The program uses 128-bit arithmetic to represent numbers
that are to be veried and for all major calculations. Although the program uses 64-bit
arithmetic where 128-bit arithmetic is unnecessary. Table 1 shows the comparison between
dierent sieve sizes, comparing time consumption in sieve generation and the speed of the
convergence verication program using that sieve. We can see that a sieve of size 216 gave
us the best speed in the convergence verication program. A comparison of our program
with other competing programs is displayed in Table 2. Note that the hardware used
in these dierent programs are dierent. Also, note that all other programs uses lookup
tables of size O(2N ) or O(N) [9]. Our program does not use any such lookup tables.

Table 1. Comparison between dierent sieve sizes.

Sieve size Computational Convergence verication
cost (ms) speed (numbers/second)

216 46.865 14335× 109

232 3083000 13105× 109

From the comparison above, we can conclude that our algorithm showed decent per-
formance despite having no lookup tables to speed up calculations during the verication
process. Using a mathematically proven sieve ensures we don’t mark any number as ver-
ied as a false positive. Using multiple cores and threads is one of the major factors in
the speed of the algorithm. It also allows parallel verication in dierent machines. The
algorithm can be further improved by introducing lookup tables, which can be a focus of
future work.

6. Conclusion

This paper presents a novel method of generating a sieve bitset which can later be used
in convergence verication of the Collatz conjecture. Existing approach to generating



EJMAA-2025/13(1) CHRONOLOGICAL VERIFICATION OF THE COLLATZ 9

Table 2. Comparison between dierent competing programs.
Speed is given in numbers per second.

Authors Sieve Size of Speed Hardware
size numbers

Honda et al. 237 64-bit 131× 1012 NVIDIA GeForce
[17] GTX TITAN X

Honda et al. 237 64-bit 525× 109 Intel Core
[17] i7-4790

Barina et al. 234 128-bit 421× 109 Intel Xeon
[9] Gold 5218

Barina et al. 224 128-bit 220× 1011 NVIDIA GeForce
[9] RTX 2080

This paper 216 128-bit 143× 109 Intel Core
i7-11850H

sieve depends on an empirical proof whereas our method is based on mathematical proof
using number forms. In addition, the paper presents a new method of using multiple
cores and threads, as well as multiple dierent CPUs for the convergence verication. Our
program can also process 128-bit numbers while most of other competitive programs can
only process 64-bit numbers. Usage of lookup tables can signicantly speed up our current
algorithm and can be considered as a topic for future work.

Acknowledgement

The computational resources were provided by IBM India Systems Development Lab.

References

[1] H. N. Crooks Jr and C. Nwoke, Collatz conjecture: Patterns within, arXiv preprint

arXiv:2209.05995, 2022.

[2] J. C. Lagarias, The 3 x+ 1 problem and its generalizations, The American Mathematical

Monthly, vol. 92, no. 1, pp. 3–23, 1985.

[3] ——, The Ultimate Challenge: The 3x+1 Problem. American Mathematical Society, 2023.

[4] Eric Roosendaal. Technical Details (On the 3x + 1 problem). Accessed on April 6th, 2023.

[Online]. Available: http://www.ericr.nl/wondrous/techpage.html

[5] David Barina. Convergence verication of the Collatz problem. Accessed on October 5th,

2023. [Online]. Available: https://pcbarina.t.vutbr.cz/

[6] G. T. Leavens and M. Vermeulen, 3x+ 1 search programs, Computers & Mathematics with

Applications, vol. 24, no. 11, pp. 79–99, 1992.

[7] J. C. Lagarias, The 3x+ 1 problem: An annotated bibliography, ii (2000-2009), arXiv

preprint math/0608208, 2006.

[8] T. O. E. Silva et al., Maximum excursion and stopping time record-holders for the 3x+ 1

problem: computational results, Mathematics of Computation, vol. 68, no. 225, pp. 371–384,

1999.

[9] D. Barina, Convergence verication of the collatz problem, The Journal of Supercomputing,

vol. 77, no. 3, pp. 2681–2688, 2021.

[10] J. Kaiser, Sieve of collatz, p. 11, 2016. [Online]. Available: https://vixra.org/pdf/1611.

0224v1.pdf(AccessedonApril6th,2023)

[11] M. R. Schwob, P. Shiue, and R. Venkat, Novel theorems and algorithms relating to the

collatz conjecture, International Journal of Mathematics and Mathematical Sciences, vol.

2021, pp. 1–10, 2021.

[12] A. Rahn, E. Sultanow, M. Henkel, S. Ghosh, and I. J. Aberkane, An algorithm for linearizing

the collatz convergence, Mathematics, vol. 9, no. 16, p. 1898, 2021.



10 S. DUTTA EJMAA-2025/13(1)

[13] M. Venkatesulu and C. D. Parameswari, Verication of collatz conjecture: An algorithmic

approach, WSEAS Transactions on Engineering World, vol. 2, pp. 71–75, 2020.

[14] E. Yolcu, S. Aaronson, and M. J. Heule, An automated approach to the collatz conjecture,

Journal of Automated Reasoning, vol. 67, no. 2, p. 15, 2023.

[15] V. Mandadi and D. Paramwswari, Verication of collatz conjecture: An algorithmic ap-

proach based on binary representation of integers, arXiv preprint arXiv:1912.05942, 2019.

[16] W. Ren, S. Li, R. Xiao, and W. Bi, Collatz conjecture for 2ˆ 100000-1 is true-algorithms

for verifying extremely large numbers, in 2018 IEEE SmartWorld, Ubiquitous Intelligence

& Computing, Advanced & Trusted Computing, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018, pp. 411–416.

[17] T. Honda, Y. Ito, and K. Nakano, Gpu-accelerated exhaustive verication of the collatz

conjecture, International Journal of Networking and Computing, vol. 7, no. 1, pp. 69–85,

2017.

Samrat Dutta

India Systems Development Lab, IBM, Bangalore, India

Email address: samrat.dutta2@ibm.com


