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l, Introduction

An integer linear problem is an ordinary linear programming
problem with some additional constraints which force the optimal
solution to take non-negstive integer values only. In other words.
given an L.P. problem, it is required to select, from among all
possible integers in the solution space, the values of the varia=-
bles which are feasible (530) and which optimize the value of the
objective function. Recent liturature on integer linear progr-
.amning includes some applications to different practical problems.
In this brief summéry,'main abtention is given to discussing the
method of solution which is due to Gomoryl. Two numerical
example will be given which show the steps for finding the optimal
integer solutions.

It is necessary however, before proceding with this .wemo,
that the reader be familiar with the mathematics of the simplex
method for solving L.P. problems.

2. raphical Representation of the Problem:

Consider the ordinary L.P. problem shown in Figure (1).
This problem is given by:

maximize R

Subject to conmstraints (1), (2), (3), and (4)

1,
R.E. Gomory, "Quttine of An Algorithm for Integer Solutions

to Linear Programs,"” Bulletin of the American ilathematical
Society, Vol. 64 (September, 1958), pp. 275-278.
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Clearly, the optimal solution for this problem represented by
point C, which is the point of intersection of constreints (3)
and (4).

In order to obtain the optimal integer solution to this
problem, we need first to define a new solution space consisting
of all the integer values contained in the original convex hull
ABCD. From Figure (1), the new integer solution space 1s given
by the circled points which is defined by the new convex hull
A B'C'D'E!'.

Now the new problem becomes

maximize R
Subject to constraints(l), (2), (3'), (4'), and (5')
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It is.noted that the nex convex hull has integer values at its
vertices and this assures that the new optimal, solution is all
iqtegers. This comes because, at every iteration in the solution
of the L.P. problem, the basis solution is necessarily represented
by a vertax on the convex hull.

It is clear from the above discussion that when the original
constraints are substituted by new ones under the conditions given
above, the problem can be solved as an ordinary L.F. problem using
the simplex procedure. The construction of these new constraints
however, eases to be feasible for the cases where there are three
or more variables since in the case of two variables the graphical
representation of the problem makes it possible to determine the
new solution space. We thus need a method which sutomatically
generates these new constraints (or some other constraints that
would cause the same effect). This method will now be presented

based on Gomory's mode1,2

3. Gomory's Integer Programming liodel:

Basically the Gomory model can be summnarized in the following

steps:

1. Solve the ordinary L.P. under: ordinary constraints

2. If the optimal solution contains &ll integer values,
then there is nothing more to be done; otherwise,

3, Add new constraints which will force the final optimal
solution into a new optimum with all integer values.

4, Repegt step (3) until integer optimal solution is
obtained.

Clearly the addition of new constraints will enlarge the L.F,
problem and in the same time will cut down the value of the
objective function. :

2. Ibid.

@
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We now proceed to present ;l_:.l_’ﬁ matheuatics of the model:

Suppose that the set Xi i:l represents the basic
veriables at_the last iteration of_the simplex solution. ILet
the Seb 'l:i], i‘:’;
same iteration.— We may thus write the long form representation

represents the non-besic variables at the

of the basic variables as they appear in the constraints at the
iteration as follows:

n
k=1,2,¢..,m (l)
5 st D ey (ehy)
3=1

where akj and 3y represent the constent parameters of the constr-
aints as defined above.

Obviously, X = 8 s foxiall -k

tj = 0 g for ali 3

which follows from the properties of the simplex solution. Namely
ab any iterstion, the non-basic variebles assume zZero-values.

At the final iteration of the ordinary simplex procedure
the final solution will be a2ll integer if e s for all k, are
integers. Otherwise, some or all a _ are non-integers. The /
Gomory model is thus used to force these non-integer values into

new integer values while assuring optimal conditions.

Define Ny =Ea1{l = op.=
Nkj = [%ké] = 8y fkj

where ny and nkj are the largest integers satisfying xﬁc‘ff_ak and

Dy =83 respectively. From this definition it is clear that

the factional values fk and fk are always non—neffative,3

J
3. See Figure(l) for graphical interpretation of £y




iixamples
a n ;i
Ste 5 %
5 5 0
-1 -1 0
%2 -1 %

The idea now is to introduce some mathematical constrints
(celled Gomory constraints) wihich will cert off the optimal
solution from point C to the new point D (Figure 1). In so doing
the constraints must not cause any violation of the original
constraints. Gomory defined constraints as

n :
D> odxy ¥y =t @)
J=1
We shall now show thats
1. Gomory constraints do not violate the original constrints
of the problem.

2. They cut off the optimal solution from point C topoimf . D
thus giving an integer optimal solution.

Step 1. To show that Gomory constraints do not vioclate
the original constraints of the problem:

Substituting for a, and 35 in e quation (1) above, hence,

n

o= (o +8) +5 (Mg # Fs) (=63) (3)
J=1



Since X is =0, hence (5) can be written as:

n

Z My + £5) bWy + 5

J=1
A necessary and sufficient condition that constraint (%) is not
viclated when fk is ""shaved" off from the solution is that:

n
Sy
> Ty Y3 =
J=1
(Note that T and fkj_areE§§=O by definiticn).

Instead oflproving the above mathematical condition, we rather
give an economic arguments (due o Baumol%) which will mske i%
clear. ©Suppose that the original constraint is a warehouse space
constraint so that . is the total number of cubic feet of tle
available ware house space. The constraint then says that the
sum of the volumes.of the different items stored in the ware house
Cannot exceed its total capacity. Now if we went to shave off a
volume £, from the ware house capacity, then the different items
stored must be reduced by at least this volume. If follows then
that if we want fkj tj to be shied off item j, then constreint
(2) above must be satisfied.

otep 2. To show that Gomory constrainus yield un

o e

Optimal integer solubion.

Gomory constraint can now be written as

n .
e -1 - e -5 . pA!
J=1
4. W.J. Baumal,.liconomic Quevry and Opersbtions Anelvsis,(iasle

wood Chiffs: Prentice-Hall, 1961), P. 124.
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where Sq is a slack varisble which is sn integer =0 (later we
prove the assertion that Sl is necessarily an integer). The
Gomary constraint is usually constructed from the final tableau
of* the simplex solution. This consgtraint is then added to this
final tablesu in which case the optimal solution just obtained by
the simplex method, although optimal, it is not feasible. The
idea then is carry out the simplex computations agaln until a
feasible optimal solution is obtained.

(a) To show that S, should be integer when

the solution of the problem is integer.

Let 2§ and tﬁ be any integer solution hence (2) becomes:

e = X
8, = -f Zl £y (=tD)
a:

= - x
= Ny-a - == (W ymayy) (=43

J=1
I
g’“ : o
= Np+ Dy (ntj) =8 . akj(-tj)
J= a:l
I b T (B R
= Ny + 3 oy () -
J=1
I
Since Xﬁ = 8y + 85 (-t}.f) , it is clear that all the
J=1

components of the R.H.S. of Sl are integers., If then follows
that Sl must be integer for an all-integer solution.
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b) To show that Sl_cuts out the old solution:

Since in the old solution all t. = 0, and since ikE=CL
hence the new slack varisble Sy (from (3) above) must be = 0.
Now Slgé?o violates the simplex procedure and fkafO cannot
hold by definition., This means that the old optimal solution
must be cut down until the feasibility constraint is satisfied.
It is noted that the feasibility coandition ig satisfied when
fk =0, i.e.,, when the old solution becomes all integer. It is
somuwhat difficult to show in mathematical terms how this
"rounding" of factinal parts tekes place. Rather we will use
two numerical examples to make this point clear.

4, Examples:

—_——

Two numerical examples tare solved in this section. The
first example has two variables only so that we can represent it
graphically. The second example consists of three variables so
that we can show more iterations.

Example 1:

maximize 40 = 2% ey
Subject to 2% L+ Y= 5

4x + 4y = 9

xlygg-o and integers.

This problem can be put in table form as follows (V,W are slac_:lcs)5

— —_—

2¢ We use the method of solution introduced by H.il. Wagner,
"The Simplex method for Beyinners," Operations Resesrch , YL
(1958), pp. 190-199., A summary of this method is found in, H.
Taha, Notes on Operations Research - part I, Institute of
" national Planning, 1965, |




A 52 y v W current solution
1 -2 =5 0 aat) 0
0 5 1 15 0 5
0 4 4 0 1 g

First iterations:

y in, w out

7 X y v : W current solution
L 4 0 0 6/4 27/
0 2 0 L -1/4 11/4
0 1 1 0 1/4 9%

which optimal and feasible but not integral.

The second step is to add Gomary constraint which will cut
down the factional parts optimally. The above solution gives.

y = 2k
v = 2 3%
X = 0
i = 0

As a rule we select fk = maximum fraction in all the values
obtained. MNamely

f, = max [k, %, 0,0] = %

Hence fk corresponds to the varieble V. The equation corresponding
to (1) above can be written as:
v = 2% + [2(—-1:) + (~8) (-—vﬂ

Or in terms of equation (3),



Hence fkl = 0O,

becomes:

v

S

=) 0=

(2 + %) + [:2(—x) + (=1 + %) (-wi]

k2

=

-

= % , end the resulting Gomory constraint

%
%

o

% (-w)

+ ¥ w

Adding this constraint to the previous tablesau gives:

z X v v w Sy |current solution
1 4 0 0 6/4 0 27/2
0 2 0 1 - 0 11/4
0 1 1 0 % 0 94
0 0 0 0 2, it =3/4

at this iteration we use the Dual Simplex algorithm since some
of the basic variebles (nemely Sl) is not feasible (=<%). Using

this condition we obtain the following tableau.

Second iterations

w in, 5, out
Z X ¥ v w 89 Current solution
1 4 0 0 0 2 12
0 2 0 1l 0 4 3
0 1: 1 0 0 1/3 2
0 0 0] 0 1 =4/3 1

which is now optimal feasible and all integers,

p:9
y
Z

0
2

1
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(See the graphical solution of the problem).

Solution Space for integer solution =

N{ Zﬁoao), (0,1, (1,0) (1,1), (0,25&

i
Figure 2 Graphical solution of Example I
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Example 2:
meximize W=2x+ 3y + &
Subject to 8x - 8y=7

-X + by= 9
X+y +2=6
X,¥y2= 0 and integers.

The above problem can be put in the following tableau form:

olacks

] X Y 4 P1 Fy P‘3 Current solution
Tl 0 0 Q-
0 BENER 0 i 0 0 7
0 -] 6 0 0 3k 0] 9
0 ik 1k il ¢ 0 i, 6
First iteration:
¥ 1o Pa out

W X 4 7 Py P, P5 Current Solution

) = 1
i ‘2 0 1 0 5 0 9/2

20 8
0 3 0 O L = 0 19

1 L SIS

a7 £y

0 £ 0 1 0 z 1 9/2




Second iteration

ARSI NS =, Pl out
W X A\ 4 fl £2 r3 Currenv Solution
1 Ep e et Lt tamdi xe aks g =
(o] (o}
o 1 0 0 % 0 ~2L
© 0 1 0 = g 0 -
o 0o o 1 -4 -2 1 -
Third iteration
Z in, P3 out
W X i Z Py P, Py [ Current solution
T | BB ) = 20 %— < 1 —gi—
o 1 0 0 = —;- 0 3
o 0 1 0 g ——%—— 0 L2
o o o 1 & ‘—g— 1 7

which is the optimal

non-integer solution

L7
2 36

)
1 %5

1l

hE7 N
136

I
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To obtain an optimal all-integer solution, we follow the sane

procedure as above.

=

i7 .32
max[zo’ 40 %0

=75

40

This corresponds to y, hence expressing its equation as (3)

above gives,

1+ 2D +[ 0 (0 + 0(-2) + G-

y:
(P2>«_~0(P3)]
2 [()(P)+()(—P)1
: 1__22 2l 1
Hencg bl = 0 * To— Pl + 5 P2
and the last taEleau becomes: T
W X e Z ; Pl P2 P Sl Current solution
PSR 6ty
il 0 0 0 5 5 1 0 5
e D7
0. L0 0 == =~ 0 0 2
e, il 1
R S
RO HE7,
0 0 0 1 T6 5 il 0 75
e,k Ler Bl

“far
St

;. Again using dual algorithm gives.
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Fourth iteration

5 1ln, bl out

W X Y Z Pl PZ P5 Sl Current solution
1 TR 0k . 0 % 0 P17 "3 —éi

ik - ) L) S 7
0 L O 0 5 0 0 1 5 = 1 5
0 0 1l §] 0 0 G 1 al

- * B0 B0 1

0 0 0 1 ? 0 i 2 5 = 5

€ _c 259ics 7
0 0 0 0 5 ik 0 j < = 4 £

which is optimal but still non-integer.

T

cu [2 18] -3

In this case there is a two between X and P2 but we select

X since it involves less computations

X

Hence
Sy

and the last

D+ [ )

el
SRR

tableau becomes:



b

1

W X Y Z {’; P 83 8, |Current solution
18 ol o, ior L es g -
9 1 .9 0 § 0 1T iz
TR Rt R i e 1%
8- 0 0L T~k 0. =2 oyl . :_—?-B‘L
D £ 1 0 -5 0 2
Be-er . 0f 0 =i o S o d - £
éiétﬁ iteratién?
e ; P, in, S, out
el ) .Pl B, P; 8; 8, | Current solution
Mo B e TE ST 9
(B), e T o N IR (R o) 0 1 1 1
@ 0 L TOF- 0 950 Omdn ol 1
OR Oi0 00 g TS 4
O 01 00 0 I O =5 i 4
OF 0 0 er 1 0k 06, -8 7

which is now optimal, feasible and all-integer solution.

q§ N <M

i
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