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Abstract: Bio-nanotechnology have attracted strong interest due to their valuable bioactivities 

and eco-friendly features. In this study, Penicillium crustosum AUMC15766 isolated from soil, 

molecularly identified, was used to reduce zinc nitrate to zinc oxide nanoparticles (ZnONPs) 

using fungal filtrate. Zinc oxide nanoparticles, visually slimy white, were subjected to 

characterization using UV-vis spectrophotometry (peak at 314 nm), X-ray diffraction 

determined its crystallinity (2θ values of 31.77°, 34.44°, 36.26°, 47.54°, 56.61°, 62.86°, 66.39°, 

and 67.96°), transmission electron microscopy established the form and size (hexagonal 

diameters ranging from 8 to 25 nm), and functional groups acting as capping agents were 

illustrated using Fourier transform infrared spectroscopy. Assessment of anti-candidal and 

antibacterial potency of ZnONPs at several concentrations presented significant activity against 

tested pathogens. Thus, myco-genesis of ZnONPs represents promising approach to introduce 

sustainable agents available for biotechnological applications.  
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1. Introduction 

Nanoparticles are defined as manufactured materials 

containing particles in a free state or as aggregates and 

having dimensions ranged between 1 to 100 nm (Pulit-

Prociak & Banach, 2016). The metallic nanoparticles 

have unique characteristics including optical and 

magnetic properties, surface plasmon resonance, 

quantum confinement, and large surface energies 

(Dreaden et al., 2012), in addition to other 

characteristics such as size, shape, chemical 

compositions and high surface area to volume ratio 

(Balashanmugam et al., 2013). So, they have utilized 

in a wide range of applications in medicine (Nosrati et 

al., 2021), agriculture (Thul et al., 2013), electronics 

(Boisselier & Astruc, 2009), catalysis, chemical 

sensing, environmental remediation, biological 

labeling, and drug delivery (Prabhu & Poulose, 2012).  

Metallic nanoparticles are synthesized by chemical, 

physical, and biological methods (Pulit-Prociak & 

Banach, 2016), where physical methods gain many 

disadvantages comprising high cost, high energy, 

pressure, and temperature requirements, less yield and 

stability, and high waste production.  While, chemical 

methods are unsafe due to the involvement of hazardous 

chemical substances that are attached to the surface of 

metal nanoparticles, thus has side effects in medical 

applications (Ovais et al., 2018). Despite the 

developments in chemical and physical synthetic 

approaches of metallic nanoparticles (Abdel-Rahim et al., 

2024; Kamal et al., 2024), biological methods are eco-

friendly and cost efficient. Biological methods include 

using of plants, bacteria, cyanobacteria, algae and fungi 

for the synthesis of nanoparticles  (Salem, 2022).  

Among biological systems, fungi offered a variety of 

biological activities and biotechnological applications. 
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This encompasses nutraceutical, medical, and 

biotechnological polysaccharides (Giavasis, 2014), 

lipids and fatty acids (Mohamed et al., 2022a), and 

enzymes and peptides (Al Mousa et al., 2022a) as well 

as low molecular weight secondary products 

exhibiting different antibacterial (Baazeem et al., 

2021), antifungal (Abdelrahem et al., 2023, 2024), 

anticancer (Al Mousa et al., 2022b), antioxidant 

(Hassane et al., 2022a), wound healing (Al Mousa et 

al., 2024b), and/or even toxigenic (mycotoxins) 

properties (Abo Dahab et al., 2016; Saber et al., 2016).  

Fungi have been frequently reduced the metal salts to 

produce metal nanoparticles due to their characteristics 

such as high biomass production, ease of handling and 

cultivation, the ability to produce a lot of quantities of 

enzymes, metabolites, and extracellular proteins 

(Azmath et al., 2016). These molecules are responsible 

for synthesis nanoparticles and forming capping agents 

responsible for stability and activity of nanoparticles 

(Zhao et al., 2018). 

The synthesis of ZnONPs has attracted considerable 

interest due to its eco-friendliness, broad antibacterial 

action, and involvement in a variety of industries, 

including the rubber, pharmaceutical, textile, 

biosensor, and cosmetics industries (Singh et al., 

2014).  Okaiyeto et al. (2024) recorded a promising 

result through investigating the antibacterial activity of 

ZnONPs against diverse bacterial species including 

Escherichia coli, Salmonella typhi, Bacillus subtilis, 

Staphylococcus aureus, and Pseudomonas aeruginosa. 

The present study aimed to myco-synthesize, 

characterize and assess the antimicrobial activities of 

zinc oxide nanoparticles on variety of bacterial and 

Candida strains. 

2. Materials and methods 

2.1. Isolation and molecular identification of the 

fungus  

Soil isolate Penicillium crustosum was used for myco-

synthesis of ZnONPs. The isolate identification was 

depended on its macro- and micro-morphological 

culture characteristics on Czapekʼs (Cz) agar medium 

(NaNO3, 2 g; KH2PO4, 1 g; MgSO4.7H2O, 0.5 g; KCl, 

0.5 g; glucose, 10 g; agar, 20 g per liter of distilled 

water with pH value 6.5 and chloramphenicol, 1 

mg/mL), established by phylogenetic analysis 

according to Hassan et al. (2019) and Mohamed et al. 

(2020), and kept with an institutional number at Assiut 

University Mycological Center (AUMC) culture 

collection. 

2.2. Biosynthesis of ZnONPs 

After incubation in Cz broth under shaking (150 

rpm/min) at 28 °C for 5 days, the fungal biomass was 

filtered and rinsed repeatedly by sterilized double-

distilled H2O. After that, 10 g of fungal were 

immersed in 200 millilitres of sterile double-distilled 

water and kept under shaking for 2 days at 28 °C. A 

stock solution of 2.97 g zinc nitrate (Zn(NO3)2) was 

dissolved in 50 mL of deionized water to obtain salt 

solution with 200 mM concentration. The filtrate was 

then employed for producing ZnONPs through mixing 

with 3 mM Zn(NO3)2 at ratio 1:1 and incubated at 

room temperature in dark conditions for 24 h. Formed 

ZnONPs were centrifuged at 7000 rpm for 15 min and 

repeated rinsing was performed to remove impurities 

and then ZnONPs were harvested for further analysis. 

2.3. ZnONPs characterization  

Myco-synthesized zinc oxide nanoparticles were 

characterized using UV-visible (UV-Vis) spectroscopy 

analysis (Jasco V-530, Japan), Transmission Electron 

Microscopy (TEM) (JEOL/JEM-2100, HRTEM, 

Tokyo, Japan) Fourier transform infrared spectroscopy 

(FTIR) (6100, Perkin-Elmer, Germany), X-ray 

diffraction (XRD) analysis (Panalytical X'PERT PRO, 

UK) as described by Khalaf et al. (2024). 

2.4. Antimicrobial susceptibility assay 

Gram-positive bacteria  (Bacillus subtilis  ATCC6633 

and Staphylococcus aureus ATCC6538) and Gram-

negative bacteria (Escherichia coli ATCC8739, 

Klebsiella pneumonia ATCC43816, Proteus vulgaris 

AUH123, Pseudomonas aeruginosa ATCC9027, 

Salmonella typhi AUH71, and Serratia marcescens  

AUH98) in addition to fungal isolates (Candida 

albicans ATCC10231,  C. krusei TU87, C. glabrata 

TU52, Geotrichum candidum TU65 [ON430507], and  

Rhodotorula mucilaginosa [ON459714]) were used as 

test pathogenic microbes (Al Mousa et al., 2021, 

2024a; Mohamed et al., 2021).  

The antimicrobial susceptibility assay was carried out 

as described by Jahangirian et al. (2013) using well 

diffusion technique with 8 mm well diameter hold 

with 100 μL of well dispersed, by sonication, 5000 

µg/mL ZnONPs. Clotrimazole and chloramphenicol, at 

concentration of 1 mg/mL, were used for fungi and 

bacteria as positive control, respectively. Muller-

Hinton and Sabouraud dextrose plates impregnated 

with broth cultures of the assayed bacterial and fungal 

species were used for evaluating ZnONPs 

antimicrobial potency. The MICs of ZnONPs 

antibacterial potency, in nutrient broth, were assessed 

using the p-iodonitrotetrazolium chloride (INT) micro-

dilution colorimetric approach as depicted by 

Gebreyohannes et al. (2019). For determining the MIC 

for antifungal activity, Sabouraud dextrose broth 

dilution assay was utilized without the use of INT. 

3. Results  

This study dealt with biosynthesis of ZnONPs using 
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Aspergillus terreus extracellular filtrate, followed by 

ZnONPs characterization utilizing UV-Vis, XRD, 

TEM, FTIR, and DLS analysis. Biosynthesized 

ZnONPs antimicrobial potency were assessed against 

a variety of fungal and bacterial pathogens. 

3.1. Phylogenetic analysis of fungal isolate   

Identification was performed through sequencing of 

ITS loci and sequences were undergone to BLAST 

within NCBI database. The isolate was identified as 

Penicillium crustosum AUMC15766 (GenBank 

accession no. OR840516) aligned with closely relevant 

strains from the GenBank, exhibited 99.20% - 99.80% 

identity and 100% coverage with multiple strains of 

the same species encompassing the type material P. 

crustosum FRR 1669 strain (NR_077153) (Figure 1). 

 

 

3.2. Characterization of biosynthesized 

nanoparticles 

The color of fungal filtrate turned into creamy white 

after treatment with Zn(NO3)2 and incubation in dark 

under shaking for one day (Figure 2A). UV–Visible 

wave analysis of ZnONPs manifested surface plasmon 

resonance (SPR) band at 314 nm (Figure 2B). Zinc 

oxide nanoparticles pure crystalline characteristic was 

established using XRD analysis which revealed at 2θ 

values diffraction peaks of 31.77°, 34.44°, 36.26°, 

47.54°, 56.61°, 62.86°, 66.39°, and 67.96° that were 

compatible with 100, 101, 110, 122, 111, 200, 201, 

and 210 ZnONPs reflection planes, respectively 

(Figure 3). Transmission electron microscopy showed 

hexagonal ZnONPs with size ranging from 8 to 25 nm 

in diameter (Figure 4).  

The spectral FTIR analysis of myco-synthesized 

ZnONPs exposed a number of diversified bands 

comprising strong bands appeared at 2986.67 and 

2906.19 cm
-1

 which indicated aliphatic C–H 

stretching, while carbonyl group C=O stretching at 

1638.64 and 1533.07 cm
-1

 was indicated.  Moreover, 

bands centered at 1395.54
-1

 and 1006.01cm
-1

 were 

owed to S=O and C-O functional stretching, 

respectively (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Antimicrobial activity and MICs of ZnONPs 

Antimicrobial activity of ZnONPs at different 

concentration range were evaluated against diverse 

pathogenic bacterial and fungal species (Figure 6). 

Different concentrations of ZnONPs (5000 to 500 

µg/mL) exhibited antibacterial activity against B. 

subtilis, S. aureus, S. typhi, and S. marcescens with 

zone of inhibition ranged from 21.00 to 10.60 mm 

diameter. Zinc oxide nanoparticles at 5000 µg/mL 

showed inhibition of bacterial growth with diameters 

of 21.00, 20.50, 19.50, and 18.10 mm against B. 

subtilis, S. marcescens, S. typhi, and S. aureus, 

Figure 1: Penicillium crustosum AUMC15766; (a) Phylogenetic tree depended on the ITS sequences 

of rDNA, and (b-d) cultural characteristics; microscopic magnification 400x 
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respectively. while E. coli, K. pneumonia, P. vulgaris, 

and P. aeruginosa showed resistance to ZnONPs. 

Chloramphenicol, at concentration 1 mg/mL, showed 

antibacterial activity against whole bacterial species 

with diameters of inhibition zones ranged from 38.00 

to 14.00 mm (Figure 7). Zinc oxide nanoparticles 

exhibited MICs values of 416.66, 416.66, 208.23, and 

208.23 µg/mL against B. subtilis, S. marcescens, S. 

aureus, and S. typhi, respectively (Figure 8). 

Antifungal activity of ZnONPs at 5000 µg/mL inhibited 

the growth of C. krusei, C. glabrata, and C. albicans 

with inhibition zone diameters 16.60, 16.50, and 15.80 

mm, respectively. On the other hand, ZnONPs had no 

effect on the growth of G. candidum and R. 

mucilaginosa. Clotrimazole inhibited of the growth of 

all fungal species with inhibition zone diameters ranged 

from 20.60 to 27.00 mm (Figure 9). Zinc oxide 

nanoparticles, using well diffusion, exhibited MICs 

values of 700, 1000, and 1000 µg/mL against C. 

albican, C. krusei, and C. glabrata, respectively, while 

broth dilution assay offered of 166.6,166.6, and 333.33 

µg/mL, respectively (Figure 10). 

4. Discussion 

The myco-synthesis of zinc oxide nanoparticles 

encompasses advantages including high biomass 

production, facility of handling and cultivation, and 

the ability to produce elevated quantities of enzymes 

end bioactive metabolites. These molecules 

responsible for synthesis nanoparticles and forming 

capping agent responsible for stability and activity of 

nanoparticles (Zhao et al., 2018). Biosynthesis of 

ZnONPs was carried out by biomolecules of  

microorganism such as those mated with the complex 

pathways including electron transport during the 

transformation of NADPH/NADH to NADP
+
/NAD

+
 

(Gudikandula et al., 2017). 

In the present study, molecular identification using 

ITS genetic sequences of 18S rDNA and phylogenetic 

characterization of P. crustosum AUMC 15766 was 

carried out. Both ends of the ITS region disclosed 

nucleotide sequence variations in the multiple 

alignment (Hassane et al., 2022b). Lazreg et al. (2013) 

reported that the 5.8S rDNA nucleotide sequences 

were proved to have ideal homology, while Mohamed 

et al. (2022b) stated that the ITS loci represent 

essential effective markers for confirming 

identification of fungal strains at the species level. 

Visagie et al. (2014) reported that Penicillium 

phylogenetic analysis is depended on the integration of 

β-tubulin gene and ITS of rDNA sequences in addition 

to others markers. 

Regarding characterization of myco-synthesized 

ZnONPs by P. crustosum extracellular reducing agent 

filtrate, Baymiller et al. (2017) reported that NAD-

dependent nitrate reductase enzyme is essential in 

biosynthesis of metallic nanoparticles. Our findings 

were compatible with preceding studies, where UV–

Vis analysis revealed SPR band at 314 nm, hexagonal 

particles with size in diameter between 8 and 25 nm by 

TEM analysis, crystalline nature by XRD, and 

functional coating groups by FTIR. The presence of 

ZnONPs in the A. niger culture filtrate of was 

indicated by absorption bands at 320 nm (Talam et al. 

2012). Kalpana et al. ( 2018) reported that myco-

synthesized zinc ZnONPs revealed a 320–380 nm peak 

range. Similar XRD diffraction peaks were reported by 

Moghaddam et al. (2017) at 100, 002, 101, 102, and 

110. According to our FTIR findings, Kavitha et al 

(2017) confirmed a band at 3334.71 cm
-1  

corresponding to O-H stretching and at 1656.36 cm
-1 

correspondance to -O vibrations, while  at 1637.56 cm
-

1 
Raghunandan et al. (2010) indicated correspondence 

with C-C aromatic stretching. Our results were in 

agreement with Kalpana et al. (2018) who detected 

ZnONPs O–H stretch absorption peak at 3199.91 cm
-1

 

and C-C stretch at 1587.42 cm
-1

. 

Biosynthesized ZnONPs showed activity against 

Gram-positive (B. subtilis and S. aureus), Gram-

negative (S. typhi and S. marcescens), and Candida 

spp. In this regard, Kalpana et al. (2018) reported zone 

of inhibition of ZnONPs against pathogenic E. coli and 

S. aureus. The ZnONPs synthesized by Daedalea sp. 

Mushroom revealed an efficient zone of inhibition of 

10, 7, 7, and 7 mm for E. coli and K. pneumonia, P. 

aureginosa, and S. aureus, respectively. Kamal et al. 

(2023) synthesized ZnONPs using mushroom, which 

showed antimicrobial activity against P. aeureginosa, 

E. coli, S. aeururs, and K. pneumonia with inhibition 

zone diameters 7, 10, 7, and 7 mm, respectively. The 

myco-synthesized ZnONPs bactericidal influence was 

observed to be higher against Gram-ve than Gram+ve 

because of variations among their structures (Kamal et 

al., 2023). Madkour et al. (2017) indicated ZnONPsʼ 

antimicrobial efficacy against C. albicans, A. flavus, P. 

aeruginosa, E. coli, S. aureus, and B. subtilis. Feris et 

al. (2010) reported that, even at low concentrations, 

ZnONPs afforded elevated level of antibacterial and 

antifungal activities. However, Fouda et al. (2018) 

proved suppression zone formation of ZnONPs at 

2000 μg/mL of 14.1, 14.2, 19.1, 20.2 mm  for P. 

aeruginosa, E. coli, S. aureus, and B. subtilis, 

respectively.  

El-Rafie et al. (2010) suggested that mode of ZnONPs 

inhibition potency might be attributed to combination 

with the thiol groups, thus led to deactivation of 

microbial proteins thus retarded metabolic functions, 

growth, and proliferation. Agarwal et al. (2018) 

proposed that antibacterial efficacy of ZnONPs is 

caused by the production of reactive oxygen species 
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(ROS) which resulted in cell death due to generated 

oxidative stress. Jayaseelan et al. (2012)   illustrated  

that ZnONPs could be, through electrostatic forces, 

attached to bacterial membrane and subsequent 

penetrate into the cells leading to destruction of 

bacterial cell integrity. 
 

 

Figure 2: (A) Flasks containing a) zinc nitrate, b) 

fungal filtrate, and c) fungal filtrate combined zinc 

nitrate = (ZnONPs). (B) UV–Vis absorption band 

of zinc NPs. 

 

Figure 3: XRD micrograph of biofabricated ZnONPs. 

 

Figure 4: TEM image of biogenic ZnONPs. 

Figure 5: FTIR analysis of biosynthesized ZnONPs. 

 

Figure 6: Antimicrobial activity of ZnONPs against 

(A) B. subtilis, (B) S. marcescens, (C) C. albicans, and 

(D) C. glabrata. 

 

 

 

Figure 7: Antibacterial activity of ZnONPs (5000 

µg/mL) and chloramphenicol (1 mg/mL). 
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Figure 8: Antibacterial MICs values of ZnONPs by 

well diffusion and INT methods. 

 

Figure 9: Antifungal activity of ZnONPs (5000 

µg/mL) and clotrimazole (1 mg/mL) against tested 

fungal strains. 

 
 

Figure 10: Anticandidal MICs values of ZnONPs 

using well diffusion and broth dilution assays. 

5. Conclusion 

Zinc oxide nanoparticles, ZnONPs, were bio-

fabricated via a green synthesis using P. crustosum 

extracellular filtrate. Various characterization tools 

were utilized, including UV-Vis, TEM, XRD, DLS, 

and FTIR. TEM analysis revealed hexagonal forms 

with average size of 8 to 25 nm ZnONPs, while XRD 

affirmed crystallinity nature. Biosynthesized ZnONPs 

offered reasonable antimicrobial activity against 

diverse G+ve and G-ve bacteria and Candida spp. 

These findings suggest that ZnONPs have significant 

potential for treating infections and could be further 

optimized for safe, convenient, and biocompatible 

clinical use. Further study will be conducted to ensure 

more efficiency of ZnONPs regarding stability and 

bioactivity and to be introduced into other 

biotechnological applications. 
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