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ABSTRACT    

The introduction of combination chemotherapy raised the survival rate of cancer patients. However, it is associated 

with chemotherapy-induced cognitive impairment, often referred to as "chemobrain", which is a distressing adverse 

effect of cancer treatment. Doxorubicin and cyclophosphamide, two widely used chemotherapeutic agents in the 

treatment of various malignancies, have been shown to induce cognitive dysfunction. This review explores the 

underlying mechanisms that contribute to the chemobrain induced by doxorubicin and cyclophosphamide 

combination therapy, shedding light on oxidative stress, inflammation, neurotransmitter dysregulation, and 

neuroinflammation. Studies have shown that chemobrain is associated with activated inflammation and oxidative 

damage in the hippocampus. We also delve into the molecular pathways activated by doxorubicin and 

cyclophosphamide, such as the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signaling 

pathways, which are implicated in cognitive dysfunction. Additionally, this article explores protective approaches, 

including antioxidants like L-Carnitine, polyphenolic-rich compounds from Thunbergia erecta, and N-

acetylcysteine, offering potential solutions for alleviating doxorubicin and cyclophosphamide-induced chemobrain. 

Notably, these protective agents, although promising in pre-clinical models, await clinical investigation. Therefore, 

there is a gap in data to support the application of any neuroprotective medication in a clinical context. Thus, clinical 

trials are necessary to assess their therapeutic potential. In conclusion, this review integrates data from diverse 

studies to elucidate the mechanisms and suggests potential protective strategies, offering insights for researchers 

seeking to alleviate cognitive challenges in doxorubicin and cyclophosphamide-treated cancer patients. 
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1. Introduction 

The survival rate of patients with cancer has 

been rising due to advancements in 

chemotherapy and the emerging use of 

combination therapies involving multiple 

chemotherapeutic drugs [1]. However, a 

distressing side effect has been accompanied by 

this therapeutic advancement, referred to as 

“chemobrain”. This term is a pertinent term that 

has emerged recently, denoting the cognitive 

impairment induced by chemotherapeutic drugs 

due to their neurotoxic effects. This could affect 

the overall quality of life since it encompasses a 

spectrum of cognitive deficits, including attention 

disturbances, memory loss, and learning 

deficiency, which could persist after treatment 

completion [2]. Doxorubicin and 

cyclophosphamide, widely employed 

chemotherapeutic drugs for different cancers, 

have been reported to induce cognitive 

dysfunction experimentally in rats [3, 4] and 
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clinically in breast cancer patients [5-7]. 

Although protective strategies have been 

investigated in rats experimentally, no clinical 

trials have reported protective strategies in this 

context. Therefore, this review aims to 

systematically elucidate the mechanisms 

underlying doxorubicin and cyclophosphamide-

induced chemobrain, offering a comprehensive 

exploration of the current chemobrain 

understanding and paving the way for potential 

protective strategies for mitigating the impact of 

chemobrain. 

Doxorubicin is an anthracycline class 

member that is commonly employed in protocols 

of adjuvant chemotherapy in breast cancer 

treatment [8]. The antitumor effects of 

doxorubicin are due to its inhibition effect on 

topoisomerase-II, thereby halting the replication 

process by hindering the biosynthesis of DNA 

[9]. Even though doxorubicin has a limited 

ability to penetrate the blood-brain barrier (BBB), 

it can cause deleterious impacts on the brain 

since doxorubicin undergoes redox cycles, 

triggering the release of invasive free radicals 

[10]. Moreover, doxorubicin instigates 

inflammation owing to its potential ability to 

boost the release of inflammatory cytokines. 

These, in turn, may cross the BBB, giving rise to 

oxidative damage within the brain [11].  

Additionally, cyclophosphamide, an 

alkylating agent, is an inactive prodrug that has 

been documented to undergo hepatic enzymatic 

transformation, generating two metabolites: 

phosphoramide mustard and acrolein [12]. The 

therapeutic active metabolite is phosphoramide 

mustard, thanks to its substantial DNA alkylating 

activity, which is achieved by intercalating 

between the DNA strands, leading to its damage. 

Acrolein, the second metabolite, is thought to be 

accountable for the majority of organ toxicity 

induced by cyclophosphamide treatment since it 

is highly reactive and leads to the generation of 

reactive oxygen species (ROS), disrupting the 

antioxidant mechanisms of the body [13]. These 

free radicals generated by both doxorubicin and 

cyclophosphamide stimulate oxidative stress, 

promoting damage to mitochondria and, 

consequently, cell death [3, 14]. 

2. Doxorubicin and cyclophosphamide-

induced cognitive impairment underlying 

mechanisms  

Multiple intricate molecular mechanisms 

have been linked with cognitive dysfunction 

induced by chemotherapy. Doxorubicin and 

cyclophosphamide combination exhibit the 

capacity to trigger some of these mechanisms, 

such as oxidative stress, neuroinflammation, and 

neurodegeneration, which are summarized in Fig. 

1. 

Fig. 1. Summarized mechanistic insight into Doxorubicin 

and cyclophosphamide-induced cognitive dysfunction. 

2.1. Oxidative Stress  

One of the fundamental factors underlying 

doxorubicin and cyclophosphamide-induced 

neurotoxicity pathophysiology is oxidative stress. 

Due to their constrained antioxidant capacity, 

brain tissues are extremely vulnerable to 

oxidative damage [15]. Doxorubicin and 

cyclophosphamide-induced oxidative stress was 

demonstrated to be orchestrated by an excessive 

generation of free radicals, reactive nitrogen 
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species, and ROS, reduced glutathione (GSH) 

depletion, and suppressing the activity of 

antioxidant enzymes [14, 16]. The substantial 

elevation in ROS levels plays a pivotal role in 

triggering oxidative damage to several cellular 

components, featuring lipid peroxidation, DNA 

damage, and mitochondrial dysfunction [14, 17]. 

The cumulative impact of these processes 

exacerbates cellular oxidative stress, creating a 

cascade that may ultimately contribute to the 

adverse effects observed in response to the 

combined doxorubicin and cyclophosphamide 

treatment. Fig. 2. illustrates the mechanisms of 

doxorubicin and cyclophosphamide-induced 

oxidative stress. 

 

Fig. 2. Doxorubicin and cyclophosphamide-induced 

oxidative stress. 

ROS: Reactive oxygen species, MDA: Malondialdehyde, 

GSH: Glutathione, CAT: Catalase 

2.2. Inflammation 

Extensive research has substantiated the 

pivotal involvement of neuroinflammation in the 

emergence and advancement of neurological 

complications linked to chemotherapeutic 

treatments [18]. Moreover, numerous 

experimental investigations have suggested that 

persistent inflammation concomitant with the 

considerable release of pro-inflammatory 

cytokines, notably tumor necrosis factor-alpha 

(TNF-α) and interleukins, constitute one of the 

principal driving forces for the neurodegenerative 

cascades associated with the administration of 

both doxorubicin and cyclophosphamide [3, 19, 

20]. In this context, the pathogenesis of neuronal 

inflammation prompted by combined 

doxorubicin and cyclophosphamide 

chemotherapy involves critical inflammatory 

signaling pathways, which encompass oxidative 

stress-induced inflammation, nuclear factor 

kappa B (NF-κB), and high-mobility group box 1 

(HMGB1)/receptor of advanced glycation end-

products (RAGE) signaling transduction [14, 16]. 

2.2.1. Nuclear factor kappa B (NF-κB) cascade 

activation 

In regulating the expression of a wide range 

of pro-inflammatory genes, NF-κB is 

acknowledged as the principal transcription 

factor [21]. In unstimulated conditions, the NF-

κB complex remains inactive within the cytosol, 

bound to inhibitors of κB (IκB), its inhibitory 

proteins [22]. Activation takes place when 

subjected to diverse pernicious stimuli, including 

ROS, this subsequently stimulates the activation 

of the IκB kinase complex (IKK), which in turn 

initiates phosphorylation of IκB, marking it for 

ubiquitination, subsequently triggering its 

degradation by proteases [23]. Consequently, the 

liberation of the κB transcription factor allows its 

translocation to the nucleus, where it activates the 

proinflammatory genes [24]. Interestingly, 

investigations have demonstrated that 

doxorubicin and cyclophosphamide concomitant 

administration induces the upregulation of NFκB 

expression, consequently the overproduction of 

inflammatory cytokines, such as TNF-α and 

interleukin-1 beta (IL-1β) [14, 16]. 

2.2.2. HMGB1-RAGE axis activation 

Necrotic cells or activated cells generate 

damage-associated molecular patterns (DAMPs), 

which have been identified as a key factor in 

triggering and amplifying the synthesis of pro-

inflammatory mediators [25]. One of these 

DAMPs is HMGB1, a nuclear DNA-binding 
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protein displaying high preservation [26]. Due to 

the widespread expression of HMGB1 in mostly 

all nucleated animal cells, its passive release 

from necrotic cells positions it as a potent trigger 

of inflammation [27]. Upon its binding to RAGE, 

HMGB1, via activation of distinct signaling 

pathways, triggers pro-inflammatory cascades 

that result in the generation of cytokines and 

chemokines that promote inflammation [28, 29]. 

A recent study has demonstrated that doxorubicin 

and cyclophosphamide coadministration induced 

HMGB1 and RAGE expression, leading to 

stimulation of the p65 subunit of NF-κB and 

enhancing the release of IL-1β, as evidenced by 

their increased expression [16]. Fig. 3 represents 

the HMGB1/RAGE inflammatory pathway 

activation in doxorubicin and cyclophosphamide 

neurotoxicity. 

 

Fig. 3. Effect of doxorubicin and cyclophosphamide on 

HMGB1-RAGE axis. 

HMGB1: high mobility group box 1, RAGE: receptor for 

advanced glycation end products, NFkB: Nuclear factor 

kappa B, IL-1β: Interleukin 1 beta 

2.3. Neuronal plasticity and survival alteration 

2.3.1. CREB/BDNF pathway 

Functioning as a critical neurotrophic factor 

in the brain, the brain-derived neurotrophic factor 

(BDNF) is acknowledged to be a broadly 

distributed neurotrophic factor that promotes 

synaptic plasticity, neuronal growth, and 

survival. The role that it plays has been 

established, especially throughout the prefrontal 

cortex and hippocampus [30]. One of the 

pathogenic pathways operating in 

neurodegenerative disorders has been 

demonstrated through research, revealing that 

diminished levels of BDNF play a part in this 

phenomenon [31]. In the hippocampus, the cyclic 

adenosine monophosphate (cAMP) response 

element binding protein (CREB), is a protein that 

is accountable for both short-term and long-term 

memory. Once activated, CREB undergoes 

conversion into its phosphorylated form (p-

CREB). Subsequent activation has been found to 

induce cortical and hippocampal BDNF 

transcription, enhancing the transmission of 

molecular signals crucial to maintaining neuronal 

survival. The CREB/BDNF pathway plays a 

critical role in cognitive functions and synaptic 

plasticity. Earlier investigations have indicated 

that this pathway is involved in cognitive 

impairment pathogenesis [30]. A recent report 

has highlighted the reduction in the cortical and 

hippocampal expression of BDNF and p-CREB 

in the pathogenesis of cognitive impairment 

following the concurrent administration of 

doxorubicin and cyclophosphamide [14].  

2.3.2. Extracellular signal-regulated kinase 

(ERK) and protein kinase B (AKT) signaling 

pathways 

The ERK pathway is a mitogen-activated 

protein kinase (MAPK) cascade that transmits 

extracellular signals to the nucleus from the cell 

surface. The mechanism is normally activated by 

the binding of growth factors or other 

extracellular ligands to cell surface receptors, 

triggering a sequence of phosphorylation 

processes [32]. This activation allows Raf kinases 

to become active, which in turn phosphorylates 

and activates MEK (Mitogen-Activated Protein 

Kinase). Once activated, MEK then 

phosphorylates and activates ERK, enabling ERK 

to translocate into the nucleus, where it 

modulates the activity of various transcription 

factors. Notably, synaptic plasticity and neuronal 
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development, a fundamental mechanism for 

learning and memory, rely on the functionality of 

the ERK pathway [33]. Aberrant activation of 

this ERK pathway has been linked to 

abnormalities in memory processes, including 

long-term depression (LTD) and long-term 

potentiation (LTP). Moreover, the modulation of 

the activity of the transcriptional repressor 

CREB2 could potentially be influenced by the 

differential activation of these isoforms of 

MAPK [34]. Furthermore, previous 

investigations illustrated that ERK½ signaling 

activities were enhanced in the hippocampus of 

rats treated with the doxorubicin and 

cyclophosphamide cocktail [19]. 

AKT, a serine/threonine kinase, is linked to 

numerous cellular functions, encompassing 

protein synthesis, neuronal morphology, 

plasticity as well as, cell survival and apoptosis 

[35]. The AKT signaling pathway has been 

demonstrated to be important in the central 

nervous system due to its paramount role [36]. 

Moreover, AKT phosphorylation can activate the 

MAPK/ERK½ pathway [37]. Interestingly, a 

study has disclosed that doxorubicin and 

cyclophosphamide impact cognitive function and 

affect synaptic plasticity via enhanced activation 

of Erk1/2 and AKT [38].  

2.3.3. Presynaptic and postsynaptic proteins 

Synaptic proteins such as synaptophysin and 

postsynaptic density protein PSD-95 are not only 

structural components of synapses but also key 

indicators of synaptic activity, reflecting their 

pivotal roles in memory and learning [39]. 

Operating within the presynaptic terminal, 

synaptophysin, a vesicular synaptic protein, plays 

an active role in both neurotransmitter release 

and synaptic vesicle recycling [40]. PSD-95, an 

excitatory synaptic scaffolding protein, interacts 

with N-methyl-D-aspartate (NMDA) receptors, 

facilitating their expression in the postsynaptic 

membrane. Furthermore, PSD-95 is considered a 

crucial protein for synaptic plasticity, with its 

levels mirroring the size and strength of synapses 

[41-43]. Besides, a correlation between memory 

impairment and PSD-95 levels has been 

suggested by reports from previous studies [38]. 

In this context, a recent study demonstrated that 

the combination treatment of doxorubicin and 

cyclophosphamide resulted in a drastic reduction 

in the prefrontal cortical and hippocampal 

expression of both synaptic proteins, 

synaptophysin and PSD-95, impairing synaptic 

plasticity and altering rats’ memory [14]. 

2.4. Down-regulation of neurotransmitters  

Recently, disturbances in the equilibrium 

among brain neurotransmitters have been shown 

in multiple chemotherapy-induced cognitive 

deficits and behavioral abnormalities [44-46]. 

Evidence continues to emerge that the 

combination of doxorubicin and 

cyclophosphamide-induced cognitive impairment 

is closely linked to a reduction in acetylcholine 

(Ach) neuronal reserves.  Ach is widely 

recognized as a vital neurotransmitter essential 

for healthy functions, memory, as well as 

learning since it stands as a crucial 

neurotransmitter within the cholinergic nervous 

system, allowing LTP [3, 14, 47]. The observed 

phenomenon may be ascribed to enhanced 

acetylcholinesterase enzyme (AchE) upregulation 

and activation [48]. AchE is responsible for the 

hydrolysis of Ach, and subsequently, its 

degradation effectively halts the transmission of 

cholinergic signals across synapses [49]. 

Furthermore, recent demonstrations have 

highlighted that doxorubicin and 

cyclophosphamide are linked to a drop in 

serotonin (5-HT) and dopamine levels in the 

brain. This action exacerbates the decline of 

cognitive functions while also potentially 

provoking a depression-like illness [50, 51]. 

Playing a significant role in regulating 

hippocampal synaptic plasticity, 5-HTergic 
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neurons exert inhibitory control through 5-HT1A 

receptors. The depletion of 5-HT has a negative 

impact on hippocampus-dependent declarative 

memory, resulting in poor performance in a novel 

object recognition task [52]. 

3. Promising neuroprotective strategies to 

combat cognitive impairment induced by 

doxorubicin and cyclophosphamide 

Currently, definitive treatments for 

doxorubicin and cyclophosphamide cocktail-

induced cognitive impairment remain elusive. 

However, select studies have highlighted 

potential drug interventions that show promise in 

mitigating the cognitive damage caused by this 

combination treatment. Nevertheless, emerging 

research has highlighted potential 

neuroprotective strategies that show promise in 

mitigating cognitive damage caused by this 

combination therapy. Table 1 and Fig. 4 

comprehensively summarize each preventive 

measure alongside the molecular mechanisms 

underlying their neuroprotective effects. 

 

Fig. 4. Summary of the preventive strategies with the 

molecular mechanisms molecular mechanisms that 

underscore their neuroprotective benefits. 

3.1. L-Carnitine 

L-Carnitine is an endogenous molecule that 

naturally exists in almost every mammalian 

species and tissue [53]. L-Carnitine is 

synthesized in the human body and plays a vital 

function in energy metabolism by facilitating the 

transport of fatty acids into the mitochondria, 

subsequently assisting in cellular energy 

production. Beyond being a dietary essential, L-

Carnitine isn't just gained from what we eat; our 

bodies also synthesize it from essential amino 

acids such as L-lysine and L-methionine, mostly 

in the kidney and liver. Going beyond its primary 

role in energy production, L-Carnitine has 

sparked interest in its potential health benefits 

and therapeutic applications [54]. Moreover, L-

Carnitine, with its recognized involvement in 

diverse biological activities, has been reported for 

its, anti-inflammatory [55], antioxidant [56], 

neuroprotective [57], learning, and memory 

enhancement [58]. Additionally, research 

highlights L-Carnitine's reported anticancer 

activity through its ability to reduce angiogenesis 

[59]. As evidenced by an experimental model, L-

Carnitine demonstrated neuroprotective 

properties against doxorubicin and 

cyclophosphamide co-administration-induced 

chemobrain where Doxorubicin (4 mg/kg) and 

Cyclophosphamide (40 mg/kg) were 

administered to rats intravenously through the rat 

tail vein once weekly, along with L-Carnitine at 

doses of 150 and 300 mg/kg intraperitoneally five 

times per week for three weeks. Demonstrating 

neuroprotective effects, L-Carnitine positively 

influenced spatial memory and learning as well 

as memory acquisition and retention. Moreover, 

it prevented the histopathological alterations that 

resulted from doxorubicin and cyclophosphamide 

treatment. Furthermore, through its antioxidant 

properties, L-Carnitine exhibited further 

neuroprotective effects. Additionally, it 

contributed to the reduction of 

neuroinflammation, as displayed by its impact on 

NF-κB and the related cytokines, namely TNF-α 

and IL-1β, in both the prefrontal cortex and 

hippocampus. On top of that, using its 

modulation of synaptic plasticity, L-Carnitine 

exhibited the potential to mitigate cognitive 

impairment driven by Doxorubicin and 
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Cyclophosphamide co-treatment. These findings 

indicate that L-Carnitine holds promise as a 

potential candidate for clinical trials in evaluating 

chemobrain prevention. This potential is 

particularly noteworthy given its current market 

approval and the absence of serious side effects 

[14].  

Table 1. Mechanistic neuroprotective targets to alleviate doxorubicin and cyclophosphamide-induced 

neurotoxicity  

Agent used Methodology Mechanisms of neuroprotection References 

L-Carnitine Animals: Male Wistar rats 

Experimental design: 

Doxorubicin (4 mg/kg) and 

Cyclophosphamide (40 mg/kg) were 

given intravenously through the rat 

tail vein once a week in parallel with 

the administration of L-Carnitine 

intraperitoneally at doses of 150 and 

300 mg/kg five times per week for a 

consecutive three weeks. 

Behavioral tests: 

Locomotor activity 

Novel object recognition test 

Morris water maze 

Passive avoidance 

Anti-inflammatory: 

↓ NF-κB, TNF-α & IL-1β 

Antioxidant: 

↓ MDA  

↑ GSH, CAT 

Effect on neurotransmitters: 

↓ AChE 

Effect on neurogenesis and synaptic 

plasticity: 

↑ BDNF, pCREB,  

synaptophysin & PSD-95 

 

 

[14] 

N-acetylcysteine Animals: Male Wistar rats 

Experimental design: 

doxorubicin (5 mg/kg) and 

cyclophosphamide (50 mg/kg) were 

administered intraperitoneally once a 

week for 2 weeks, N-acetylcysteine 

was given three times: 30 minutes 

before, 30 minutes, and 1 hour after 

Behavioral tests: 

Light-Dark test 

Novel location recognition test 

Antioxidant: 

↑ GSH/GSSG ratio 
[66] 

Thunbergia erecta Animals: Male Wistar rats 

Experimental design: 

Rats were administered intravenously 

once per week for 3 weeks with 

Doxorubicin (4 mg/kg) and 

Cyclophosphamide (40 mg/kg), in 

addition to, TEAF 50, 100, and 200 

mg/kg were administered orally one 

hour later 5 times per week for 3 

weeks 

Behavioral tests: 

Locomotor activity 

Novel object recognition test 

Morris water maze 

Step-through passive avoidance 

 

Anti-inflammatory: 

↓ HMBG1, RAGE, NF-κB, TNF-α 

& IL-1β 

Antioxidant: 

↓ MDA & hydrogen peroxide 

↑ GSH, CAT 

 

[16] 
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3.2. N-acetylcysteine 

N-acetylcysteine, a naturally occurring 

antioxidant, stands as a notable compound known 

for its multifaceted medical applications. Serving 

as a precursor to L-cysteine and subsequently 

GSH, it holds a key role in the management of 

paracetamol overdose and has acquired 

prominence in mucolytic therapy. Furthermore, 

its importance extends to its global recognition 

by the World Health Organization (WHO) as an 

essential medication and an antidote to poisoning 

[60]. Demonstrating its efficacy, N-

acetylcysteine has been observed to boost GSH, 

the brain's principal antioxidant, while 

simultaneously lowering pro-inflammatory 

cytokine levels, contributing to improved 

neurogenesis [61]. Besides, reported findings 

indicate that N-acetylcysteine exhibits favorable 

outcomes in combating neuropsychiatric 

conditions, such as anxiety, obsessive-

compulsive disorder, and cognitive impairment 

associated with chemotherapy [62-65]. In rats 

subjected to combination treatment with 

doxorubicin (5 mg/kg) and cyclophosphamide 

(50 mg/kg) intraperitoneally once a week for two 

weeks, N-acetylcysteine administration three 

times: 30 minutes before, and 30 minutes and 1 

hour after was investigated for its impact on 

cognition impairment and anxiety-like behavior 

induced. The findings revealed that the anxiety-

like behavior and cognitive deficits induced by 

doxorubicin and cyclophosphamide were 

effectively reversed by N-acetylcysteine via its 

impact on GSH-dependent oxidative stress 

protection [66]. 

3.3. Thunbergia erecta 

Native to tropical West Africa, Thunbergia 

erecta is a known species within the Acanthaceae 

family. Cultivated globally, it serves as an 

ornamental plant [67]. Interestingly, the leaves of 

Thunbergia erecta have a traditional history of 

being used medically due to their anti-

inflammatory, antidepressant, sedative, and 

anxiolytic effects [68]. It has been stated that this 

plant is capable of producing flavonoids, 

alkaloids, glucosides, and phenolic acid 

derivatives [67]. Reportedly, the plant exhibited 

sedative and anxiolytic properties. Added to that, 

certain isolated phytoconstituents were noted for 

their anticholinesterase activities [69]. A recent 

study investigated the effect of Thunbergia 

erecta especially the ethyl acetate fraction of its 

alcohol extract (TEAF) against chemobrain 

induced by the administration of both 

doxorubicin and cyclophosphamide. The rats 

received doxorubicin at a dose of 4 mg/kg and 

cyclophosphamide at a dose of 40 mg/kg 

intravenously once a week for 3 weeks. The 50, 

100, and 200 mg/kg doses of TEAF were tested 

for their impact on chemotherapy-induced 

cognitive impairment. When administered at a 

dose of 200 mg/kg, TEAF exhibited more 

favorable outcomes compared to lower doses. Its 

consumption successfully mitigated the 

chemobrain triggered by combinational 

chemotherapy. This was evident through its 

influence on spatial memory, memory 

acquisition, and learning. Additionally, at the 

dosage of 200 mg/kg, TEAF ameliorated the 

histological alterations caused by the doxorubicin 

and cyclophosphamide combination, while also 

impeding the induced oxidative stress and lipid 

peroxidation prompted by the chemotherapy 

combination. Furthermore, TEAF showed anti-

inflammatory and neuroprotective effects through 

its ability to inhibit the HMGB1/RAGE/p65 NF-

κB signaling pathway which was evidenced by 

reduced protein expression of prefrontal cortical 

and hippocampal HMGB1, RAGE, p65 NF-κB, 

and Il-1β, suggesting that Thunbergia erecta 

holds promise as a potential future therapeutic 

solution for chemobrain, addressing the cognitive 

challenges affecting cancer patients globally. 

This reinforces its traditional significance as a 

neuroprotective agent [16]. 
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Conclusion  

In conclusion, this comprehensive review 

systematically elucidates the mechanisms 

underlying the cognitive impairment induced by 

the combination of doxorubicin and 

cyclophosphamide. The findings from various 

experimental studies have unveiled diverse 

mechanisms contributing to the pathogenesis of 

this neurotoxicity. Notably, oxidative stress 

emerges as a cornerstone, with this combination 

triggering substantial ROS generation, 

concurrently downregulating antioxidant enzyme 

activities. Moreover, neuroinflammation plays a 

crucial role in this pathological process, as 

doxorubicin and cyclophosphamide induce the 

release of pro-inflammatory cytokines through 

modulation of inflammatory signaling cascades 

such as the NF-κB and HMGB1-RAGE axis. 

Additionally, it alters neuronal plasticity and 

survival by acting on the CREB/BDNF pathway, 

ERK /AKT signaling pathways, and presynaptic 

and postsynaptic proteins. Furthermore, 

doxorubicin and cyclophosphamide-induced 

chemobrain are associated with the repression of 

cholinergic neurotransmission, activation of 

AchE, and disruption of the balance of 

neurotransmitters, including dopamine and 5-HT. 

While many experimental studies explore 

potential neuroprotective agents, both synthetic 

and phytochemical, the absence of a clinically 

approved adjunct underscores the necessity for 

robust clinical trials. Verifying the safety and 

efficacy of candidate agents. Bridging the 

translational gap is imperative, and future 

research efforts should focus on unraveling novel 

therapeutic avenues. The ultimate goal is to not 

only alleviate cognitive impairment but also 

enhance patient outcomes and overall quality of 

life in the face of doxorubicin and 

cyclophosphamide treatment. 
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