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On the maintance of a system of machines by one

repairman

Consider a system of n machines of the same type; Bach
of the machines "at randam instants" may require the atteniion
of a repairman. The machines break down independantly of each
other, the life time of any machine is a randam variable and
has . the expanential function distribution with parameter A
the time of repair of any broken down machine is é randam
variable having the destribution function G(x);All the machines
are operating in parallel,and the whole system will be out of
operation as soon as the number of broken machines becomes
greater than m where m £ n.

We shall try to find the probability that the whole
system operates a time less or equal to t.and the expocted time
during which the system can operate.

l. We first define the following funetions

1. @;(x,2) - the probability that i machines are out of
operation,repairman spends time equal§ z in repair- -
.ing one of them and the whole system can operate for
time x before getting idle.

2. P(x) - the probability that the system can operate
‘ for time x.

f,then_(P(x) = 1 - p(x) is the distbution function of
‘the time of operation of the system,

It is Gear that p(x) = 9@ (x,0)

We can easily see that
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To obviate these relations we explain the process, in
words, as ‘follows:

If the system gtarts functioning without any brcken
machine then it will centinue its functionbngfor time = x
till one. of the following cases ocuers.

1., -no machine goes out of operation during time x. -

2."Aﬁ'time C , from the begining one machine breeks and
the repairman starts to repair.it, but the whole system
continues to operate for time x -T , this expains .
relationf1). '
If in @ the system at a given instance there dré 1 machines
, idle and the repairman stants repaiging one of them at
time 2z before th's moment, them the prcobability that it
will continue to operate a time x after this given moment
‘ 9%(x,z) is equal to the probability of occurance of
one of the following independant cases.
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Repain which starteda time x/is not finished at the
moment x, after the given instant, but not more than
m-i machines could ge out of operations

the repair which started a time x ago is finished at
a time T after the given moment, during this time not
more than m-i machines go out of operation and the :
system will coutinue to operate for time x-T .

C;,®-is the probability that from the n-i operating
machines k go out of operation. during a time x

«To find (‘?(x)., put 2z = o in equation (2),.

Using 1aplac¢transform relations (1) and (2) take the
form:
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; Put S i =1 in (4) we get
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substituting in (3) we get.
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To obtain the expected length of the opérating period
of the system we find the derivative of relation (5) at s = 0.

Let IAbe the expected duration of the operating period .
of the system.

then
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where }@kis the expected duration of the operating period of
the system if it started with |< broken machines.

F& could be found by solving the following system of
equations

from relations (3) and (4)
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we notice that P = FO

Solving this set of algebraic equations we can f£ind Uy
fOI‘ all k: = 0,1,2,...,131»

The first term in the R.H.S. of relation (6) is the same
as the one in the relation of expected duration of the opera-
tinaperiod, which was obtained in refrence, (1) but with
slight modification. In other words this first term is the
expected duration of the operating period of a systém contain-—
ing (n-1) main machines and one stand-by relief, for peak
operation, "hot reserve which can go out: of opervtion in
the same manner of ctier operating machines.

Then the second term in the R.H.S. of relation fﬁ) iz the exnac-

ted valus of themesn duraticn of the period of operation of the

whole system due to M-1) other leaded stand »y machines,
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How to compute the optlmal size of reserve:

 We- cah use relatlon (6) to flnd the optimal size of

reserve in OLII‘ case.

Let Cl be.the cost oﬁ one mach1ne and 02 - the
profetL per unlte oparat:l.ng t:;.me ofj ;;he system. i
them for a System con81sting of n + rﬁumachlnes from
which (n -M\maln oparating ones and r reserve,

the optimal size of r (wherepr P m) will sabisfy
the following inequality

Czi\’t-OzfA.—(r—m) C; > O

i \
M is given by relation (&) and W is the mean
oparating time of the system consisting of W - m
main machines: and r hot stand-by ones.

' could be found , if we put n-m+ Y in
relation (6) instead of n.

We now prove a theorem which is the same as the one
proved in the. case of non-loaded reserve., (1).

theorem

If the distribution function of rep G.Pv“ G(x) depends
on a parameter 49 such that

SFE -(n-l)')\ X] d G(x) = & ——)>-" as Y— o0 (9)
Them the distribution functlon of the operating tims of.
the whole system tends to the exponential ore, '

Condition (8) means that the probability that no machine

can break dowr during, the rapair of the broken one.
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for every finite interval of s, Putting cxv’s'

in (5) we have .
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and this is the probability that at least one machine will
breaks down before the finishing of repair of the broken
one, and from condition (8), +this probability tends to zero
as y) tends to &0« :
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which is the probability that k  machines will break down
before the finishing of repair of the broken one and from
condition (8) this tends to zero &8s Y w—p oo
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from (44) and (14) we finaly see that
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which complete the proof of the theorem.
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