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PREFACE

Perhaps no field of sclence has changed so rapidly in
the past few years as has the field of applied mathematics.
The most important factor in this change has been the develop-
ment ®f the high-speed digital computer. Indeed, it is not
too much to claim that the development of the computer has
revolutionized some parts of mathematics.

This memo. attempts to do two things in relation to
the situation Jjust descirbed - to give a short notes about
Matrix Algebra and to give usable computer methods for solving

systems of linear equationse.

We aim that this would help as a benchmark for differ-
ent researchers who need to use the computer in that field of

algebra.
In the fubture, we hope to be able to extend our prese—

ntation to more detailed mathematical branches. In which a
case, each will be presented in a separate memo'«Se

Finally we would like to thank Dr. Youssef Nasr El Din,
for his cooperation which led to this memo., to Mrs. Ellen and
Mrs. Sawsan for the great care and the many tedious hours of

typing this memo.

AFAF - YEHIA
1/.'9/ 1969
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oTe MATRIX  OPERATIONS

— ITRIRNES

To.l. Matrix Algebra:

Matrices provide a useful method for systematising
both the theoretical and the practical aspects of certain
computing procedures, particularly in connection with automa—

tic computerse.

Arectangular matrix A which is arranged in m rows
and n columns is said to be of order m by n or m X n.

A = [aisl = 817 Bip e 81y

The (i,Jj) the elemend a3 represents the elément in
the ith row and the jth column of the matrix

Definitionsst
1) A matrix with only one row is called a row matrix
(or a row vector) and a matrix with only one column
is called a column matrix (or a column vector).

2) The sealar product of a row matrix and a column matrix
is meaningful if and only if the row and column have
the same number of terms, and then it consists of a
single number defined as in the followlng example,

#
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4)

5)

6)

7)

(2)

see xﬁ] P.Yl = xl yl+X2 y2+ see +Xn yn.

A matrix with the same number of rows and columns
is called a square matriX.

A diagonal matrix D = di,j is a square matrix with
all the di. Zero except dll § d22 g eee 3 dnn which
are the diagonal elements. A diagonal matrix all of
whose diagonal elements are unity is called a unit

matrix and is denoted by I.

The transpose matrix A' of a matrix A is defined

by the property that if A is an m x n matrix whose
(iy3) th element is aij then A' is an n X m matrix
whose (i,Jj) th element is a

[ = [y

A gymetrical matrix is a square matrix with

i’

o 3 | =
aij = aji ’ ilece A = A

Given a matrix A of order n x n, there exists a matrix
z such that

‘&Z= ki
then the matrix z is called the inverse of A and it

is denoted by A™1. A necessary condition for the
existence of the inverse of A is that det A # O.
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8) If det A = O the matrix A is said to be singular
and in this case the inverse does not exist, but
if det A # O the matrix is said to be non singular.

To multiply a matrix by a scalar, say k, each term of
the matrix is multiplied by ks

kA = [kai,j'}
Consider operations involwing two matrices A = [aij]
and B = big]. Equality, addition and subtraction are meanin-
gful terms if and only if the matrices have the same number of

rows and the same number of columns. If this is true then:

A = B if and only if 854 = bi.;L for all i4Je

The sum or difference of two matrices with equal numbers
of rows and columns is the matrix such that any element is the
sum or difference of the corresponding elements in A and B.
This is defined by the equation

A+ B =Eaij + biJJ

Two matrices can be multiplied together if and only if
the number of columns in the first is equal to the number of
rows in the second. Then the element in the ith row and the
Jth column of the product is the scalar product of the ith row

of the lgt matrix with the jth column of the second.
IfAismxn, Bisnxp, and

AB = C

or E%tﬂ Eﬁkl = [?iél
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the elements of the product matrix C,is
n

3=1

and C is of order m X p. As an example,

Caqq ay)  [b11 Pip| = [B11 Pin * 212 Py 211 Pip *o21p Pog
ay1 8zp P21 Pap ayy Pyp + 85 ba; 87 byp + 8y, by
231 232 %51 P11 * @32 P21 %31 P12 * %32 P22

In the product AB the matrix A is said to -~ premultiply
B, and B is said to postmultiply A.

I.2. The Inverse Matrix

Iet A be an n X n matrix consisting of elements 8450
we will adopt the following usual notations.

I Al or det A = determinant of A,

A

1j cofactor of the element aij’
A~ = inverse of A.

For D = det A # 0, we have A™L defined as
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=
b
b

11 gl nl
T B fvss =g
A A -
A_l = —%; 22 ® @ e e : (I.gol)
Aln Ann
-"""-'D e o0 e o e e —"_'D i

Evaluating AL from its definition is completely unsatis-
factory from a computational point of view. However, the
composition of inverse elements is useful in theory.

If D=0 the matrix A is said to be singular. For every
nonsingular matrix, A, a unique inverse A"l exists with the
following properties:

(1) a7l = 4™ = I (the identity matrix),

(2) det A™%= 1/det 4,

(3) B~ < p1aTl,

(4) (A—lyl = 4,

(5) if two rows (columns) of A are transposed to form
By then transposing the corresponding columns (rows)
of A™1 will yielda BT,

Properties (1) and (4) are sometimes used inchecking
the accuracy of a computed inverse.
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I.%5 Simultaneous Linear Equations

The system of equations

a;q X3 + 295 Xy + eee + B9, X = bl’
857 Xp + 855 X5 + e+ 8oy X, = b2,
(I.3.1)
8y X1 * 8y Xyt e * 8, X, = bn,
Can be represented in matrix form as
AX = B

where [aj; 81p e By BN 'blw
A = ?21 855 see aonl o X = X, § BE ?2
i %2 %m H

The A matrix is called the coefficient matrix, the X
vector is called the vector of unknowns, and the B vector is
frequently referred to as the right-hand sides,

If A is nonsingular, then A™1 exists and we have

plax =218, m=a1B , xea"lm,

This says that if we have W

B to obtain the solution to the system of equations.

, we can multiply this times
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T.4. Orthogonality and Orthomormality

Two vectors are said to be ORTHOGONAL if their product
equals zero. Any two of the unit vectors are orthogonal, such

as ey and €59 since
[200]

A system of vectors all of which are orthogonal %o each
other is called an ORTHOGONAL SYSTEM.

o = O
il
o

The vecoBors may be reduced to unit length, or NORMALIZED,
by dividing. by the respective values of the lengbth of these
vectors. o |

The system is then said to be ORTHONORMAL. It is
convenient, to define an ORTHOGONAL MATRIX as a matrix consis—.
ting of a set of orthonormal vectors, which may be placed
either column-wise or row - wise.
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I.5+ The Solution of Simultaneous Linear Equations

In the algebra of real numbers the inverse of any non
zero number is defined, such that at.a=aal-= 1. The
question then arises as to whether there is a similar behavior
with arrays or whether it is possible to find an inverse of

A such that:

ATl A = oaa™t - o1

where I is the identity, or unit, matrix. On the assumption
for the moment that an inverse may exist, then a system of
simultaneous equations might be solved as follows:

AX = C

Premultiplying both sides by the inverse of the coefficient
matrix, A_l, gives

41 =1

AX = A C

Since o™ 4 = I, and since the scalarmatrix I can be
replaced by the scalar constant 1,

X = A-l C

Thus, the result of the multiplication of the inverse
of A and the column vector C is the column vector of the X
values.

let us now consider the problem of finding the  inverse
of a matrix. We may immediately limit ourselves to square
matrices, since, for both A™LA and AA™Y multiplications to be
possible, the column and row dimensions must be equal.

The problem is now one of solving M systems of M
simultaneous equations for the unknowns.

Many methods may be used for that purpose.
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II - ELIMINATION METHODS

IT.l. Gauss BElimination

To illustrate the method, we should first consider the
case of three equations in three unknowns:

a1y X) + 81p X + 893 Xz = bl (Idedel )
8y ¥ + 8pn Xy + 853 x3 = b2 (II.1.2)
azy ¥ - a§2 Xy + g3 Xz = b5 CIIslud)

At least one of a179 @7 and ail is not zero, otherwise
only two unknowns would appear in the three equations. If 871
is zero, we reorder the equations so that the coefficients of
Xq in the first equation is not zero. Interchanging two Tows
in the system of equations, of course, leaves the system ess—

entially unchanged.

Next define a multiplier

We multiply the first equation (IIelel) DY mg.and”SUbtraGt

from the second equation (II.l.2) the result is
(8p1 =y 897)%y + (855 = Wy 815)%y + (85 = Iy 813)%5 = by-myby

eoses (ITelelts)
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But

B
Pog "Wty S St T, 4l < 0
o i wé_now define
o = Qnm — | a
gs = Bas T Uy Byp
/ —
83 = 85z — I 413
/ :
b, = by, =-m, by

then (IJ«le#) becomes

/

/
Bop Xy + 8pz Xz = Dby (II.1.5)

Ve replace the second of the original equation (II.l.2) by (II.1.5).
Similarly, we define a multiplier for the third equation:
m =
3 ]

Ve multiply the first equation by this multiplier and subtract
"rom the third. Again the coefficient of X vanishes and the

result is
/ / /
azn Xp + Gzz Xy :;b5 ({I1:1:6)
there r i
: 8zp = 8zp = Oy 81,
/

o
H
o)
N
i
=
N
oy
-
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If we now use (II.1l.6) to replace (II.1.3) the
resulting three equations in three unknowns ares:

817 ¥ + 8p5 X, + ay3 Xz .= bl CITol 1)
, .
aéa X, + aéB Xz = by (IT.1.5)
Y ' ’ _ ¥
8.52 xa + 3.33 XB = b3 (110106)

If we can solve the last two equations for X, and
X3 the results can be substituted in the first to get Xq

We can now proceed to eliminate X, from one of the
last two equations. Again, if dée = 0, we 1nterchange the
last two equations. (if 1t should happen that a22 = 0 and
32 = 0, the equations are singular and have either no

solutions or an infinite number of solutions.,).

We define a new multiplier m;:
/

a

/ §2
m - .
5 853

We multiply (II.1.5) by m; and subtract from (II.1.6).
The result is

4 A 4 / ¢, /7 / /
(a32 - g a22)x2 + (a35 ~ mg a25)x5 = b5 - g b,

Again | p
7/ _ / a _ 0
qzp ~ fz 855

and letting “o_
833 = 833 = Wz 855
7 / / /

&4 &
we getb 33 Xz = b3 CIT 1.7 )
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Tt is now a straight forward process to solve(II;1l.7) for
X359 to substitute that resultin(Il.l.5)to get x;,This process,

called BACK SUBSTITUTION, is given by

*3

g

]

/ /
(b - 855 X3)

833

a5

(by-a), X, = 833 Xz)

B4y

We have therefore found an exact soiution in a finite

number of arithmetic operations,

round off errors.

In this case there were no

We may now generalize the procedure to the case of n

simultaneous linear equations in n unknowns.

Iet the n unknowns be X19%5s eee 3 Xp and let tThe

equations be
211%1 *+ 212%2
8p1%1 * ézaxz
oni o i
g i% * Bt

anlxl + 8.]32}{2

+al
+8.2

a.
¥ 1

+ a
n

X, +
L 2k

K
ll+

@

XK.+

L 1

i
l.".l.+

(II.1.8)



13

We assume that the equations have been so ordered that 841 £ Qs {
Define (n~-1) multipliers: : ”

m., = —_“LL_—— H i = 2’3, sse g n

and subtract ms times the first equation from the i-th equation.

If we define

' .

aij — aij e mi ala- 9 .1:2’5’...’11
/ §
bi = bi - mi bi o a=l’ se 0w ’n

it is easy to see that

V4
ail = O 9 i=2’ eeoe ’n

The transformed equations are

"
o’

L ]
[ ]
L ]
L ]
®

allxl + a12x2 o + al X

Vi /
0 <+ on¥s + e e 0 0 o+ aznxn = b2
® o 0 e @ @ ® @ ® L ] e ® 0O ® o @
0 ! x . B,
+3.122 + L ] L] L] L ] L ] +ainxn — i
LN BN ] ® o8 ® L ] L e @ [ W ] [ 3K BN ]
/ / /
0 a. X, e o =

o n2 2 + e o ® + anan bn

We continue in this way. At the K-th stage we eliminate x, by
defining multipliers '

(kwl)
s
mgk-l) - ik y izk+lyeee,n (TI.1.9)
o (k1) |

kk
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h

here aéi'l) £ 0 then
a%?) s a%?‘l) - m{k1) af{?“l)- (II.1.10)
b]g_k) - bgk“l) - mgk—l) blik“‘l) (II.1.11)

fOI‘ i = k+l, weoo § n aIld. fOI‘ j = k, see 9§ N,
The final triangular set of equations is given by

allxl + alaxa + » © ©° o o 4 alnxn =
7 7/
322X2 + ¢ o o & @ % aanxn

ceo ° o L] @ ® @ 0@ e o0 (II.l.l?.)

(3-L), _ {3-1)
Jd d Jn *n = bﬂ '

e o @ @ © o e ee eeo

a;;l__l)}(n = blclnrl)

The round off errors in the values of the unknowns can be subst-
antially reduced by a judiclous choice of rows to interchange.
The back substitution can be described as follows
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(n-1
X = : én ) '
nn
(n-2) _ (n 2
% .= b1 ” nrl i n)
n-1 (n—2)
nrl n-1
= (p$d=1) _ G-, (J-1) 4
xj, L (bj Jn n I ER aj J'l'l
s e (II|1015>
fOI‘ J =1 Il"“2’ see 9 l |

Example:

As an example of the
solve the equationss

X+ Xy + x3
2x1 + X, +5x5
X4 +332 +2x5

The apgmented matrix 1s

| 1 X
2 1 3
Ll 3 2

The multipliers

use of Gaussian elimination, let us

= 10

= 21 (ITe1l.14)
= 17

10l = B,

21l = By

7]z B

l)/a(J-l)
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a
m, = 21 frer -%:2
2 a9 &
5 an L
Elimination of coefficient of xl:
_ _ >
1 1 1 10 Rl/all H 1 1 10
2 1 3 21|Ry,mR; 0 <L I I
1 3 2 17 |RgmR) 0o 2 1 7
The multiplier ,
a
}_‘[],/ -—,12' = e S
5 8.22 e
Blimination of coefficilents of Xy
- ol —
1 1 1 107] L1 1 10
0 =1 1 1, R2/¥l G 1 =1 -1
o 2 1 '7JR5-m’Rf2 O 0 3 9

The forward elimination is now complete, and the equations

corresponding to the matrix form are

Xl + X2 e XB =
32 -.-',XB =

5X5 3 9
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Backward substitution may now be used to solve for the
xis in reverse order, Hence,

x3 = 35

1]

M
H
u

lO-xa-;3=5



» oy
T < Nl?HJ=J+1

=

I = 1

1

N1 = N+1
%
L= L
1
In 4
PTV = A(L, L)
J = L
‘ e
'L,J):A(LQJ)/PIq
= & ‘

_ Y

PW = A(I+1,L)

b

=PR@W # A(L,J)

!
¥

T+1l,J)=A+1,)-R

¥

T LWL ?

T—

¥

A(N,Nl):ﬁ(l\;m)/A(N,N)

I —d

J= J+1

(

I= I+1

L

IN Lqd N |gm
=
~J

L= I+l

L=1
s p
=
E I = N-I
2 <
% S : 0
% Jd = I+l
& 4
2 ‘.
5=S+(A(T, J)zﬁ(JN_lDl
¥
( g<w> T o= J¥l
ACI,N1)=(A(I,N1)-8)/A(T,I)
I= I+l

( n<u
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N ... IS THE MAX., NO OF ITS ROWS OR COLUMNS.
M .., IS THE NO, OF THE CONSTANT VECTORS.
DIMENSION A(30,31) '
READ 2,N,M

FORMAT(212)

N1=N+1

DO 3 I=1,N

READ 4,(A(I,J),J=1,N1)

FORMAT(10F8.3)

CALL GAUSEL(4,N)

IF(SENSE SWITCH 1)5,7

PRINT 6,(A(I,N1),I=1,N)
FORMAT(5(F14.8,2X))

PUNCH 6,(A(I,N1),I=1,N)

GO TO 1 '

END

SUBROUTINE GAUSEL (A,N)

DIMENSION A(30,31)

FORWARD ELIMINATION,

M=N-1

N1=N+l

DO 5 I=l,M

PIV=A(L,L)

DO 3 J=L,N1

A (L, 7)=A (LI /PIV

DO 4 I=L,M '

PROW=A (I+1,L)

DO 4J=L,N1
=PROW=A (L, J)

A(I+1,J)=A(I+1,J)=R

CONTINUE

A PROG. TO READ A SQUARE MATRIX AND GET ITS SOLUTIOCN,.
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BACKWARD SUBISTITUTION,
A(N,N1)=A(N,N1)/A(N,N)
DO 8 I=1,M

I=N-I

8=0.

KK=T+1

DO 7 J=KK,N
S=S+A(I,J)=A(J,N1)
A(I,N1)=(A(I,N1)-8)/A(I,I)
RETURN '

END

——
READ SUBFROGRANS NAMED  ABQVE
LOAD SUBROUTINES

ENTER DATA

5,00000000 2.00000000 . 5.00000000
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TLe2¢ Jordan Blimination

If the coefficients matrix is reduced to the identity by
row operations on the rectangualr systems matrix, the solutions
to the system are obtained in the last reduction, ‘No back
solutions are required.

To illustrate this procedure, we will solve the systems

4xl + 2x2 + x3 = 5
Bxl + X + 3x5 = 2 (IT.2.1)
2xl + x3 = 4

and at the same time obtain the inverse of the coefficients
matrix. The rectangular systems matrix is given by:

14 2 3 3—
5 1 2 2 (II.2.2)
L? 0 1 4J

We augment this matrix by the identity matrix, thus obtaining
the matrix:

4 2 1 3 1 0 o]
3 1 3 2 0 1 0
2 0 1 4 0 0 1

The row operations described below are now performed to reduce
the coefficients matrix to identity.
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First reduction

B " 1 2 1 » F e
4 5 T I pry 0 0 |{1) alj-—alj/all “
1 ;. -2 / _ - / .
0 -5 F -3 -f 1 0@ damayannl <3 L5
r 5 _1 D e
0 -1 5 3 -3 0 103 agy=agy-agay ]

Second reduction

N - _ - )
1 0 g 5 -3 1 07(2) & 5may magmy;
i} /o ' .
0 1 -2 % 3 -2 0| dymayy/a, 12 <ISE
/ /
0 g = 3 1 -2 lj (%) 854=83583585 5

19 1 _1 5 ‘o e a
1 0 o F 5 -F §|@ dymangageg,
2 4 9 . ’ § o
o 1 0-8 3 5 -F|0) syymapganez 13<Ig7
_3 .1 1 _1 o
0 0 1.-% -F F -5 ATyt J

Numbers in parenthesis denote the ordering of operations within

a reduction stage.

In a computer sclution to the problem, the identity
matrix need not occupy storage locations in the memory. We can
set up avery orderly procedure that avoids the computation of

predetermined elements and does not utilize computer storage for
the initial identity matrix or the unit vectors formed in the
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reduction process., We will consider two methods of storage
allocation that are frequently used to chomplish this task.

Method 1.

For the r-th reduction, we have

a a_ .

- - - o -1 | v )

815 7 %43 - » 1#2, Jj#r,
$ %ir

By >~ = Somom—omee ’ i#02»

ir o »

/ a_ .

— -—-——I.L s

Qpg = ’ J#r

T qrp | 4

/ 1

a = —

rr 8pp ’

Method 2. o
For every reduction, we have

/ | 22 M0 1 ,
ai"l"j_l,= aij . all . ) l=2"5|""n! J=2’5,oo.’n+ﬂl;
/ ' _ ail B
8i-l,n4+m = ajy y 122435000403

/ 84 s ,

. =3 —-;—a .

.an,g—l 844 ?y J=2334eeeyn4m3

/ 1
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Method 1 requires exactly nx(n+m) storage locations for
array elements, However in method 2,2 work row is utilized for
temporary storage of the pivot rowe. As unew rows are computed,
they are stored one row above their prior location in the
nx(n+m) array. The work row finally repalces the n~th row at
the end of each reduction. In this manner, the first row in
the nx(n+m) array will always be the pivot row for next reduc-—
tion, the pivotal element being the first element in the first

TOWe

Using as an example the system matrix (II.2.2), we shall
observe that the solubtion vectors appear in different columns
of the final array, dependent on the method used.

Initial array Method 1 Method 2
4 2 1 3 1 0o dl T[4 2 1 3|[4s 2 1 3]
3 1 3 2 o0 1 © 3 1 3 2 3 1 3 2
_? o 1 4 0o O 1 27 o 1 4 L‘E o 1 4
First reduction
IEEEERKIEE IR ]
o 3 3-% o afbda £ 3|3 F 24
B I % () l
EERER!




(25)

Second reduction

r:f(:)%%“’*—%l0“1--_%J.%-%T"—-Ap51--2—1
o 1% 3 3= o||222 8|2 53 2
0 0 -4 3 1 -2 %4_1'2‘45_:2'%5‘?_
Third reduction

oo 3403 [2 8RR 2
o108 |3 53| |3 i3 |F | 33

ke
KN
Mol
o

In general, the accuracy of the reduction computations
depends considerably upon the pivotal elements used in each
reduction stage. A pivotal element of zero, for example, at
any stage will make it impossible to continue the process. Bpue
gero pivotal clemernts are unlikely to be formed beyond the first
few reductions, even in the case of a singwlar coefficients
natrix, due to truncation or rounding. Although a relative zero
pivotal element may not stop the process, it will yield inacaur-
ate resultse. '



N+M

H

+

A(I,I)=1.A4T,T

¥
ACT,3)=4(T, D)=A(T

o5

Jz T4l |

» L= (I,K)

J

A,

AT, E)=A(T,K) -4

K = K41

i 2
K =1
A(Jg I):-*A(J,; .T,.)EA\J., I)

|

|

Jd = J+1 1

I = I+1

A
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SUBROUTINE GORD 1(A,N,M)
DIMENSION A(15,30)
Le=lN+M

DO 7 I=1,N
A(I,I)=1.0/A(I,I)

DO 3 J=1,L

IF(J—I)2 3,2

\ "- )-*-hwi Tﬂ, »:‘& ( "SI)
GONTINUE
DO 7 J=1,N
IF(J=1)4,7,4
DO 6 K=1,L
TE(E-I)5,6,5

CONTINUE

A(T,I)=-A(J, D=mA(T,T)
CCNTINUE

RETURN

END

A(T,E)=4(J,K)~A(T, I (T550)
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ENTER SOURCE FPROGRAM, PRESS START

DIMENSION A(15,30)

C N IS THE NO OF ROWS OF THE ORIGINAL MATRIX.
C M IS THE NO OF THE SOLUTION VECTORS.
1| |READ 2,M,N

2| |[FORMAT(2X2)

I=N+M

DO 3 I=1,N

3| |READ 4:(A(I’J):J=’-_1’L)

4| [FORMAT(1O0F8.3)

CALL GORD 1(A,N,M)

DO 5I=1,N

5| {FRINT 6,(A(I,J),Jd=1,L)

6| |FORMAT(5(F14.8,2X))

GO TO 1

END

HEBD. 1 -
READ SUBFROGRANS, NAMED ABOVE

'IOAD SUBROUTINES
/ENTER DATA

.12500000 -,25000000  ,62500000 2,37500000
« 37500000 .25000000 -1,12500000 =2.87500000

—-+,25000000 «50000000 -~ ,25000000 - ,75000000



L = N4ld
v

I=1
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I
E(N+l,L)iLAKlJJ

..

J = 2

V&;

A(N+1,J~1)=A(1, T) %A (W4l

» L)

d=

J+1

A(J-1,k-1)=0(T,K)
A(J, 1)3A{N+1,3a1)

}’

i

oD

K= K+1

A(J-1,T)=A(J, 1) N4l L)’

J= J+1

k(N,QﬁA(N+l, J)

(:4 J :&L ? :}~*~—

+
(; I=N ?:}-b—-
&
‘RETQEE.
J
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DIMENSION A(15,30)

N IS THE NO. OF ROWS OF THE ORIGINAL MATRIX.
M IS THE NO., OF THE SOLUTION VECTCRS.
READ 2,M,N “
FORMATERIR)

I=N+M

DO 3 I=1,N

READ 4, (A(T,J),J=1,L)

FORMAT(10F8.3)

CALL GORD 2(A,N,M)

DO 5 I=1,N

PRINT 6,(A(I,d),J=1,L)
FORMAT(B(F14,8,2X)

GO 7O 1

END

SUBROUTINE GORD 2(A,N,M)
DIMENSION A(15,30)

I=N+M

DO 1 I=1,N
A(N+1,L)=1.0/A(1,1)

DO 2 J=2,L
A(N+1,J-1)=A(1,J)=A(N+1,L)
DO 3 J=2,N '

DO 4 K=2,L
A(J-1,K-1)=A(J,K)~-A(J,L1)=A(N+1,K-1)
A(J=1,1)==A(J,1)=A(N+1,L)
DO 1 J=1,L
A(N,J)=A(W+1,d)

RETURN

END
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GORD 2
READ SUBPROGRAMS NAMED ABOVE

IOAD SUBROUTINES
ENTER DATA

2, 37500000 »12500000 ~,2500000

~2, 87500000 « 37500000 «2500000
~+75000000 -,25000000 » 5000000

«62500000
~1.12500000
-.25000000
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IT.3, Crout Reduction Method

Consider the set of n linear equations in n unknowns

allxl -+ alZXE + see + alnxn = bl
ay9¥) + 8pp%p +oeee + a5 X, = b2 (IIs3a1)
anlxl + an2X2 + soe annxn = bn

The process of eliminating one unknown at a time from
the set of equations is perhaps the simplest approach to their
solution and at the same time one of the shortest methods known.
Some case must be exercised in the order of elimination of the
x's, especially if they are of different magnitudes,it is advis=-
able to begin with the smallest one, proceeding in order of

increasing magnitude,

The first equation of(II.3.1)can be multiplied through by
the reciprocal of aq and written

! L i
x, = a7y by - Z (a]y] aq4)%; (II.3.2)
i=2
In the other equations, which can be written in the form,

n
ag¥ * ) BF T Py U=B 00w B
-::2

x, can be eliminated by the use of equation (II.3.2) and one

obtains the (n-1l) equations in (n-1) unknowns Xp9FgseeesXy
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= (a..—a gt g..)x, =b; - & a~ v
> 547831 411 1a/F T 79 T Tl 11 P1
i=2 ,

s e o (II'§'5)

Whel‘e j = 2,5’ ees 9 n

We can next proceed o eliminate X,. Writing equations

(II.3.3) 88,

n / / .
E aji Xi = bj J=2,5,...,Il (IIOB.L")
L= ;
The process call pe repeated. Thus from the first equation
n
e d iy / -]
X2 —(8-22) bz - E (322) aaixi (110595)
Feed

and substituting this expression for X, in the remaining equationy,
one has corresponding to equations (II.3.3), the equations

I /
/ / / s . J 3 / / / -1
> [aji - a5p(e0) azijlxi”bj'a32(322) by
1=5
ceees (IL+3.6)

where now j = Byly eee 3 1

By repeated elimination we arrive at a single equation
in the unknown X, which can be solved by a single divisions
Having X,s We can substitute to find X, 13 and having X, _1»
we can substitute in the appropriate equation to find X, o v
etc, and finally having X, ¥p_ 79 °°° ! Xz, We can substitute
in equation (IT.3.5) To find X, and in equation (IT.%.2) %o
find Xq.

\
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Crout modified the elimination method of Gauss. The
procedure ig based on the following variation. Consider the seb
of n linear equation (II.3.l) and the first equation (II.3.2)

can be written in the form

n
/ <
, i=2
where bl and d&i are calculated from the relation
' b Hes
/ 1 / 11 5
b, = and a,. = == ip2 €II.3.8)
17 a)y 13 agq
- / —
Letting ajl = 847
/ ' / / .
aja — aja - ajl ale a >2 (II¢509)

then equations (II.3.3) can be written

/ L ( Vi 7/ ) _— / /
52%2 +)  (ayymeyp 83)%; = by = a4y by
1=5
o0 0 (IIDBOJ-@)

where J = 243, ess 5 0o The first equation of this set can be

solved for x,, yielding the gquation
/ n

7
Xy = b2 - z ayi X5 (IT.%.11)
i=5% ;
/ / / 1
where b2 = Gba - a21 bl) agg

_ /7 7 4 .

Using this expression for x, to eliminate it from the other
equations of e quations (II.3.10) then
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a. x + E (a al 11 32 21>X
i=4

/7 7 7 4

= b.j et ajlbl - ajabg (IIQ}.:LB)

where jJ = 3,4y oeo , n and

7 7/ rd

Vi /
aj5 = 335 - ajl al5 - aJ.2 a23 2> 3(II.3.14)

Again the first equation of (II.3,13) can be solved for x5
yielding the e quation,

= 'b-5 - ai?)i Xi (II.B.J_B)
j_:;

where
by =(bg - a8 - o .2)ar35
(II.3.16)
/ _ r .,
ayi=(ag)~ a5 )5~ 8, 21)?“ 124
/ e / .
Therefore, Xs = bj -.E. ) aji Xs d=1,25 00030 (II.3.17)
i=j+

which have as an augmented matrix the triangular matrix

f—l al a/ a’ al b/ ]
12 13 14 °*° iln 1
/ / / /
0 1 a25 oy e 85, b2
0 0 ] ! ! b, 8
ok 8.34_ XX 351,1 (II.Eol )
/ ’
0 0 C 1 ses a4n b4
! V4
LO O O O en g l an
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The method of determining these constants is indicated by
equations (II.3.8), (II.3.9), (II.3. 123y (II 3¢14), and (II.3.16)
and is summarized by the equations

y i"'l /7 /7 .
gy B Hag = %5k Bki +
k=1

N
.

{ ek %i% ! Ly iwd (1
aji R~ aji - ajk a4 1s4d (Tl e10)

Jd- =1
/ 1 " / /
bj = (bj - E By bk)
Jd k=

All these primed constants can be thought of as belonging to
the matrix

/ / . —
311 812 %3 e dp By
7 / / / 4
821 % Bz ... By, Dby
(II.5.20)
4 af al af bl
_?nl n2 ns **°* nn nJ

Which is termed the auxiliary matrix.

Then having the elements of the auxlliary matrix (II.B.EO)‘
and the elements of the triangular matrix (II.3.,18) one can solve
the equations (II.3.1%) in reverse order of Xps X 19 cee 5 Xl
Then the solutions can be represented by the equations,
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X, = bn
_ b/ /
1™ ¥n] an--l,n 5
t; e a/ X o
Zn-2= "p-2 n-2,n-1 “n-l a11--»2,an
/ n /
. = b. b Riew s It 021
*J ] i i LDl
i=g+l
/ n Y

Crout gives the following working rules for obtaining
the auxiliary matrix (II.2.20) from the given augmented matrix

a;q 210 a13 cos 8y, bl
81 8pp oz ees 3y, Dby

(IT:%5.22)
_éﬁl aD2 an5 SCE T bn_

l)’ The various elements are determined in the following orders
elements of the first column; then elements of the first
row the right of the first column, eleusents of the second
column below the first row; then elements of the second
row to the right of the second column; and so on untill all
elements are debtermined,
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3)

%)

the

L)

2)

3)
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The first column is identical with the first column of the
given matriXe Bach element of the first row except the
fipst is obbtained by dividing the corresponding element of
the given matrix by that first element.

Each element on or below the principal diagonal is equal to
the corresponding element of the given matrix minus the sum
of those products of elements in its row and corresponding
clements in its column (in the auxiliary matrix) which

involve only previously computed elements.

Bach element to the right of the principal diagonal is given
by a calculation which differs from rule (3) only in that
there is a final division by 1ts diagonal element (in the

auxiliary matrix).
Crout gives the following working riales for obtaining

one-column final matrix from the auxiliary matrixs

The elements are determined in the fcllowing orders: last,
next to the last, second from the last, third from the last,

and so forithe.

The last element is equal to the corresponding glement in
the last column of the auxiliary matrix.

Bach element is equal to the corresponding element of the

_last column of the auxiliary matrix minus the sum of those

products of elements in 1ts Tow in the auxiliary matrix and
corresponding elements in the final matrix which involvs

4

only previously computed elements,
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PRINT Header
Card., .

7

Reagd
Control Card

l  w

Read Coerr,
Matrix 4 (I,J)

!

200

Calculatelfirst

Column of veduced
Matrix
A A"I,l):A(I,l)

[

Calculate Remainder
Jof first Row of A A

AACLd) = ACL,IY/A(3 1
CCR-].) ( 9 ) ( 9 )/ (.!., )
d = 2,N
% 510
Calculate
P— Remainder of
Next Column
Jl s ém%ﬁt on ™
S\Jmain diagonal
610
Calculate
Remainder
.0of Next Row

(39)




220

READ ONE
Gonstant vector =
data set

250
Calculate reduced
constant vector 15‘

CC(1)

(CR.2)
270

Calculate solution
" vector XL

ranother;aah—
sbaht . veci

2
292 . ‘ 2
’/,/”%unch Solution
Calculate and "Difference®
ndifference" B .. vectors.
. vector
910

Calculate N
solution vectors for
N constant vectors

from unit matrix

cojiumns

1
Punch Inverse

Matrix By columns




Discard
constant vector #

cards . for this:cage Is

~Soln,
wanted - pop
~~Jbhis case

output Brror.
Megsage for singula
atrix on cards and
typewriter

matrix
Inversion

No

Evaluate Jes

‘Determinant‘

desired
(CRQB)
Are N
solution
fmr

b

Value of Deter=
Product of Main
Diagonal Elements
of Reduced Matrix

Punch
Determinaﬁ‘

Value

(393



Variables used in the Crout reduction program:

All input is from punched cards and shall consist of the

Input
following
Card Noe. Data
21, N
MTRX
ISIN
KNO
3. JVAL
INXT
A(I,d)
8 ¢(I)

ce
1-80
1=5
6-10

11~-15

16-20

21-25

26~-30

1-80

1-80

Remarks
Header Card

I5-0rder of matrix

I5- > O,invert matrix, < 0 do
not invert matrix.

I5-~ >0, solution (8) to simult-
aueous system desired.
£ 0y no solution desired

I5-number of constant vectors
in input
I5- >0 evaluate determinant

of coefficient matrix, S}Os
do not evaluate determinatbes

I5- >0, read data for next
problem, L 0,do not read.

10F8.3-values of coefficients

of input matrix arranged by.Iows
up to 10 elements per card.
@lements must all be from the
same row on any given card)

10F8,3-values of constant vector
elements up to 10 elements per
card.(Elements must all be from
same constant vector on any given
card).
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Output

All output is on punched cards except for the singular
input matrix error message which will be typed as well as punched.
The output deck will consist of appropriate header cards, and
any or all of the following data as called for an input card 1:

1) The value of the determinant of the coefficient matrix
complete with an identifying label.

2) The solution vector (8) together with the "difference®
vector (8) which is the difference between the input .
constant vector and a calculated constant vector.—~ These
will appear with identifying header cards and labels.

. 3) The inverse of the coefficient matrix listed by columns in
five column blocks. The column number will appear above
the appropriate column; the row number will appear to the
left of the appropriate row.



Q Q Q Q a a

1000

100

200

300

400

490

500
510

520]
530

(%2)

CROUT REDUCTION
MAY BE USED TO.

1, EVAIUATE DETERMINANTS(MAXIMUM ORDE R=20)
2, SOIVE UP TO 20 SIMULTANEOUS LINEAR EQUATIONS.,
3, FIND THE INVERSE OF A MATRIX

A(1,1), MAY NOT BE ZERO,

DIMENSIONA (24,24) ,AL(20,20),X(20),C(20),CC(20),NQ(24)
READ 3,

PRINT 3,

READL,N,MTRX, LSIN,KNO, JVAL, INXT

DOLOOTI=1,N

READ2,(A(L,J),J=1,N)

DO 200 I=1,N

AA(TI,1)=A(T,1)

DO 300 J=2,N

AA(1,3)=A(1,J)/A(1,1)

DO 400 I=2,N

DO 400 J=2,N

AA(T, T)=0.

J=2

TI=J

DO 510 I=IT,N

LIM =T

DO 500 K=1,LIML

AA(T, 3)=AA(T,JT)+(AA{I,K)®AA(K,T))
AA(I,JT)=A(T,J)~AACTI,d)
TF(AA(T,d))520,900,520

TR (N-J)700,700,530

I=J

J=d+l

Jdd=d

DO 610 J=JJ,N



600
610
700
720
710
800

220

240

260

250*

280

270

(43)

LIM 2 = I-1
DO 600 K=1,LIM 2
AA(I,J);AA(I,J)+(AA(I,K@:AA(K,J))
AA(I,J)=A(T,J)-AA(T,d)
AA(I,J)=AA(T,T)/AA(TI,T)
J=I+1

GO TO 490

IF(JVAL)800, 800,720
VALUE=AA(1,1)

DO 710 I=2,N

VALUE=VALUE=AA (I, I)

PRINT 4,VAIUE
IF(ISIN)730,730,220
READ2,(C(I),I=1,N)

DO 2%0 I=1,N

X(I)=0,

CC(I)=0.

CC(1)=C(1)/AA(1,1)

DO 250 I=2,N

LIM6=TI~1

DO 260 K=1,LIM6
CC(I):CC{I)+(AA(I,K):OC(K))
CC(I)=C(I)~CC(I)
CC{I}=CC(I)/AA(I,I)
E(N)=CC(N)

LIM7=Nw1

DO 270 I=1,LIM?

IT=N-Z%

LIM8=TII+1

DO 280 K=LINMS,N
X(IT)=X(ID)+(AA(II,K)xX(K))
X(II)=CC(II)-X(II)

L]

DO 290 I=1,N



290}

291

292
295
294

730
810

820}

830)

840f

890

860

(&)

cCc(I)=0.

DO 291 I=1,N

DO 291 J=1,N
CC(I):CC(I)+(A(I,J)!X(J))
DO 292 I=1,N
CC(I):C(I)—CC(I)
PRINT 8

DO 293 I=1,N
NQ(I)=I

DO 294 I=1,N

PRINT 9,NQ(I),X(I),CC(I)
CONTINUE

KNO=KNO-1
IF(KNO)730,730,220
IF(MTRX)210,210,810
¢(1l)=1s
cG(1)=1./AA(1,1)

DO 820 I=2,N
c(I)=0.
cC(I)=0s

NI J=N+4

DO 830 I=1,NIJ

DO 830 J=1,NIJ
A(L,J)=0.

J=0

J=d+1

DO 860 I=2,N

LIM 3=I-1

DO 890 K=1l,LIN3
0C(T)=CC(I)+¢AA(T,K)5CC(K))

Nec(1)=¢(1)~-CC(I)

CC(I):GC(I)/AA(I,I)
(N, J)=CC(N)
LIM4=N=1
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DO 910 I=1,LIM4
II=N-I
LIM5=II+1
DO 920 K=LIM5,N
920| ACII,J)=A(II,J)+(AA(II,K)=A(K,d))
910} |A(IT,Jd)=CC(II)-A(II,d)
IF(N-J)110,110,120
120 |G(J)=O.
| le(a+1)=1.
DO 130 I=1,N
130] cC(I)=0.
GO TO 840
110} |PRINT 5
DO 160 I=1,N
160] NQ(I)=I
DO 170 J=1,N,5
PRINT 6,NQ(J),NQ(J+1),NQ(J+2) ,NQ(J+3) ,NQ(J+4)
DO 170 I=1,N
PRINT 7,NQ(I),A(I,J)A(Tyd41) A(T,J42) A(T,T+3),A(T,J+4)
170| [CONTINUE
210§ |TF(INXT)50,50,1000
900} |PRINT 10
50] |IF(ISIN)210,210,90L

901 D 2,(C(I),I=1,N)
0=KNO-1
IF(KN0)210,210,901
1| |FORMAT(615)
2| [FORMAT(10F8.3)
3| [FORMAT (8OH
x| )

4| IFORMAT(//43HVALUE QF DETERMINANT OF COEFFICIENT MATRIX=Ell.5)
5 OBMAT(//BleVERSE OF COEFFICLENT MATRIX —-)
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FORMAT(//5(10X,13))
FORNMAT(13,2X,E11+5,2X,B11.5,2X,E1145,2%X,E11.5,2X,E11.5)
FORMAT( //41H) SOLUTION VECTOR ACTUAL C-CAIC. C)

FORMAT(2HX(I3,4H) E11.5,7X,E11.5)
FORMAT(/24H INPUT MATRIX IS SINGULAR)

END
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ENTER DATA

¥x¥ MODIFIED PROGRAM FOR CROUT REDUCTION 01/08/1969 ===

VALUE OF DETERMINANT OF COEFFICIENT MATRIX = «54000E+02

SOILUTION VECTOR ACTUAL C=CAIC, C
X(1) «10000E+01 «00000E-99
X(2) -+10000E+01 +00000E-99
X(3) «20000E+01 «00000E-99
X4 - +20000E+01 +00000E-99

INVERSE OF COEFFICIENT MATRIX——

1 2 3 4
1  -=.33333B-00  .55555E~00 =—,14814E-00 «57037E~01
2 ¢83333E~00 =-.55555E~00 +14814E~00 =-,37037E-01
k-] «66666E-00 - 44444F-00 ~-,14814E-00 . ¢ 37037E-01
4 «16666E-00 -,11111E=00 -,37037E-01 +25925E=-00

2
«00000E-99
«00000E-99
» 00000E-99
«00000£-99
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II.4 C : 1 od

We consider only 3 x 3 matrices when describing the
theory. Lower and upper traingular matrices L, U are defined
as matrices with zero elements above and below the principle
diagonal, respectively,

L =1fn ©° 07, U o= fa;  wp gy
21 22 © O By ug
(31 32 33 L © 0 gy

The set of linear simultaneous equations for the case

n= 3,
817 ¥ o+ &, X, + 813 ¥z = bl
837 ¥ + 3 X + a5 Xz = b, (ITo4.1)
a5l X o+ a52 Xy o+ a35 x5 = b5
Can be eXpressed in matrix notation as
S

AX = b
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Wh.ere )

P31 %2 8y [ *3) 3]

We first of all show that A can be exXpressed as the
product of two matrices in the form A = LU wherpe L is a lower-
triangulai‘ matrix and U is an upper triangular matrix units
along the principle diagonal Cise, Uii = 1), we have

all aL2 al5 . mll 0 0 -’ (1 Uy, U‘15‘
%21 %2 sl |, (22 of |0 L Usn
31 P32 83 I ST % 354 0 1
f .
= ﬂll (’11 Rys &1“15

"21 321“12"'922 eElulE"' 2aMsy

L6 frogor Go ozt 932“23"?35

. - ]
II(I.J) = A(I,J)"' E L(I,N)IU(N’J) I:lgou.’kj
g N (I1.4a2)

U(1,d) =(A(I,J) -Z: L(I,N)IU(N,_J))/I{I,I) Jz=lyeeeyk
B N=1



b)

c)

d)
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the first column of L

311 = By 921 = P21 251 )
the first row of U

a, = e/l ,oupy = o/
ﬁ@e second column of L

gae = 850 = Yoyt 9 €52 = Ay T e51“12'
the second row of U

uyz = (8p3 oy vy5) / s

the third coclumn of L

Uy =255 - b1 s ~Ge e

Assuming that L,U are known; we can wirte

Ax = Db as.
Lux =
we introduce y defined by
y = ux (1)
Ly b (2)

i

written out in full, equation 1 & 2
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?11 Ty = by
egl vy o+ 022 Jo = by (IT.4.3)
{ 31 J1 * €52 Jp * 253 T3 = D3
X oF U Ep b W Xy o=y
x2 -+ 1}.23 x; = ye (II-404’)
X5 = y5

the values of J1 9 T2 s y3 can be computed from the set
3 as,

Jp = by / ell
Yo = (by - e2l 71 /7 by
v5 = 5= 0y vy - by 9) / (53

and then Xy Xy Xz can be computed from the second set 4/,

It is convenient to divide the calculation into three
stages.,

1) write down the original matrix with check sums:

811 %12 23 by (s;)
f21 %22 3z Py (s,)
831 %32 835 by (sy)
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2) Write down an auxiliary matrix
b, wp ws 73
¢ 21 Yoo Ua3 T2

i G2 Gz T3

3) obtain the unknowns by back— substitution in the
second set(4) and apply the final check:-

SA = slxl s SEXE + 33x3 = 84.

Numerical example:

X o+ 4x2 + x5 = 1
- X + 3x3 = =4
5xl + X, 6x3 = =11
The original matrix
1 4 1 I (7)
0 -1 2 -4 (=2)
3 1 6 =11 (=1)

(4) ) (10 (-14) (&)
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The auxiliary matrix

J1 = 1 ) Y2 = 4 » 33 = =1
X, = l -« 4 + 1 = =2

The final check

S, =4x -2+ 4x 1 +10x-1==8+4-10=~-14 = 54

4



b 4

[—;(I§1/~bafsl§
Ci- T e
Eﬂ;ﬂ

N

UL, d)=ALL, /L1, 1)

S mt“_“_
J = 2

(CHOL,1)

g

Lo
84

o=

L(I,d)= A(T,d) = 81

]

e e fas £ et e e, 3
(};4 T T

/

T=I+l

ez s s




(CHOL,2)

Y(D)=B(D) / L(1.D)

: [
I=2

S“]' = 09
¥
K = 1

| -

—

sx=£L(I,K)x Y(¥)

K £ KK?

K=K+1

S
(1) = (B(I)=SY)/L(I,I)




(CHOL,3)

II = I+l

1

S=0,

7
J =11

2

SzEU(I,J)-x X(J)

(54)
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Variables used in the Program:-

N ¢ The order of original matrix,

A(I,Jd) The original matrix.

AL(I,J) The lower triangular matrix.

U(I,J) : The upper triangular matrix.
i

The constant column wector.

B(I)

i 10 The computed column vector from set of

equations (IT.4.3)

.8

X(I)

The solution of the set of equations (ITe4.1)
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CHOLESKI,S METHOD.

A COMPACT ELIMINATION METHOD.
DIMENSION 4(20,20),A1(20,20),U(20,20),B(20),Y(20),%(20)
READ 2,N

FORMAT (12)

DO 3 I=1,N

READ 4:(A(I’J)¢J=1:N)33(I)
FORMAT(10 F8.3) "
CAICUTATION OF THE FIRST COLUMN OF AL,
DO 5 I=1,N

AL(TI,1)=A(I,1)

GAICUIATION OF THE FIRST ROW OF U,
DO 6 J=1,N N
U(L,7)=A(1,3)/AI(1,1)

DO 10 J=2,N

KK=J-1

SI1=0.

BO 8 I=J,N

DO 7 K=1,KK
SL=SI+AL(I,K)=U(K,J)
AL(T,J)=A(T,J)~-SL

I=J |

KK=I-1

SU=0,

DO 10 J1=I,N

DO 9 K=1,KK
SU=SU+AL{I,K)=U(K,J1)
U(I,d1)=(A(I,J1)~50)/AL(L,I)
¥(1)=B(1)/AL(1,1)

DO 12 I=2,N

KK=I-1

8Y=0,
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DO 11K=1,KK
11| [SY=SY+AL(I,KI=Y(K)
_ 12| |Y(I)=(B(I)-8Y)/AL(I,I)
c | BACKWARD SUBISTITUION
X(N)=Y(N)
LI=N-1
DO 14 I=1,LL
=N-IL
Ik=I+1
8=0,
DO 13 J=I1,N
13| |8=S+U(I,J)=X(J)
14| |X(I)=Y(1)-8
o SOLUTION
FRINT 15, (X(J),J=1,N)
15| [FORMAT(5(F14,8,2X))
GO TO 1
END

END OF PASS 1

IOAD SUBROUTINES
ENTER DATA

-2 ,00000000  1.00000000

-1,00000000
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2e

S

4

5e

6o

(58)

REFERENCES

SOUTHWORTH - DELEEUW
DIGITAL COMPUTATION & NUMERICAL METHODS.

BEN NOBLE
Numerical Methods Ie

WILLIAM J. HEMMERLE :
Statistical @omputations on a Digital Computer.

Ralph H. Pennington
Tntroductory Computer Methods And Numerical Analysise

Hildebrand, F.B.
Introduction to Numerical Analysis

1620 GENERAL FR@YGRAM LIBRARY.
(5=-0-021)



