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Introduction:

This note is a supplement to Memo. No, ?83%. It shows
how to use the dynamic programming technique to solve two econo-
mic problems: +the resourse allocation problem and the problem

of finding the optimal economic plan. Both problems are stated
in general terms, but solutions are given for simplified cases

only.

This note together with Memo. No. 783, are the basis
for a training course on "Dynamic Programming and its Applica-

tion" given at the Institute of National Planning.
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Resource Allocation

One of the central problems in economic theory is
that of resource allocation: How to use the available resources
in efficient ways in order ¢ maximize either a Tirms profiy or

some welfars function of an economy.

Suppose that in a certain economy there are M different
resources and we have an amount of Zi Prom each (1 = 1 s /M),
If these resources can be used in N different activities, and
i ; J CaniB e the bk i
i 8y (zln Zyin’ T he return we get from using the amounts

e of resources in activity n, then The resource dlloc=

ation problem,ls that of determining the velue of 4. (l.=1 ... M),

in
1 S o, g4 L E n
with ;g Zsn < g9 o= 1 ewe M ¢ which maximize Hhe total
Ne=]! N
I‘etU.I'l’l H (?,.— gﬂ ( _1.11 o6 e —‘NL_D-) o
n=l

Censider now the simpler problem of allocating the
amount 4 of one resocurce bto N different activities. . Using the

amountﬁn iniEeI vy I yleldu the return g ( 2 Yo What are

T
$ % Z r i ) ’
the values % ... » With fi GO Z , which maximize the

n=l.

total retum S g ( 4)
Yis=l
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In stead of considering this as one N-dimentional
problem, we can devide it into N simple one-dimention problems

by using the dynamic programming set-up.

We will say that the economy is "in state s" if the

available amount of resources is s. 8o, the set of states is:

el { 038 = z.} 5
make

The decision- maker will/N successive decisions.,
These are the amounts Zn(n 2L e ‘N) 6f Tesobreos bthat will Be

allocated to activity n. So, the set of possible actions is:
A :{o$ﬂ1$g;n::ln..N}

[The immediate return from each allocation is & (zn)

the problem is determiristicalldp: 1] o

Iet fn(s, 2 ) denote the total return if s is the

availlable amount of resource, Z_ is the amount allocated to

n
activity n, and an optimal policy is followed in the remaining
(p~1) activities, i.e., the remaining quantity s -z 1s used

to obtain a maximum return from the remaining (n-1) activities.

Also, let £ (8) = max AL o Bl A
i H 0L2.558 8 n
7
¢  ~ Ry w N P (a7 N
iy fIl\H Lo T = T ), >5 6 i §
fn(S) = max {\Sn( n) + fn—l(S"Zn)} , and



fl(s) =  max gl(’?"l)°

[fn(o) — fo(s) & o] .

Now, since s and zn are continous veriables, and fn(-),
gn(-) may be continous functions, then the direct enumeration

of the values of f (s,zn) 1s imposible. Also as long as nothing
is assumed about the analytic structure of gn(c)9 then calculus
cannot be used to locate the maximum of fn(s,zp), S0y in Grder
to solve this problem f (s,Z ) should be calculated for some
chosen values of Zy and the maximum may be located by using

some btype of interpolation stheme. [For a detailed discussion

see [2] page 16.]

A main advantage of using the dynamic programming
approach is that its solution, expressed by the two functions
£y (Z) and 24(2) is obtained as a function of the available
amount of resource, %z, and the number of activities, N. So, 1t
is easy to see the influence of these two parameters on the
solution, [This is known by the sensitivity analysis,] In addit-~
ion, this analysis does not impose any analytic restrictions on
the functions involved- although it would be simplified 1f such
restrictions are imposed. Also, 1t is spplicable whether the

functions are defined over discrete or continous sets.
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The following le is a simplified problem given to

H

show tne uyne of computabions needed.

/

Ixample:
A firm has N different plants and each plant follows a

certain production process.

Assume that this firm wants to invest a fixed amount
ofcapital, %, i the different planbs in ordep to.lncreags its

total production. Assume also that having a new machiné inrplant n
costs wp and increases tne production by vnp. %

How should the firm devide the available capital,Z,
among various plants in order to maximize the total production?
Lf "we cdefine X, to be the number of new machines in plant
s ] 1 3 T . . Tocis
n, then the firms problem is to find the integers Xy e Xy which

N
maximize the total productionéf Vo, X subject to the constraint
=1

EE Wi <42,

The dynamic programming formulation of this example is:

n
I

{jo € s = 23 s 1s the available capital.}'

=
)

{Xn(s) P ogwW, X, & 8, =1 ... N }-

The immediate return function of taking action X is Vb
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Let fn(s . xn) and fn(s) be defined as before. Then:

£,(8n Xy) BV Ey ALy (sy = Wy Xp)
£ (8. ) & max i S e e W (s -w_ X )}
n-n n n n-1 b MR 1 D
X, 30 L X W, S Sy
= frlm.) = max {,V X }
¢ iwil TRt i
i xl,og Wlxlgsl

= Vl XT(S)
[fn(o) py B L L g e R fO(S) = QJ

80, using the recurrence relation, we can compute fg(sg)

and x;(s2),, and so on for all n = 1 ... No

A Numerical Illustrations

Tet:

N.=2%.% = 50 , and

Planin.|{Cost W Production,vno

ik 20 e
2 28 104

i) 24 96




For nte s
fl(sl,xl)
Sy & o) ik 2 E‘l(sl) xf(sl)
0L 8, g 191G 0 o}
20g BT B0 e 72 e d
40 slSQSO 0 72 144 | 144 2
Porin e 2
& fg(sgﬁxa)
B e o 1] £2(s5) | x5(s,)
08, <19 0+0 0 0
20\<S2$27 o+72 Y2 0
28 <85 < 39 o+72 104+0 104 1
40 g So s47 o+144 10440 144 o]
485 85,<50 | o+l44 104472 176 il




fB(SE,X5)
Sz x 0 £ 2 ﬁé(s5) X§(85)
085 < 19 0+0 o) 0
20 53 a2 0+72 7e 0
24:585 <27 0+72 96+0 96 i
28 35 =99 o+104 96+0 104 0
40 <s 3 =43 o+l44 9640 144 0
44 SETES 4.7 o+l44 96472 168 1
48 :583€~50 o+l76 96+72 192+0| 192 2
Since 8z e 750 :.xg =2
S8y = 50 ~ 2x24 = 2 fei kim0
Joo8y =2-0 =2 S0

The optimal policy is to invest in plant 3 only by adding
2 machines to it. If this policy is used the total production will
be 192,

It can easily be shown that if % = 40 then the optimal
policy will be;x? =0 (28, = 40), xg =0 (sy = 40) , XT =02,
and the total production Will/%i4 if this policy is followed.

If N=2, then the optimal policy will be:

X§=l (.281:50w28 Baa )y Xf:l9 and the total production under this

policy will be 176.



This shows that it is easy to find out the effect of
any changes in the parameters of the problem (Z and N) on

the optimal solution.
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Economic Planning

Economic planning is a decision-making process in which
the planner, describing the economy by a mathematical model,
and using the available knowledge about the prevailing economic
situation, tries to choose the economic program (i.e. the sequ-
ence of economic decisions) which will maximize a predefined

welfare function over a certaln number of periods.

Suppose the planning horizon is T periods long and
that we use a mathematical model where there are two types of
commodities only: produced commodities and primary resources.
In our mathematical model, the produced commodities are assumed
to follow the generalized Cobb-Douglas production function,
while the primary resourses are made available exogenously,

i.e., do not depend upon the program adopted.

Tets Zi(t)aw) denote the available stock of commodity i at
the begining of period ©,
ci(t).;o denote the quantity of commodity i devoted to
consumption in period t,
xij(t)awa denote the quantity of commodity i used as
input ianto the production of commodity J in

period t,
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[thus: Z2(6) » c;(t) + = xij(t) ; all i:, ;
J=1
yj(t) denote the quantity of comnodity j produced at

the end of period t as a result of using inputs

Xij(t), i=1 ... Min the production process

during period t,

[%hus, using the generalized cébb-Douglas function we get

i w &
yj = e T X:LJ (t) ] 9
el
qi(t) denote the quantity of commodity i that is

exogenously available at the begining of period t,

L]

[%hus : zi(t—l) = yi(t) + qi(t—l) s el ]

Note: The convention of numbering the periods in a backward

order is used through out the paper.

ut(-) denote the one period welfare function,
1iie ) denote the welfare function over the planning
horizon°

We are going to use consumption as the criterion for

comparing alternative programs., Consequently, the one-period

welfare is a function of that period's consumption,i.e,
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ut(.):ut(cl(t)...cm(t))e This function is assumed to be of the
linear logarithmic fﬁrm:

‘ut(cl(t)...cm(t)'==§gﬁ Wy log e (),

which means that the marginal welfare is decreasing. We also
assume tGhat the welfare function over Tthe whole horizon is the

sum of the discounted one-period welfares, i.e.

T
t
U(e) = = § u, (cl(t) s cM(t)),
B=1
where o< §< 1 is the'social time discount factor".

So, given the initial stocks 3['i(T), 1l onie M] and
the exogenous quantities: [éi(t), bad g ediily dal G MJ, the
planner has to decide the quantities[bi(t) and Xij(t) SR R
Dl anal e B B MJ and consequently the quantities:ﬁa(t) and yi(t),
-0 BT B e t:] which maximize the function U(+) and satisfy the

constraints:

. M
2:(t) € ¢y () + = Xij(_t) gil ]
el
Z (651 = v (6) + g (6-1) alledy ity
M o,
B e g
Yy = o jT_ 2 (t) Al iy s
],

The dynamic programming set-up for this problem is:

The economy is in state (2 (%) ...% (%) in period &
if the available stocks of commodities at the begining of this

period are (Zl(t) A ZM(t)) s
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5 S e :[-(Zi(t) UL R Zi(T) given; Zi(t) =
GNP L M}‘

At the begining of each period the planner decides how
much of the available stocks should be devoted to consumption

in this period.
M

b m(ey(8) 3y (), Al 1,00 2 = (B)wey (1) (8)

g=l
alil g gl } ,

The immediate return function in period + is

u (cl(t) A cM(t)): ég; w, log ci(t) 3
The problem is assumed to be déiérmiqisti@,and the discount
factor is§ .

The essential idea of the dynamic programming approach
1s to determine the maximum welfare acheviable at the begining

of any period as a function of the current stocks of commodities

and the number of periods remaining in the program.

In what follows we will discuss the solution of the
problem in two simple casess first the case of an economy with
only one produced commodity; then the case with two commodities,

one produced and the other a primary resource.
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The Case of One Commoditys:

If there is only one produced commodity in the economy

and no primary resources, then the planning problem becomes:

Given z(T) and T, find the sequence c(t), t= 1 oo T

which maximizes the function:

h
Uil )ien i % lom elt)
L=l
and which satisfies the constraints:

(B eholt) 4 x(t) g .el(b) , x(6) =2 .0 1,

Ziit) Vo CBEL)

y(t) 6[3 2( 1)

i

[&ake ® = 1, which means that we have constant returns to

scale.]
The dynamic programming set.up is:

Lieva D=1%and: Z(T)giveq}

S :{a(t)g zZ{t) = y(b+el) for 't
A :;{c(t);; 0L c(t) g Z(t) , t =1 sve T}
The immediate return function iss ut( c(t)): Log o (t)s

Define ft( z(t) , c(t))to be the total discounted
welfares in period iU, il acivion c¢(u) iIs vuken in period T and

an optimal policy is follewed in the remaining periods. and,
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£,.( 2(%)) max {ft Gty elt) )}

ggc(t)s z(t)
ft( 2(t), c(t))= log c(t) + § £y (z2(t=1)

But z(t-1)

1

y(t)

f x(%)

eptz(t)nc(t)J

I

S £(a(8),e(6)) = log o(t) +§ 2, [ep[-zm—cctﬂ},

£(2(%)) 3512??5{) i {log e () + Sft_l(eP[Z(t)uc(t)J)} ,
For t = 1 ¢
£,(2(1)) o {1og c(1)]
= log a1,
() & 2(1)\ and x¥(1). = o.
For t = 2 3

1

Log c(2) 4—5fl(eq? (2) - c(21})
loglic (i2) 8y (ﬁ1~log[2(2)-c(2l])

£,(2(2) ; o(2) )

1l

. p

°
So@ (%2 @)= —try - —yray » end
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LG el vy, et
e 2 e

fe(z (24 0(2)) reachs its maximum when its first

derivative equals zero, i.e. at:

of(2) ii=t (it 2(a) s
@) = (T @)

5 2,0 3(2) = Log(rkpa@)+ §(A+ 108 (335 ) 2(2))
= (1+§ ) log z(2) +81og§ ~(1+8)log(l+8) + 8P,

Rop b =1

T-1
Eple (L)) = (i St) log z(T) + Ky , where
t=0
T-1 T-1 DL D,
Kp (=000 s ) loe @ gt};‘f(ﬂ.st)log(_a b+
I t=1 | Groe t=0
el
X =0 0 a\»ﬁ%é + &§Kp_q
Proof:

s s e o e

.[By induction on TJ 3

The given result is true-as shown above - for M =:liand

T = 2, Suppose it holds for all t including T-1, then:



)

T2
£z DY sl (S0 %) log 2(T-1) + Kp_;
t=0
o £ (24t)) =  max {log; o(T) +4 £ e'E z(T)—c(T)])}
Sy o<c(t)<z (1) T-1 _
i g T2 T
2 En ¢ Zi(T)) =O$Cr€iz§$ ZZ(T){log c(T) + (i_x.)(p+log[Z(T)-c(Tﬂ)
+$ KT-l} ’
Equating the first derivative with zero, (notice that the second
derivative is negative), we get: -1
ol
¥ (D) ‘-‘(m—l'“;“) 2 (D), ¥ (D) = (%—j“)’ (8
= & =5
t=0. t=o0

2 T—l _b
i :E‘T(z ({ihh) =( = 5) logz(T) + Kp s
t=0

with KT as defined before.

This completes the induction proof.

The properties of the solution:(g)

T-1

1. f 7)) = 1o : - :
T( z( ))o\.(:c(%a)téz(t) [- og C(T)+(t£:i £ ) lopg a (T l_)J+S Kp_q

(i)All these results are stated in Radnen [:5], pages 90-94,
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Notice that KT 1 does not depend on o(T), and that

maximizing the quantity [log c (D) i € _;‘__ 5 ) log z (T- l)] is

tal
formally the same as maximizing f ¢ (2) s e(2) axcopt that i dis
T-1
replaced by( s ¢ e
t=l

This shows that: "The problem of determining any single
step of a program with arbitrary finite horizon can be transformed
into an "equivalent" problem of determining the "second"step of

a program with two periods".

2. It is clear that the optimal consumption and "savings" in =

period t for a program with horizon T are given by:t-2 Vs

) 7
Fw) = () ), e K ~( . f)z(t)o

s ==
(30 (:

Cx i £ 3
T Z

l\)l—'

O

Notice also that depend on t but

nob on.z(t)s

%, ' In the infinite horizon case:

If Sl ther, as Diam . we pel, fop a fixed tils

o) = (@ -8)z(6) , ®F(H) =£z(8) , and

1t

B
2(t) = (§e' D' z(D ,

(?
[%y solving the difference equation #t) =e &z Ct+li]e
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"Hence output, and therefore consumption, grows exponentially
"

e
with growth factor§ el3 (the growth rate is Se =1 ) ,

"But if §= 1 , we cannot strictly speak of the optimal infinite

52 ¢ t=1 o
program because ( & § ) and (= £ ) do not converge.
(::O (:O

Nevertheless we see that as & —»1, for fixed t, consumption

approaches o and " savings" approache gz (t)".
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The Case of Two Commoditiess

Tn this case, assume that commodity 1 is produced from
inputs of the two commodities, while commodity 2 is a primary

resourse. Thus, the planning problem becomes:

given[ T , z,(1), i=1,2 and q(t), b=l ... 1], find
the squence [c;(t), i=1,2 5 © = 1 3eis T:]which maximizes the
function:

T
i
U(s) = 2. & [Wl logcaﬁt) + W, log 02(tﬂ ;
t=1
and which satisfied the constraints:

il

I..]-
1

Zi(t) ci(t) + Xi(t) Vg s il asia

l @ 0 © T"'l

i
il

{
Zl(t) ylﬂt+l) T

Zl(T) given

Za(t) = q(t) given for all t = 1 ... T
X
yl(t) = & Xl (t) X2 & (t) °

We will take Ni H oo = 1, 1.8:, constant returns to
scale.

The dynamic programming set.up is:

il

S =2 (8),i=1,2 : 3 (%)
Z_ (%)

yl(t+l) s W R S L B
bt lies sy B qLD) and?l(T)giveﬂ}

Il

A =fo,(8),1=1,2 ¢ ogo (D)€ H(H) =1 ... T}



SD).

The immediate return function is:
ut(cl(t), cg(t)) = w; log cl(t) + Wy log ce(t).
Define ft(I%(t), ci(t)) to be the total discounted welfares

in period t if action ci(t) is taken in this period and an optimal

policy is followed in the remaining periods., Also define £, (z1(%))

by
< — z
(o i) dE s G
Cq (t)
Note: Whenever the subscript i is used, it is meant to take values
Land oz,
B Li( G ON c; ()= Wy Llog cq(t)+ w,log c2(t)+“gft—1( Z (t-1)).
e “1 Ko
But Zl(t—l) = yl(t) Gl e (00) X5 “(t)
A " b
= e [ % (s) - op (1)) [ECt)-cg(t)] ,
z
2(t-1) = q(t-1).

i £, (%), c; ()= Wy log cq(t)+ W, log cy(t)
X

Py, R1 . .

+5_f_,(e L=y (0] [ 25()-cy(1) © 5a(t-1) )

-

Ko = 1:
£,(2 (1)

= Wy, log ¢, (1)+w log ¢ (l{j
0ge; (1)g% (1) g L ! 2 =

= wy log Zl(l) + wy log Zé(l).
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1l

e cf(l) 2 (1) i xf(l) S
Por. t = 28
£5( Zi(2)aci(2)) = wy log ¢1(2) + w, log 84(2) "'8{“']_[3

+ Wy X, 108[21(2)—01(2)J + W%y log[ZE(2)—02(2)]

+ Wy log q(l)} '

Setting the partial first derivatives of this function

with respect To 01(2) and 02(2) equal to zero gives:

Fayaime () end - 0R(2) 18 "2 Z_(2)
u P S 2 T oWyt LWy X, 2 &
Consequently:
3 O(, S W, o<
SR e IHRLG | * 3 AR Z
x§(2) il Jo gxl l(2> =2 XZ(Q) B Wot & Wy o< o 2(2)"

The given function reachs its maximum at the point c§(2)
(the second derivatives are negative), and 1ts maximum ‘value 1is

given by:
fa( Zl(a)) = Wl(l+ S'D‘l)lOng(E)-l-(Wa'i'g Wlxz)l()% 22(2)+K2[Q_(l)]

where K2[q(2)] is indepepdent of Zi(2) and is a function of q(l1), ﬁ)

5,. 5 and Wy o

Tor t = T3
Tt can be proved by induction on T (in a way similar to

that used in the one commodity case)that:
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T2 I-3
(%3 (D)= [wy tz; (& )tjlog 2 (D)4 [ Wyt So, wy = (8x)°]
%0 t=0

Jlog za(T) + Kn [ﬁ(l) o6 q(Tnlz],

where Kn does not depend onﬂai(T), and K; = o,

Also, the optimal values of ci(T) and xi(T) are given
-2 -

by £ (o001
D) = —pr— R OB eSO ; il
Leni S o
¢ (0] T-3
: éf:(£o<)t
31y = , Wi_B 2.0y )= (1) (5“2 0 \z(‘ﬂm
Wot S W S b Sot o
afofiafli o (X ) o lg_ (§%)°

Q

It also can be proved that, for any to, the optimal values

of ci(to) and xi(to) are given by the previous formulees after
replacing T by g

Properties of the solution:

1. The problem of determining the tth step of a program with
arbitrary finite horizon can be transformed into an "equivalent"

problem of determining the second step of a program with two

periods.
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