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I, Inbtroduction:

Tn some cases, two streams of water A and B meet in
a joint path C , but technical difficulties prohibit building
a dam on C. =

If a dsm of capacity K is built on A, before meeting B,
then naturally the classical Moran's model has to be modified.

In +his paper, the problem of stationary distribution
Pi , of the dam—-storage (in case of discrete inputs) is discu-
gsed, and it is shown that the quantities.

r = G’l’ seo 9 k“l

are independent of k, and that the P.'s (p=l, +ss ¢ E-1) are
generated by the function V(z) given by

PoPodo (1-2)

V(z) = =
(q}z+q,) G(2)-2

where pj is the input distribution of the stram A, 4y is the
jnput distribution of the stream B, G(z) is the p.g.f., of the
input A, and qi = qp + Qy + oo

Tt is clear from V(z) that this problem is equivilent
to the single stream case, provided the input is regardéd as
the convolution of two independent variatés, oné is given by the
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distribution Py and the other is a Binomial distribution, which
takes only the values 0,1 with probabilities q, and 1-q.

It is clear that if B does not exist, then a9, = dy
/

g =0 and Po D, (1-2)
G(z) - 2z

V(z) =

2 result due to Moran (See 127).

The probability of emptiness of the dam before filling
completely is—also obtained.

II. Two-streams Storage Problem:

We consider the following problem:
e

(fA)

X —>

“‘f-——-:»W e

A and B are two streams which join to form a stream C.
A dam is placed above the junction, on stream A, forming a
finite reservoir, of capacity k. The object is to prevent the
flow below the confluence from falling below a fixed value M(<K)
by releasing water (when available) from the reservoir to make
up any deficit in C.

The technique is to use a discrete model, in which %he
following cycle of operations occurs:
(a) at time t = n, the quantity of water stored in the reservoir
is Zﬁ , 7 :
(b) during the time interval (n,n+l), the inflow in A is Xn,with
P(X=r) = R » P(X20)= O



5
and the flows in B is Yn’ with

P(Yn=r)=qr ’ P(Yn Z ) = qrs

X and Yn being supposed mutually independent, non~seasonal,

Ll

and without any serial correlation structure;

(c) Jjust befdPe time Awl an instantaneous release R, is allowed
from the re-ervoir, in accordance with the above policys; .

(d) at time t=n+l, the storage is 2, ;.

" Thus the successive values of ;%Orage during the cycle

ares
1)@y,
ii) G acceptable inflqw, = min (Xn # 8y 'a K) = ¢, say
ili) Zn+l = C = RT]. 9 o i 4

where the phrase "acceptable inflow" refers of course to the
possibility of overflow from the-reservoir when the supply
exceeds the spare storage; such spilled water is regarded as
losto,

The novel aspect of this model lies in the fact that the
draft Rn is controlled by the flow Yn in the undammed stream.

We describe the situation for the case M=1l, this being the
one we deal with in detail.

The working equation for'{zh} in this case is

Q. i Yn_z i1
= min (X +2Z,K) - -
‘ min(l,X +%. ) if Y =o

Zn+l

3



The alternative cases that can arise can perhaps be mosi eagily
visuwalised in terms of a fiow

at any stagé iz marked by underilibdng.

The roubtes throueh. the diagram may be labelled from the left,
(1) 75 8 )y aww o B0 TH Wil be iseen That the oubeome s

i3 achieved by route (1) only and thatn

P(Z

B2 ol = P>(Y &1 ¥ 47 = R
T, £ P -W[_rL el N Yn

P(Y 2 1} P(X +Z2_3 %

Taking for granted the existence of a limiting distribution for
{2, §,83 n -—>o , and denoting this by

Llim

S e s it P(Z_Fr:r) I RO = Y S (2.2)

Ig 9 o

we have 7 & ;
> e i 3 T re E
I"k = q’:L ]:1"" _f ]7 .a];” {.2 o 3"
Iu wr P

The cagse Z_,. = %-1 must also be considered separately. Here

.
o
N7

= -f:".--l‘) o P‘,Y =0 X dd 2 4\ e ce route

whence Tl

it 5
- o : 0, " hY
Pk = —j‘;‘a 2_; Pl"’ pk’wr ' i3 [f':_J P;r. Fire] wn? {2 oq‘:

=0 Lt

o
{ ql = L Q.O.) e
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For 1< r& k-2 we have

P(Zn+l = P P(Ynz 1, Xn+Zn=r) ees route (3)
+ P(Ynzo, X +2, = r+l)... Toute (4)
whence r r+l
/
Fr=q Z Ps Prs * 9 Z By Pry1-g? (2.5)
S=0 S=0

r = 1,2, e oo g k"“2

Finally for r = o we note that Zn+1 = o may be achieved
by routes (3), (4) and (5), whence

/ .
PO = q PO Py + 94 (PO Dy + Pl B, # B po)o (2.6)

Equations (2¢3) 5 «ee , (2.6) may be writbten in the form:

!/
[ By = Gy By By & qo(PoPl G Pl}-)o) + 4,0,F,

/
Py= dy (Bp; + Pip,) + qO(Pop2+PlP1+P2Po) (2473

/
§ 1-‘1{“2: ql(PoPk—-z"' oo+ Pk-zpo)*'qo(Popkulh " °+Pk~1po)

/ / 4
Pr.p = ql(Popknl+° : °+Pk;--lpo)+qo(Popk +oo .+Pkp0)
(2+8)

74 7 /
Pk = ql(Popk + oo + PKPO)



=

The last two equations (2.8) have a different patbtern from the
rest (2.7). But in the equations (2.7) (apart from one addition
term in the first) the pattern is clear, the coefficients of qi
and g in each equation having a meconvolution” form. As uscal
an suéh formulations, there is a redundancy of equations, since
if we add all the cquations in (2.7) and (2.8) we obtain the
identity

2 B (Popl+Pwp Jteoet(P P Fe e o tP 1P )+

oM =
H
[

; (, 4 P
+ *Popk * e F Pkpo)

11

{
2. B(X +Z=r) = P(X +Z 2 0) = 1
#50

We now attempt to extract information about the Pi“s from
(2.7) and (2.8)s The structure of (2.7) and (2.8) is such that

P, is determined in term of P P2 in terms ‘of Pl b oaie s g DB

0 7

Pkul in terms of Pkm2 y and +these relations all have the same
pattern, with coefficients that do not involve k, whence the
theorems

Pr

THEOREMs The ratios B~ 9 T=0, dig waw g =l
are independent of k

This result enables us to form a useful generating
function relating to the P « Consider the infinite sequence
Pys P 5 ..o, defined by an associated system (2. 7) which could
be obtalned Prom (2.7) by allowitie k2, In the Yight of the
above theorem, it is clear that (normalization apart) the wvalues
of Pyy Pyy eoe k . that satisfy (2.7) will coincide with the
fmrb+ K P's in (2:7) . Now let
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V(z) = ZE:: Pr e

r=0

f
denote the generating function of the P's defined by (2.7).
The "convolution® structure of the coefficients of Qy and of

q, in (2.7) makeg it clear that
V(z) G(z) - P.p
/
V(z) = o] V(2) &(z) + a4 1 Rl f
oo
where G(z) = ;ZZ P z¥ is the generating function of the inflow
Ir=0
distribution {pr}. Then
p, 9. P (l-z)
V(z) D0l (2.9)

= (4 "a+q,) G(2)-2

We shall first prove that V(z) can be expanded as a power
series which is convergent for suitable values of [zl. Iet us
consider the case §’éq0 , Where § is the mean inputs of stream A.

(a +ay'2)6(z)~z = a (1~2)=(a +q; '2) [1~G(2) |

+q, 'z (2)
= qo(l-=-Z) [l o ““’"’“"_""‘"‘qo ql ° 1-G(z ]

45 l-z
' )
Do 0
then since ifgéél = ;Z: 1 - s p;, we obtain for 'zl 4 1,
n=o0 i=n+l
qQ +9- 'z - . 1 E;: . $
Lty 2 w1 2 p; = ip, =3¢
9 * 1l-z q, n=0 i=n+l 9 i=1 9,

S0 thatl(qo + qy'z) G(z) —z]# 0o, and we have the power series



e
d,+9, 'z
179 1-G(z)
G0 qo 1-z
2
= PO+PJ,_Z + Paz + CRC] 9 (2@10)

sonvergent for | z]|< 1.

Next suppose thats§>q, . If we regard (q0+ql'z) G(z)
as the p.g.f. of the convolution of two independent variates,
one of them has a p.g.f. G(z) and the other has a p.g.f.
(%ﬁ%f@ then

1 i
(q,+9;'2) G(z) - =

will have a power series expansion convergent for |z|<d, 4% o
provided the mean of the convolution is greater than unity(Knopp
[ga pp 1820

Now the mean of the convolution is easily seen to be
qa 8= 1 = g, +5,

i.e. we get as the condition of the expansion
1 - qo-+$ b i &

i1e€s S, > qO

which is gatisfied in our case.

Thus whether § < q, or P V(z) has a power series
expansion (2.10).
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This generating function determines P, f 2

2’ L 9 kl,

whilst Pk ig determined by either of the two equations (2.8).
Finally PO must be determined by normalization.

III. We shall worls out an example, specifying only the distribution
of the inputs from stream A, If The inputs in A has a geometric

distribution P, = abt, iz0,1, ...o0 Where a+b=1l and G(z) = ""1“%‘3‘"132

and p; = bT , we get from (2.9)

ag P, (1-z) (1-bz)

V(z) = 5
bz n(b+aqo)z+aqo
i 1-bz i -
= Py =y where § = 33;
and on choosing z such that ]zl(% , We obtain

V(z) = B, (1-bz) (1~ ¢z)t

whence

)
oy =2 B el by 5 o= 1,25 s kel

Now Py is obtained by either of the two equations (2.8) and

hence, .q
By L mg Po[bk+(§’-b)bk-l +(€~b)5‘bk'2+-«-‘+(3’-b)9k_2b]
0 2 k--2 ]

0 BT

& P, b 9 g
l

3 q, K1

G BRI, S LB bis

k-1 S - Y
(afdﬁPOS where g, = as



0y g P8
k
To determine P, we use the fact that :24 .
therefore =0

1 GE% B [l +(8=b) +S(5—b) + S2(S=D)4es.+552(5-D)+(as ub)sk“fl

P [1 +(5-b)(1s 5+ 624, $52) 4 (atp) g5 |

i b
T-%

il

= P [1 +(§-b)( )+(ag ~b) gkkl’l

1-'§ = Py [(1~§)+(S—b)(lm e A 16N ) Lo ]

= PO a(l'“ gk+l)

ey S
Po---"'g“‘-’m)

a(l-§

and hence

i ) (L)

Pr = a(lw gk+1) 3 10 e 192’ 2 0 @ 3 k"'l
and
p, = f L (1=8(ar-b)
= all=§ ")

The cases when the input distribution of stream A is
Negative Binomial, Binomial or Poission, could be also worked
out along similar lines.

IVe The Problem of Emptiness Before Filling:

For the same model we shall discuss the emptiness of the
dam before filling completely. We define Hi to be the conditional
probability that starting with an initial storage i1, the dam becomes
empty before it fills completely. We shall deal in detail with the
cage M=1. The alternative cases that can arise can also be showr in

(29

the flow-diagram where current storage at any stage is marked by

underlining.
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It is clear that H0=l and szo, The values of Xﬁga k1.
when i = 1 and Xn > k-s when i = s causes the dam to be filled
completely or overflow and hence these cases are not included ia
the problem under discussion.

The value 2, 9 = O in route {(2) indicates that the dam
will be empty at cycle n+l if the initial storage Zn is unity and
the inflow of streams A and B during the cycle interval (n,n+l) ax
respectively Xn = I Ynz l. Other values in route (2) and valuss
in routes (1), (3) and (4) indicate that the reservoir still
contains r units (r > o) with a probability Hr that the dam will
be empty before filling completely.

The equations for the conditional probability Hi are
defined for H, from routes (1) and (2), and for Hy (1 <8 &£ %)
from routes (3) and (4).

Here we have

k-2
Hl . ;i. P(Ynfa Ly anr)Hr+l + « us TOULE (1)
=0
k-2
& :1— P(Ynzo’ Xn:r) H, ywa Doute (8
=0
whence _ o
/
B =q Zgj Pp Hpy1t9 ;E: P By # LB (4.1)
r=0 Bl

For 1<{%< k=1 we have
kg1
He = ZZ: P(Y, 2 1, X =r) H, o i ... route (3)
r=0
k=-gs-1
i e - .
+ D P(Y =0, X =r) H_ . 4 ... roukte (4)



hie

whence : kKe=g~1 Kege=1
Hs =9 ;z: Pp Hppg *+ 9% 2 Pr Bppsel  (4.2)
Thie) r=0

We shall consider the notation
wg o= Hp 4 (4.3

then clearly Wy, =0 and Wi Lo

Rewriting equations (4.1) and (4.2) using the above new variable
w; in (4.3%) we have '

k-2 )
i (TR S + q
Wit T %9 2 Pp Weenoy o 7 Ppr Wper T 9P,
r=0 r=1
and kege], kg1
e opa? N
Wi = Ay 2 P Wi gt 9 ;ij: Pr Wgep-s+l
=0 =0

fOI‘ S = 2’5, eo o g k"‘l

Or, in general we have
¥
Wi ® A By Wy F g By M
i=-1

w, = ¢, D We 4+ 2 €. P +qf P W, o+ W
i R P M o Pi—p*d) Piora1/Wpi1t96PoW1 41
r=1

and

fop.-du88y by s 5 Kol

This may be written in detail,
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'
/ e
Wy = 4P+ PeY2
/ /
Wy = G1PqW) + AP Wz + (q,P1+97 P )W, (Lott)
‘ " 7/ . J /
Wg B CQPpWhy # oDgWy ¥ (QPp+dy Py JWp+(QP1+31 D)Wz
/ / 7
wy = 43Pz + QP Wg + (qop5+qlp2)w2+...+(qopl+qlpo)w4
° s / ; a
U Pee1® P2V P Y (9P p+dyPy_z)Wate s e +(ADy +9) P )Wy

The structure of (4.4) is such that w, is determined in terms of
Wy, W3 in terms of Wy 5 eeo 5 Wy g in terms of W, -, and these
relations all have the same pattern with coefflclents that do
not involve k and whence the therem:

W.
THEOREM: The ratios == 4 1 = 1,2,.04,k~1

b
are independent of k.

Now Consider the 1nf1n1te sequence Wy, Woy oo defined
by an associated system (4. 4) which could be obtained from
(4.4) by allowing k ——» o9

Tt is clear that the values of Wy 9 Wpy eee s Wi 1 that satisfy
(4.,4) are the same for extended system (4.4) -

Define the generating function of Wi's to be

e 2 . =
W(z) = Wy o WoZ o+ WzZ 4+ e = :i_ W, 2



=1ha

7 :
{ j : . : i-
On multiplying wy in the extended system (4.4) by Z 1 for
i=1l,2,0.+4, We get after some manipulation,

zW(z) = W(z) (g +9;'2) G(z) - qw; G(z)

and hence
2 q. w, G(z)

Wis) i (4:5)
(q,+9, '2)G(2)-z2

As in section II, we can prove that W(z) can be expanded
as power series convergent for suitable values of (zl -

The conditional probability wy (i=2,3, ... , k-1) is the
coefficient of z+ T

a Pk pion ]
that Wk 1)

in W(z)., To obbtain w, we have to use the fact

As an example consider the case where stream A has
geometric input with G(z) :l:%E and a+b = 1. Thus, on using
(4.5), we have |,

W(z) = (I=S3)(I=s)" » Where $ = T
L Vi [ s W NP R e 1) ]
whence !
s LERY e T
ws = T e (1 S0 AERS eivi . kel

and since Wy = 1, when Wiy has the value

1- &
Wl = l"fﬁ
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Thus

and using (4.3), therefore

{0 et
RN e el R
R % . =l
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