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ABSTRACT 

 

This study validates the accuracy of Sentinel-2 satellite leaf area 

index (LAI) data obtained through SNAP software for assessing 

vegetation and guiding agriculture. The research demonstrates the 

potential of utilizing Sentinel-2 satellite data processed with SNAP 

software for the estimation of LAI. It compares this data with in-

field measurements and global LAI outputs at spatial resolutions of 

10 m and 20 m. The results revealed a significant level of 

concurrence between LAI obtained from Sentinel-2 satellite 

imagery and the LAI measured in the field, with coefficient of 

determination (R2) values of 0.81 (10 m) and 0.76 (20 m). This 

correlation was evidenced by lower values of Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE) in comparison to 

the LAI derived from Landsat 8 data. Significant associations were 

identified between LAI and various crops, with potatoes exhibiting 

a high correlation (R2 > 0.8) compared to peanuts (R2 > 0.75). This 

finding underscores the possibility of variations in LAI estimation 

that are specific to different crops. The research highlights the 

significance of rectifying atmospheric correction errors in 

enhancing the precision of LAI measurements. Additionally, it 

implies the necessity of implementing local calibration techniques 

to improve the resilience of the system. The results highlight the 

significance of utilizing the SNAP-derived LAI to monitor 

agriculture on a large scale, thereby making a valuable contribution 

to global initiatives. Although SNAP-derived LAI has some 

limitations, it exhibits potential for extensive agricultural 

monitoring applications, thereby facilitating well-informed 

decision-making on both regional and global levels. 

 

KEYWORDS: Leaf Area Index (LAI), Sentinel-2, Landsat8, 

Global LAI products, Remote sensing 
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1. INTRODUCTION 

The enhancement of remotely sensed 

assessment of the biophysical parameters of plants 

holds significant importance for a variety of 

global applications (Shanmugapriya et al., 2019). 

In the present environmental context, there is an 

increasing imperative to effectively observe and 

assess crop conditions, predict crop yields, and 

diligently monitor irrigation practices and 

fertilization levels to mitigate potential adverse 

impacts. According to Kamenova and Dimitrov 

(2021), agriculture emerges as the predominant 

contributor to the pollution of phosphorus, 

nitrogen, and cadmium. Pollution poses 

significant risks to both human health and global 

ecosystems, as stated by the Food and Agriculture 

Organization (FAO) and the International Water 

Management Institute (IWMI) in 2018. To 

effectively address this matter in a timely and 

spatially appropriate manner, it is imperative to 

possess precise knowledge regarding the current 

condition of the crop and a comprehensive 

comprehension of the pertinent biological 

mechanisms involved (Weiss et al., 2020). The 

Leaf Area Index (LAI) can be calculated 

nondestructively from Earth observational 

information data has been a widely discussed 

subject for several decades. The measurement of 

the green leaf area per unit ground area, 

commonly referred to as the Leaf Area Index 

(LAI) (De Bock et al., 2022), holds significant 

importance as a essential climatic variable (ECV) 

(Wagner et al., 2012). The significance of remote 

sensing lies in its ability to provide fundamental 

data on vegetation development and productivity, 

encompassing factors Like plant vigour and foliar 

density, and functionality. Additionally, remote 

sensing facilitates the modeling of water, carbon, 

and energy exchanges occurring between the 

Earth's surface and the atmosphere (Chen et al., 

2002; Verrelst et al., 2015). Leaf Area Index 

(LAI) is employed in the field of agriculture to 

monitor various aspects such as crop and 

rangeland production, Crop health and stress, 

volume of biomass, phenology, and yield 

estimation (Novelli et al., 2019; Kumar et al., 

2022). The conventional method of direct 

communication on the contrary, LAI (in-situ) 

measurement methods are subjected to 

geographical and temporal limitations, as well as 

being expensive, time-consuming, labor-

intensive, and potentially causing damage 

(Alexandridis et al., 2013). Consequently, the 

utilization of a remotely sensed effective Leaf 

Area Index (LAI), commonly referred to as LAI, 

presents a feasible option for the practical 

monitoring of agriculture. This approach aids in 

the pursuit of food security at the regional and 

global levels objectives, such with those 

mentioned in the United Nations Sustainability 

Objectives (Kganyago et al., 2020). The 

Copernicus program, previously referred to as the 

Global Monitoring for Environment and Security 

(GMES), was created with the help of European 

Commission and the European Space Agency 

(ESA). It is designed to facilitate worldwide earth 

observation. The European Space Agency is 

currently engaged in the development of the 

Sentinel satellites to preserve the operational 

capabilities of previous earth observation satellite 

initiatives, such as Landsat and SPOT, while 

simultaneously improving the monitoring 

capabilities of terrestrial surfaces. The major goal 

of the Sentinel-2 Satellite launch is to facilitate 

comprehensive ground surface monitoring, as 

highlighted by Potin et al. (2019). The inclusion 

of three spectral bands (705 nm, 740 nm, and 783 

nm) within the red-edge domain is motivated by 

their perceived significance in the 

characterization of green vegetation, specifically 

in the evaluation of vegetation quality and health 

(Kamenova and Dimitrov, 2021). According to 

Phiri et al. (2020), the utilization of Sentinel-2 

Satellite data enables the acquisition of imagery 

characterized by a spatial resolution ranging from 

10 to 20 m. This advancement in technology 

presents novel opportunities for the monitoring of 

agricultural activities at a regional to global 

scale.The presence of freely accessible, high-

resolution satellite datasets obtained from space-

based sensors such as Sentinel-2, along with the 

Sentinel Application Platform (SNAP) and other 

powerful open-source applications, and the 

increasing availability of analysis-ready data 

(ARD), collectively contribute to the promising 

prospects of achieving precise, reliable, and 

practical Leaf Area Index (LAI) measurements. 
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The restrictions of coarse spatial accuracy (300-

1000 m) LAI products, such as those derived from 

the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Houborg et al. 

2016), Advanced Very-High-Resolution 

Radiometer (AVHRR) (Garca-Haro et al. 2018), 

Satellite Pourl'Observation de la Terre Vegetation 

(SPOT-VGT), and Proba-v (Baret et al. 2013)., 

have certain limitations. One of the primary 

advantages of Sentinel-2 Satellite, in comparison 

to other sensors that are freely accessible, is its 

temporal resolution. In addition to its higher 

spatial resolution capabilities,in addition Sentinel-

2 data offers a temporal resolution of 5 days. This 

frequency is generally adequate for agricultural 

monitoring purposes, assuming cloud-free 

conditions. The SNAP application provides users 

with the capability to carry out atmospheric 

correction using the tool  of Sen2Cor (Pflug et al., 

2020). Additionally, it enables the estimation of 

biophysical parameters through the utilization of 

a physically-based radiative transfer model called 

PROSAIL, combined with a robust machine 

learning technique known as Neural Networks 

(Wolanin et al., 2019). Limited research has been 

conducted to examine the accuracy of the Leaf 

Area Index (LAI) derived from Sentinel-2 

Satellite data using the SNAP software, as well as 

its compatability with established LAI products 

(Campos-Taberner et al., 2018; Dugesar et al., 

2022). The importance of ensuring the 

consistency and comparability of biophysical 

indicators, such as the Leaf Area Index (LAI), 

cannot be overstated in the context of precise 

agricultural monitoring (Alexandridis et al., 

2019). The research concern regarding the 

viability and predictive capabilities of this type of 

data, specifically concerning environmental 

conditions, particularly the state of agricultural 

vegetation, continues to be of significant 

importance in contemporary studies. This is 

particularly relevant given the substantial volume 

of data provided by Sentinel-2. The study also 

aims generally to examine the relationship 

between Sentinel-2 satellite imagery and in field 

measurements of biophysical parameters. 

Moreover, there is a need for additional research 

to investigate the uncertainties surrounding the 

impact of data processing level as well as spatial 

resolution  on generated biophysical indicators, 

such as the Leaf Area Index (LAI). This is 

especially crucial in the context of Africa, where 

studies on this topic are limited. The 

quantification of uncertainty in remotely sensed 

products holds value for both consumers and 

developers who are interested in the operational 

utilization and future advancement of the product. 

Therefore, the primary aim of this study is to 

verify and contrast Leaf Area Index (LAI) 

obtained from Sentinel-2 imagery with spatial 

resolutions of 10 m accuracy and 20 mas well, 

using field data and worldwide LAI outputs such 

as Landsat 8 LAI with 30 m spatial resolution. 

2. MATERIALS AND METHODS 

2.1.Study Area  

The El-Salhia project, located in the eastern 

region of the Nile Delta, was selected as the study 

area. It is located between latitudes 30o 22' 35" 

and 30o 31' 19" on one side, and longitudes 31o 

55' 24" and 32o 02' 38" on the other side, as shown 

in Figure 1. The project encompasses an estimated 

area of 32,857 Fed. The project utilizes two 

distinct irrigation systems, namely center pivots 

and drip irrigation. Pivot irrigation is commonly 

employed in the cultivation of field crops, while 

drip irrigation is typically utilized in the irrigation 

of orchard trees. The project consists of 

approximately 130 pivots. Each pivot unit can 

irrigate approximately 151 acres of land. The 

average length of the pivots in the project is 

approximately 450 meters. 

2.2.Climate Conditions  

Based on the Köppen Climate Classification 

System, the study region predominantly 

experiences a dry climate, characterized by 

precipitation levels that typically fall short of 

meeting more than half of the total potential 

evapotranspiration in most years. The mean 

annual temperature exceeds 18 °C. The annual 

precipitation typically amounts to approximately 

20 millimeters. The peak intensity of winter 

precipitation occurs in the month of January, 

during which the average rainfall is recorded at 

6.9 mm. According to El-Shirbeny et al. (2021), 

the average maximum temperature in the month  
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Fig. 1. illustrates the geographical location of the study area. 
 

of June reaches 34.6°C. Conversely, January 

experiences the lowest temperatures, with an 

average of 19.0°C. 

2.3.Data 

2.3.1. Remotely sensed data 

Sentinel images were obtained during two 

distinct agricultural seasons, (winter season of 

2019 and the subsequent summer season of 2021). 

The images were obtained on April 9, 2019, for 

the first season and on August 11, 2021, for the 

second season, specifically during the peak of the 

season. The data was obtained from the ESA 

Copernicus Open Access Hub, accessible at the 

URL: https://scihub.copernicus.eu/dhus/. Using 

the Sentinel-2 resampling technique included in 

the SNAP application, the images were rescaled 

to two specified spatial resolutions for Sentinel-2, 

10 m spatial resolutions and 20 m spatial 

resolutions. 

2.3.2. Leaf Area Index Using SNAP (LAI) 

The biophysical processor, which is a 

component of the SNAP application, was utilized 

to derive Leaf Area Index (LAI) from Sentinel-2 

images. It is referred to Sentinel-2 land bio-

physical processor (SL2P). LAI values were 

derived from processing Sentinel-2 images 

captured at both different spatial resolutions, 

namely 10 meters and 20 meters. The biophysical 

processor utilizes radiative transfer models 

(RTMs), specifically the Neural Networks and 

PROSAIL algorithm, to compute the solar 

zenith,viewing zenith, and relative azimuth angles 

for eight reflectance bands (B3, B4, B5, B6, B7, 

B8A, B11, and B12). Further information can be 

found in the publication by Weiss and Baret 

(2016). The Nearest Neighbour resampling 

method was employed to adjust the pixel 

resolution of the SNAP-derived LAI data (10 m) 

to align with the Landsat8 LAI output (30 m). This 

involved rescaling and co-registering the data. 

The resampled SNAP-LAI products at a spatial 

resolution of 30 meters were employed to 

compare them with the Landsat8 LAI products. 

We can calculate LAI from sentinel-2 image usin 

the equation that developed by (Boegh et al., 

2002). 
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LAI = (3.618*EVI - 0.118) 

EVI is Enhanced Vegetation Index value. 

2.3.3. Landsat8 Leaf Area Index (LAI)  

The collection of satellite images from 

Operational Land Imager (OLI), Landsat8 (L8) 

satellites, spatial resolution of 30 meters, a 

moderate revisit capacity of 16 days, and the 

ability to collect data over nine spectral bands that 

include visible band to shortwave infrared.during 

two different agricultural seasons, the first during 

the winter season of 2019 and the second during 

the summer season of 2021. It is worth noting that 

the images collected were required to have a cloud 

cover of less than 90%. The Landsat 8 Operational 

Land Imager (OLI) Collection 2 dataset was 

obtained from the United States Geological 

Survey (USGS) archive. The top-of-the-

atmosphere (L1TP) and bottom-of-the-

atmosphere (L2SR) reflectance measurements are 

included in this collection. The data has been 

orthorectified, flattened the ground, and 

compensated for atmospheric conditions. We can 

calculate LAI from landsat image usin the 

equation that developed by (Saito et al., 2001). 

LAI=0.57exp(2.33NDVI). 

2.3.4. Leaf area index in the field (LAI) 

The AccuPAR device was utilized to 

randomly collect leaf area index readings from 

various points distributed throughout the field.  

The AccuPAR LP-80 is a portable linear 

Photosynthetically Active Radiation (PAR) 

comptometer. It consists of a probe equipped with 

80 individual sensors positioned along an 80 cm 

rod, as well as a read-out/data-logger unit. The 

system designed for the detection of concurrent 

above-canopy radiation can be integrated with an 

additional external Photosynthetically Active 

Radiation (PAR) sensor if desired. The LP-80's 

integrated microprocessor utilizes the radiation 

transmission and scattering model Norman-Jarvis 

to calculate the leaf area index (LAI) based on the 

photosynthetically active radiation (PAR) values 

obtained from both above and below the canopy. 

Before each measurement session, the LP-80 

probe underwent factory calibration to ensure 

consistency in the photosynthetically active 

radiation (PAR) interaction between the outside 

detector and the probe. Following the suggestions 

put forth by previous research conducted by LI-

COR (2019) and the accompanying user manual. 

Three measurements were recorded at each data 

point, and the mean value was calculated from 

these measurements. The LAI measurements were 

obtained during periods of predominantly 

cloudless sky conditions on the specific day when 

the satellite passes over the designated study area, 

which corresponds to the peak of the growing 

season. Table 1 presents the summary statistics 

about the Leaf Area Index (LAI) in field.

 

Table 1. presents the descriptive statistics of the measured Leaf Area Index (LAI) in square meters 

per square meter (m2 m-2) to validate the Sentinel 2  LAI derived from the Sensor 

Network and Analytics Platform (SNAP). 

type of crop Number of samples Minmum Mean Maximum STDEV 

Potato 23 2.32 3.22 4.22 0.48 

Peanuts 15 5.43 6.28 7.14 0.38 

Overall 38 2.32 4.43 7.14 1.56 

 

2.3.5. Performance indicators 

The validation process for the Leaf Area Index 

(LAI) involved assessing its accuracy through 

various statistical metrics. These metrics included 

the coefficient of determination (R2), which 

gauges how well the observed and predicted 

values align; the Root Mean Squared Error 

(RMSE), which quantifies the average magnitude 

of the prediction errors; and the Mean Absolute 

Error (MAE), which measures the average 

absolute difference between observed and 

predicted values. 
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where Yp,i is the predicted output and Ya,i is the 

actual output. 

MAE = (1/n) Σ(i=1 to n) |y_i – ŷ_i| 

where: n is the number of observations in the 

dataset, y_i is the true value, ŷ_i is the predicted 

value. 

In order to conduct this validation, the LAI 

values obtained from on-site or in field data were 

juxtaposed with those derived from global LAI 

products, which are likely generated through 

remote sensing techniques. By comparing these 

values, researchers were able to assess the 

consistency and reliability of the estimated LAI 

from earth observation data. This validation 

process serves to verify the accuracy of the 

estimation method and the suitability of global 

LAI products for practical applications. 

3. RESULTS AND DISCUSSION 

The Leaf Area Index (LAI) obtained from 

Sentinel-2 row data using the SNAP software was 

validated by comparing it with in field LAI 

measurements. The validation process was 

conducted for two different spatial resolutions. 

The findings presented in Figures 2 and 3 

demonstrate variations in Leaf Area Index (LAI) 

extracted from SNAP software at different pixel 

resolutions. The results indicate that the Leaf Area 

Index (LAI) extracted from SNAP software at 

both 10 m and 20 m pixel size resolutions 

exhibited comparable agreement with the 

observed LAI values obtained through in field 

measurements. For instance, the R-squared (R2) 

was found to be 0.81 for the 10 m resolution. 

When comparing the results, it was observed that 

there were only slight variations in the overall 

agreement at resolutions of 10 m and 20 m. 

Specifically, the coefficient of determination (R2) 

values were found to be 0.78 and 0.76, 

respectively, for one of the crops. However, the 

error metrics exhibited a high degree of similarity 

for both resolutions. The Leaf Area Index (LAI) 

obtained from SNAP analysis in this study, based 

on reflectance data at a Pixel size of 10 m, was 

found to be more effective compared to the 

findings reported by Pasqualotto et al. (2019), 

exhibiting a higher R2 value of 0.54. 

When comparing leaf area index (LAI) 

between multiple crops, specifically potato, and 

peanut, the findings indicate significantly stronger 

correlations with observed LAI for potatoes. This 

is evident through an R2 value exceeding 0.8 

across various Pixel size and processing levels. In 

contrast, the analysis of peanuts revealed 

moderate effects with an R2 value exceeding 0.75, 

indicating a substantial degree of explained 

variance. Additionally, there were marginal 

disparities observed across different levels of 

processing. The error measures, such as RMSE 

and MAE, were determined for potato and peanut 

crops at two different scales, specifically 10m and 

20m. The resulting values are as follows. The root 

mean square error (RMSE) for potato cultivation 

was found to be 1.83 m2 m–2 and 1.81 m2 m–2 at 

spatial resolutions of 10m and 20m, respectively. 

Similarly, the mean absolute error (MAE) for 

potato cultivation at the same spatial resolutions 

was determined to be 1.81 m2 m–2 and 1.82 m2 

m–2, respectively. In the case of the second crop, 

namely peanuts, it was observed that the root 

mean square error (RMSE) values at two different 

levels of spatial accuracy, namely 10 m and 20 m, 

were 1.32 m2 m–2 and 1.35 m2 m–2, respectively. 

In a congruent manner, the mean absolute error 

(MAE) magnitudes corresponding to equivalent 

spatial precision thresholds were determined to be 

1.31 m² m⁻² and 1.33 m² m⁻², in sequential order. 

The deviations discerned during the 

computational determination of the Leaf Area 

Index (LAI) utilizing the SNAP software exhibit 

a potential linkage to the persistent residual 

discrepancies inherent in the process of 

atmospheric correction (AC) executed through the 

utilization of the Sen2Cor methodology, as 

discerned and documented within the confines of 

the present investigation. This phenomenon can 

be attributed to the findings of several studies, 

which have demonstrated that different 

approaches to atmospheric correction exhibit 

varying levels of performance depending on the 

specific characteristics of the environment, 

spectrum bands and land cover categories under 

consideration (Pahlevan et al., 2021; Doxani et al., 

2018). The susceptibility of the visible spectral 

bands employed in the Biophysical processor of 

Sentinel-2 to perturbations induced by Rayleigh 
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Table 2. The validation parameters for the predicted LAI derived from Sentinel-2 imagery at a 

spatial resolution of 10 meters 

Crop R2 RMSE MAE 

Potato 0.81 1.833306 1.818726 

Peanuts 0.78 1.327536 1.315267 

 

 

 

 

Fig. 2. displays scatterplots and the corresponding statistical metrics comparing the observed (in-

field) Leaf Area Index (LAI) with the LAI calculated derived from imagery Sentinel-2 at a 

spatial resolution of 10 meters. The scatterplots are presented separately for the potato crop 

(a) and the peanut crop (b). 
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Table 3. The validation parameters for the predicted LAI derived from Sentinel-2 imagery at a 

spatial resolution of 20 meters 

Crop R2 RMSE MAE 

Potato 0.81 1.837026 1.823448 

Peanuts 0.76 1.350098 1.33682 

 

 

 

 
 

 

Fig 3. displays scatterplots and the corresponding statistical metrics comparing the observed (in-

field) Leaf Area Index (LAI) with the LAI calculated derived from imagery Sentinel-2 at a 

spatial resolution of 20 meters. Panel A represents the results for the potato crop, while 

panel b represents the results for the peanut crop. 

 

and aerosol scattering phenomena has 

been comprehensively elucidated and recorded in 

the scholarly work of Pereira-Sandoval et al. 

2019. 
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According to the findings of Djamai and 

Fernandes (2018), it is evident that uncertainties 

associated with data have a direct impact on the 

accuracy of biophysical parameters derived from 

such data. Nevertheless, further investigation is 

required to delve into this aspect in subsequent 

research endeavors. For instance, there is a need 

to ascertain the impact of various atmospheric 

correction techniques on the retrieval of the Leaf 

Area Index (LAI) and other biophysical data 

obtained through remote sensing. Furthermore, 

the scatter plots presented in Figure 2 and Figure 

3 demonstrate that the utilization of reflectances 

by the SNAP Biophysical Processor has led to an 

underestimation of Leaf Area Index (LAI) values 

across all crop types. 

It is important to note that errors in in field 

measurements can significantly impact the 

validation of satellite-based Leaf Area Index 

(LAI) products and potentially result in 

misleading findings. Hence, it is imperative for 

future research endeavors to thoroughly examine 

this particular aspect. In light of the considerable 

uncertainties identified in this study, it is 

imperative to conduct additional research to 

enhance and refine the retrieval of the Leaf Area 

Index (LAI), Especially with regard to its 

utilization in expediting field-level agricultural 

management determinations, such as those 

integral to the practice of precision farming. 

Comparative analysis between the SNAP and 

Landsat8 derived (LAI). 

The assessment of the Leaf Area Index 

(LAI) data derived from SNAP in comparison 

with well-established global LAI products, 

exemplified by the Landsat 8 LAI, assumes a 

position of paramount significance. This 

comparative undertaking seeks to ascertain the 

coherence and concordance of the SNAP-derived 

LAI with the prevailing landscape of existing LAI 

products. The outcomes of this comparative 

analysis, as showcased through the illustrative 

representation in Figure 4, delineate a noteworthy 

tendency. Specifically, the LAI data procured 

from SNAP demonstrates a heightened level of 

correspondence with the broader cohort of global 

LAI products. 

Remarkably, the discernible trend in these 

results is coupled with quantitative validation 

metrics that endorse the credibility of the SNAP-

derived LAI data. In particular, the Root Mean 

Square Error (RMSE) and Mean Absolute Error 

(MAE) values, established as key indicators of 

accuracy and precision, consistently portray a 

favorable disposition for the LAI data derived 

from SNAP. This discernible outcome holds 

particular relevance when contrasted against the 

LAI data derived from Landsat 8, where 

comparatively higher RMSE and MAE values are 

evident. 

Consequently, this comparative 

investigation advances the understanding that the 

LAI data stemming from SNAP, propelled by its 

discernibly heightened alignment with established 

global LAI products and the favorable 

quantitative validation metrics, manifests as a 

robust and promising resource in the realm of LAI 

estimation. As such, these findings underscore the 

efficacy and utility of SNAP-derived LAI data in 

contributing to accurate and comprehensive 

assessments of vegetation dynamics and 

ecosystem functioning. 

4. CONCLUIONS 

Interesting outcomes from this investigation 

were found. In agricultural environments, SNAP-

derived LAI correlates rather well with in field 

LAI data, the inaccuracies are notably high for 

field level agricultural management. Future 

research should further analyse this conclusion 

because crop-specific error assessment showed 

that SNAP-derived LAI values were overstated 

and accuracy varied by crop variety. Second, the 

spatial resolution and Sentinel-2 processing levels 

affect how well SNAP-derived LAI performs; 

nonetheless, the accuracy variation between 

various Sentinel-2 resolutions is minimal. Future 

research should therefore take into account this 

issue in more detail, for example, by measuring 

the impact of several atmospheric correction 

techniques, such as Sen2Cor, FORCE, iCor, and 

MAJA, on the retrieval accuracy of biophysical 

data. Third, SNAP-derived LAI is comparable to 

other LAI products available globally, such as 

Landsat LAI. This demonstrates its capacity to be 

applied globally and its potential for large-scale  
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Table 4. The validation parameters of the Landsat 8-derived Leaf Area Index (LAI) and SNAP-

derived LAI at a spatial resolution of 30 meters. 

n Crop R2 MAE RMES 

154000 Potato (a) 0.72 0.575921 0.684131 

154000 Peanuts (b) 0.87 0.598201 0.736302 

 

 
Fig 4. displays scatterplots illustrating the relationship between Landsat 8-derived Leaf Area Index 

(LAI) and SNAP-derived LAI at a spatial resolution of 30 meters. Panel (a) pertains to the 

potato crop, while panel (b) pertains to the peanut crop. 

 

agricultural monitoring where within-field 

variability is not an issue. However, SNAP-

derived LAI is not appropriate for precision 

agriculture due to poor field performance. If noise 

reduction and smoothing techniques were used on 

other global LAI products, such as MODIS data, 

a better match and decrease in errors between 

SNAP-derived LAI and global LAI products 

might be achieved, according to our hypothesis. 

Overall, further development of SNAP-derived 

LAI is required to support precision agriculture 

due to its poor performance when compared to in- 
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field LAI data, but its relatively higher 

consistency with global LAI products indicates 

that it may be suitable and sufficient for large-

scale agricultural monitoring. The findings have 

implications for the use of SNAP-derived LAI 

from Sentinel-2 imagery in the future and 

demonstrate the value of Sentinel2 data and 

SNAP Toolbox in supporting regional and 

national agricultural management decisions and 

policymaking in support of global mandates like 

Regions and places where such information is 

scarce.. 
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 الملخص العربى
 

 (LAIوالقياسات الميدانية لتقدير مؤشر مساحة الورقة ) OILو Sentinel 2تحليل مقارن بين مستشعرات 
 

 محمود أحمد بدر، محمد أحمد الشربينى، محمد يوسف الأنصارى و منتصر عبدالله عواد
 

 .مصر -جامعة بنها  -كلية الزراعة  -قسم هندسة النظم الزراعية والحيوية 
 مصر -البعد وعلوم الفضاء الهيئة القومية للأستشعار من  -قسم التطبيقات الزراعية 

 
لتقييم الغطاء النباتي وتوجيه  SNAPتتحقق هذه الدراسة من دقة بيانات مؤشر مساحة اللأوراق التي تم الحصول عليها من خلال برنامج 

م. كشفت النتائج عن مستوى  01م و 01العالمية بدقة مكانية تبلغ  LAIالزراعة. ويقارن هذه البيانات مع القياسات في الموقع ومخرجات 
المقاسة في الميدان، مع قيم معامل  LAIو Sentinel-2الذي تم الحصول عليه من صور القمر الصناعي  LAIكبير من التزامن بين 

يم المنخفضة لمتوسط الجذر التربيعي للخطأ م(. وقد تم إثبات هذا الارتباط من خلال الق 01) 18.0م( و 01) 18.0( تبلغ R2التحديد )
(RMSE( ومتوسط الخطأ المطلق )MAE مقارنة بـ )LAI  المستمدة من بياناتLandsat 8 تم تحديد ارتباطات مهمة بين .LAI 

الظاهرة (. تؤكد هذه R2 > 0.75( مقارنة بالفول السوداني )R2 > 0.8والمحاصيل المختلفة، حيث أظهرت البطاطس ارتباطًا أقوى )
الخاصة بمحاصيل مختلفة. يسلط البحث الضوء على أهمية تصحيح أخطاء التصحيح  LAIعلى إمكانية وجود اختلافات في تقدير 

. بالإضافة إلى ذلك، فإنه يعني ضمنا ضرورة تنفيذ تقنيات المعايرة المحلية لتحسين مرونة النظام. LAIالجوي في تعزيز دقة قياسات 
لرصد الزراعة على نطاق واسع، وبالتالي تقديم مساهمة قيمة  SNAPالمشتق من  LAIعلى أهمية استخدام برنامج  تسلط النتائج الضوء

التي تمت معالجتها باستخدام برنامج  Sentinel-2في المبادرات العالمية. يوضح البحث إمكانية استخدام بيانات القمر الصناعي 
SNAP  لتقديرLAI على الرغم من أن .LAI شتقة من المSNAP  لها بعض القيود، إلا أنها تُظهر إمكانية لتطبيقات مراقبة زراعية

 .على المستويين الإقليمي والعالميواسعة النطاق، وبالتالي تسهيل اتخاذ قرارات مستنيرة 
 .العالمية  والاستشعار عن بعد LAI، منتجات .، لاندسات0مؤشر مساحة الورقة، القمر الصناعى سينتينال  الكلمات المفتاحية:


