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R]rECENTLY material science has become eye-catching to scientists, engineers, and
esearchers as a modern technology. Surgical sutures since ancient times have been the

best solution for treating wounds. The risks associated with and limitations of wound closure
devices demanded the need for cost-effective techniques and efficiency for wound healing.
There has been a large-scale evolution and expansion of the material research and business

around biomedical applications. Until now, sutures and staples have been the main used tools
in the biomedical industry. Absorbable sutures which are based on biopolymer more preferred
than nonabsorbable ones. Absorbable sutures

(AS) are degraded within the body usually by the aid of proteolytic enzymes or with hydrolysis.
Although they are biocompatible, there are limitations in the lack of sufficient antimicrobials,
and drug delivery which are desired for biomedical applications. This study aimed to modify
the absorbable polyvinyl alcohol and chitosan as biopolymer mixed with GO as a nanomaterial
and keratin as a source of protein (PVA /Cs/GO/ Ke) sutures to support an antimicrobial effect
that is protected from multidrug-resistant microorganisms. In addition, graphene oxide has
promised material for suture enhancement. This could be because GO provides active chemical
sites. GO has also been used to coat surgical sutures to improve their functionalities to prevent
bacterial adherence. So, it’s a good antimicrobial activity by itself or its drug delivery. Chitosan
is a qualified antimicrobial agent can be attributed to its cationic nature and reduced water

content. The mixture was turned to nanofiber by an electrospinning process. Then the fiber

was turned to multifilament by a twisting machine The results revealed our main advantages
the first, absorbed nanofiber sutures with strong antimicrobial against pathogenic strains the
second, absorbed time controlled the third cheapest biomaterial and last but not least AS is
ecofriendly which depends on human hair.

High biocompatibility of biopolymers,

Economic cost for the surgeon,

Self-sterilization without compromising material integrity,
Absorption with bioactive sites,

AS has bacterial resistance.

Keywords: Sutures, graphene Oxide, PVA, Nanotechnology, antimicrobial.

Introduction

Sutures play an important role in facilitating
wound healing and in ensuring surgical
interventions succeed. Suture-associated surgical
site infection could be done when pathogens
grow onto the suture surface and make resistant

biofilms to antibiotic treatment. Thus, the rates of
morbidity will increase and are accompanied by
high mortality[1].

Microbial growth onto the sutures is based
on the microbial species due to infection and the
chemical structure of the suture’s material [2—-5].
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Multifilament and monofilament sutures have
been reported. Although multifilament is stronger
than monofilament [6], some studies indicate
that multifilament sutures are more exposed to
bacterial adherence than monofilament, which
can cause severe inflammations [7, 8]. So, the
sutures must be strong with no bacteria growth.

Suture natural polymers such as collagen, silk,
fibrin, carboxyl methyl cellulose (CMC), hyaluronic
acid (HA), and chitosan which have good activities
with cells through cell surface receptors [9] but they
are expensive, have lower mechanical properties, and
not easily accessible [12].

The US Food and Drug Administration (FDA)
confirmed the use of a polyvinyl alcohol (PVA)
implant for surgical application [10] and approved
that is safe and biocompatible [11]. So, PVA has
been used as a backbone in many suture techniques
[12, 13]. Although poor mechanical properties
of PVA have been improved by chitosan, it still
exhibits poor mechanical properties [14].

Nanomaterials could introduce many
solutions for problems in many fields. So, in
sutures, nanoparticles supported both physical
and biological properties. Suture materials
treated with antimicrobial agents are an important
approach for keeping wounds safe from
infections. Most antibiotic drugs come with risks
to public health and associated mortality [15—18].
It comes from antibiotic side effects or leads to
the development of bacterial resistance [19-20].
So new materials must be developed to avoid
antimicrobial resistance.

Many papers have been published for
enhancing surgical suture materials such as
non-absorbable silk sutures coated with silver
nanoparticles (NP) as an antimicrobial agent
[21-26], zinc oxide NP impregnation on surgical
sutures to support wound healing [27], gold
nanoparticles slurry was dipping on surgical
suture to improve the antibacterial effects [28].

Over the past decade, graphene oxide has been
the most investigated for its amazing properties.
Many studies prove that graphene-oxide has
a high surface area [29-32], many functional
groups [33-35], protein adsorption [36-39],
antimicrobial potentials [40—45], hydrophilicity
properties [34], [44, 45] and flexible to handle,
so they were used for wound dressing to prevent
infection in different wounds [41], [46—52]. When
addition small quantity of GO (< 5%) enhanced
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the mechanical properties of the wound dressing
and protein affinity which wound fast healing, and
support of bone tissue generation.

Advanced green technology methods that aim
to treat the waste are known to be environmentally,
safe nontoxic, cheap, and practical applications
with appreciable results for industry [53].

Human hair is one of the interesting biological
fibers [54-56]. Many tons of human hair are
wasted in the world annually; so, they lead to an
environmental challenge [57]. Waste human hair
trade has increased day after day. The economics
of the human hair industry reached $7 billion
in 2020 as a commercial application of wasted
human hair fiber [58]. The basic backbone of
hair is incredibly strong keratin; a single strand of
hair can load 100-150 grams of weight [59, 60].
In addition, the elasticity of the hair makes it able
to restore its original position after removing the
deformation load. This leads to the fact that all
human hair kinds can support reinforcement [60].
Protein is found in the greatest quantity in hair with
low Sulphur content. Keratin is a protein found
in the cortex. Keratin has 18 amino acids such as
cysteine, glutamic acid, serine, glycine, threonine,
leucine, valine, arginine, and isoleucine. In other
terms sutures/Keratin is fabricated by the hot-melt
extrusion method at 63 £ 1 °C [61,62]. On the
other hand, increasing keratin temperature leads
to the deformation of keratin.

Materials and methods

Materials

Hydrochloric acid 37% GR for analysis ACS
(IL, Naser, analytical purity) and sodium hydroxide
powder (IL, Sigma, analytical purity) were
employed to hydrolyze wool fibers. Chitosan (Cs)
and Polyvinyl alcohol (PVA) powder, acetic acid.

Methods
Preparation of absorbable sutures (AS) Cs/PVA/GO
Cs (1gm) was dissolved in 30 ml of acetic acid
solution with agitation until the solution *turned
clear. *chitosan reduces moisture and water
uptake [63]. Then aqueous solution of PVA was
prepared by dissolving 10gm of PVA in 50 ml of
water. The mixture was prepared with 1 ml of Cs
and 50 ml of PVA by stirring for 1 hour at 60 C
temperature to reach a clear mixture.

GO was prepared by Hummer method
modification. Graphite (2.0g) was added to
sulfuric acid concentrated H2SO4 (50 ml) under
stirring in an ice bath, followed by the addition of
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NaNO3 (1 g), and then the mixture was cooled to
1 *oC *finely KMnO4 (6.0 g) was added to the
solution for 2 hours then the solution *agitates for
4 hours at room temperature.

Preparation of Keratin (Ke) from human hair
The hair was prepared by washing with DW and
ethanol. The clean hair was *impressed in Alkali
and acid solution to determine which solution was
more active in extraction*keratin than the other.
The keratin protein was *indicated by SEM image.

The influence of the temperature on alkali solution
for keratin extirpation

The alkali solution at Ph. 12 was adjusted by
caustic soda. One gram of hair was dissolved in
sodium hydroxide solution after washing many
times with DW. Then raise the temperature at 80C
to *rapid the hydrolysis of the hair for 5h. In the
second solution, one gram of hair was impressed
in sodium hydroxide solution at Ph 12 for 24h for
complete hydrolysis at room temperature.

The influence of the temperature on the acid
solution for keratin extirpation

The acid solution at Ph* 1 which Ph was
adjusted by hydrochloric acid. One gram of hair
was dissolved in 50 ml dilute hydrochloric acid
solution by raising the temperature to 80C to rapid
the hydrolysis of the hair for Sh. In the second

solution, one gram of hair was impressed in cold
hydraulic acid solution at Ph 2 for 24h.

PVA /Cs /GO/ Ke solution preparation

1 ml of GO (1%) was added to PVA /Cs for
one hour. Then. Iml of Ke was added to the
mixture PVA /Cs /GO under agitation at 60 C.
Electrospinning of PVA /Cs /GO/ Ke.
We used 1 gm of the boy’s hair of brown color.

In the electrospinning technique, a PVA /Cs /GO/
Ke solution is driven through a dispensing needle
that is in front of aluminum foil which covers a
cylindrical metallic fibers collector, then an electric
field is applied between the needle and aluminum
foil by the application of a potential difference. PVA
/Cs /GO/ Ke fibers were loaded to manufacture
bioactive sutures, which had a greater affinity for
tissues while providing antimicrobial protection.
Cs (1gm) dissolved in 30 ml of acetic acid solution
with agitation and Hummer method modification is
applied to prepare GO. Figure 1 Indicates an XRD of
GO and a TEM image of the prepared GO.

Figure 2 shows the electrospinning system.
The applied potential of the electrospinning
system was 20 KV, the rate was 4ml/h, and the
distance between the needle and the collector was
30cm.

step 1 Cs (1gm) was dissolved in 30 ml of acetic acid solution with agitation until the solution.

step 2 GO was prepared by Hummer method modification.
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Fig. 1: a) XRD of GO, and b) TEM image of the prepared of GO.
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Fig. 2. The electrospinning system.

Egypt. J. Biophys. Biomed. Eng., Vol. 25 No. 1 (2024)



40 MOHAMED E. EL-BOURIDY et al.

Characterization of PVA /Cs /GO/ Ke

ESM (Jeol) fine layer coating for *prepared
the sample with a thin layer of gold, Scanning
electron microscopy (SEM) (Jeol), and Energy
Dispersive X-ray (EDX). Center lab, University
of Mania, Mania, Egypt while the facility of

Degradation study

The degradation of AS PVA /Cs /GO/ Ke was
assessed by the phosphate buffer solution (PBS) as
reported earlier [20]. The AS nanofiber suture was
exposed to PBS to indicate the biological stability
period of the sample and its rate of degradation. The
level of degradation was estimated for the nanofiber
suture sample *depending on weight loss.

Morphological and microanalytical characterization

To analyze the elements and structure, the SEM
captured images of the PVA/Cs/GO/Ke nanofiber
sutures. These were affixed onto the SEM holder
using carbon tape. To obtain clear images and EDS
peaks for elemental analysis, the sutures were not
coated with a thin layer of gold for conductivity.
The SEM utilized a JSM 1T200 Field Emission
Scanning Electron Microscope (JEOL, Japan)
with an accelerating voltage ranging from 0.3 to
30kV, depending on the necessary magnification,
to capture these images.

step 3 10 gm of PVA in 50 ml of water.

Antimicrobial activity

The antibacterial and antifungal properties
of PVA/Cs/GO/Ke nanofiber sutures were tested
against different microorganisms including
Escherichia coli (a type of gram-negative bacteria),
Candida albicans (a fungus), and Staphylococcus
aurcus (a type of gram-positive bacteria). To
experiment, C. albicans was cultured in Saboraud
Dextrose Broth (SDB), while E. coli and S. aureus
were cultured in Nutrient Broth (NB)

Results and Discussion

The findings presented in the Figures showcase
the outcomes obtained from Energy Dispersive
X-ray Spectroscopy (EDS) and Scanning Electron
Microscopy (SEM) imaging. The SEM images
of the PVA/Cs/GO/Ke nanofiber unveiled the
characteristic multifilament arrangement of
the sutures, highlighting the deposition of GO
nanoparticles onto the biopolymer. Additionally,
the presence of Ke, a protein within the sutures,
was identified, along with the detection of
nitrogen ions. we added 10gm of PVA in 50 ml of
water to prepare a Keratin (Ke) from human hair
by different methods as shown in Figure 3.

Step 4 Preparation of Keratin (Ke) from human hair by different methods .

PR TR AN
AT

(c): FOV: 1.829 * 1.371 mm

(d): FOV: 284.4> 213.3 pm 3

Fig. 3. The hyrolysis of hair: (a) under alkile solution (800C), (b- ¢) hair hydrolysis within 30 min, and (d) hair

hydrolysis after Sh.
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Figure 3 a,b and ¢ show of hydrolysis the
ke formation at different scales in the start of
hydrolysis . Alpha keratins (hair keratin) are
fibrous structure, and looks like the groups of
thread of a screw, after complete hydrolysis this
structure disappeared as shown in figure 3d which
shows the use of NaOH at high temperatures the
Ke was damaged after completed hair hydrolysis.
While the use of NaOH at room temperature kept
Ke safe from damage as shown in Figure 4.

Figure 5 shows the influences of HCI for Ke
hydrolysis Figure 5 -a indicates the human hair
didn’t hydrolyze in HCI at room temperature after
24 h Figure 5- b,c indicates the influences of HCI
for Ke hydrolysis at high temperature which the
human hair hydrolyzes in HCI at 80 °C after 5h.
biodegradation

n fact, the degradation experiment, and
physiological case were done with phosphate
buffer solutions at pH 7.4 for 6 weeks. It indicates
that the degradation of the suture supports the
diffusion of the GO and, therefore, inhibits
the bacterial and super bacterial which have
protection against antibiotics. PVA /Cs /GO/ Ke
nanofibers absorbed sutures have soft surfaces and
antimicrobial structures supporting the results in
the conclusion confirming that sutures are suitable
for a wide range of types of wounds. The rate of
degradation indicates that the suture lost 61% after
two weeks from its weight, 74% after 3 weeks, and
complete degradation was observed after 5 weeks.

Nanofibers

Figure 6 shows AS nanofibers under the
electrospinning process. PVA /Cs /GO/ Ke
nanofibers images were done by scanning electron
microscopy. These images indicate multifilament
nanofiber sutures.

Figure 7 shows AS nanofibers under the
electrospinning process. PVA /Cs /GO/ Ke nanofibers
were compared with PAN nanofibers. PVA /Cs /
GO/ Ke nanofibers gave flexible straight strain with
good mechanical properties. On the other hand, PAN
nanofibers gave short stains and random formation
with weak mechanical properties.

Conclusion and future

perspectives

Conventional suture materials commonly have
drawbacks such as their inclination to develop
microbial biofilms, leading to increased health
complications. Recentresearch has concentrated on
bioactive sutures, which promote tissue regrowth
and possess antimicrobial characteristics. Suture
materials play a vital role in the field of biomedicine,
with factors like ease of use, cost-effectiveness,
compatibility with the body, antimicrobial traits,
and mechanical strength significantly influencing
their overall quality. Absorbable sutures like AS
Cs/PVA/GO/Ke offer additional benefits as they
are renewable, biodegradable, environmentally
friendly, biocompatible, and exhibit reduced
antigenicity.

{a): FOV: 853.3 » 640.0 pm

(b): FOV: 1969 x 1477 mm

Fig. 4. The hair hydrolysis in NaOH at 250C after 24h at different magnifications(a,b).
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Fig. 5. The washed hair in HCI then hydrolysis in NaOH at 250C after S min at different magnifications from (a-c).

Step 5 Physical mixing PVA /Cs /GO/ Ke solution preparation.
Step 6 PVA /Cs /GO/ Ke nanofibers preparation by electrospinning technique.
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Fig. 6. The nanofiber sutures at different magnifications from (a-d).
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J

Fig. 7. AS nanofibers under the electrospinning process(a,b).
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